首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Global greenhouse gas (GHG) emissions models generally project a downward trend in CO2 emissions from land use change, assuming significant crop yield improvements. For some crops, however, significant yield gaps persist whilst demand continues to rise. Here we examine the land use change and GHG implications of meeting growing demand for maize. Integrating economic and biophysical models at an unprecedented spatial resolution, we show that CO2 emissions from land conversion may rise sharply if future yield growth follows historical trends. Our results show that ~4.0 Gt of additional CO2 would be emitted from ~23 Mha agricultural expansion from 2015 to 2026, under historical yield improvement trends. If yield gaps are closed expeditiously, however, GHG emissions can be reduced to ~1.1 Gt CO2 during the period. Our results highlight the urgent need to close global yield gaps to minimize agricultural expansion and for continued efforts to constrain agricultural expansion in carbon-rich lands and forests.  相似文献   

2.
Increasing food production to meet growing demand while reducing tropical deforestation is a critical sustainability challenge. This is especially true in sub-Saharan Africa, which faces serious food insecurity issues and where smallholder farming is the main driver of forest conversion. Competing theories imply opposite predictions as to whether deforestation increases or decreases with smallholder agricultural intensification, which can improve food security by increasing crop yields per area cultivated. This research provides new empirical evidence on the association between deforestation and smallholders’ use of modern inputs, in particular inorganic fertilizer on maize and improved maize seeds, using Zambia as a case study. We analyze this association nationwide in a spatially disaggregated manner at the lowest administrative level using machine learning-based small area estimation, which makes use of detailed nationally representative surveys on smallholder farm households for 2011 and 2014, and census data to statistically predict modern inputs use country-wide for 2011, when average maize yields were 1.28 tons/ha. Then, we evaluate the association between improved maize seed and fertilizer inputs and subsequent deforestation, while controlling for key geospatial covariates. The results support the land-sparing hypothesis, finding that smallholder farmers’ use of improved maize seed is negatively associated with deforestation on non-acidic (pH ≥ 5.5) soils, an effect that is enhanced by complementary inorganic fertilizer use. Fertilizer use on its own, however, is weakly associated with increased deforestation. Sustainable intensification via use of improved seeds on adequately fertile soils and improving soil health appears compatible with reducing both deforestation and food insecurity.  相似文献   

3.
Meeting the food needs of the growing and increasingly affluent human population with the planet’s limited resources is a major challenge of our time. Seen as the preferred approach to global food security issues, ‘sustainable intensification’ is the enhancement of crop yields while minimizing environmental impacts and preserving the ability of future generations to use the land. It is still unclear to what extent sustainable intensification would allow humanity to meet its demand for food commodities. Here we use the footprints for water, nitrogen, carbon and land to quantitatively evaluate resource demands and greenhouse gas (GHG) emissions of future agriculture and investigate whether an increase in these environmental burdens of food production can be avoided under a variety of dietary scenarios. We calculate average footprints of the current diet and find that animal products account for 43–87% of an individual’s environmental burden – compared to 18% of caloric intake and 39% of protein intake. Interestingly, we find that projected improvements in production efficiency would be insufficient to meet future food demand without also increasing the total environmental burden of food production. Transitioning to less impactful diets would in many cases allow production efficiency to keep pace with growth in human demand while minimizing the food system’s environmental burden. This study provides a useful approach for evaluating the attainability of sustainable targets and for better integrating food security and environmental impacts.  相似文献   

4.
Both supply and demand side changes are necessary to achieve a sustainable food system. However, the weight accorded to these depends on one’s view of what the priority goals are for the food system and the extent to which production systems versus consumption patterns are open to change. Some stakeholders see the problem as one of ‘not enough food’ and focus on the need to sustainably increase supply, while others consider the resource demanding and ‘greedy’ consumption patterns of the Western world as the main problem and emphasize the need to shift diets. In this study global land use and greenhouse gas emissions are estimated for a set of scenarios, building on four ‘livestock futures’ reflecting these different perspectives. These scenarios are: further intensification of livestock systems; a transition to plant-based eating; a move towards artificial meat and dairy; and a future in which livestock production is restricted to the use of ‘ecological leftovers’ i.e. grass from pastures, food waste and food and agricultural byproducts. Two dietary variants for each scenario are modelled: 1) a projected diet following current trends and 2) a healthy diet with more fruits and vegetables and fewer animal products, vegetable oils and sugar. Livestock production in all scenarios (except the baseline scenario) was assumed to intensify to current levels of intensive production in North-Western Europe. For each scenario, several variant assumptions about yield increases and waste reductions were modelled. Results show that without improvements in crop productivity or reductions on today’s waste levels available cropland will only suffice if production of all protein currently supplied by animal foods is replaced by (hypothetical) artificial variants not requiring any land. With livestock intensities corresponding to current ones in North-Western Europe and with yield gaps closed by 50% and waste reduced by 50%, available cropland will suffice for all scenarios that include a reduction of animal products and/or a transition to poultry or aquaculture. However, in the scenario based on an extrapolation of current consumption patterns (animal product amounts and types consumed in proportions corresponding to the current average consumption in different world regions) and with livestock production based on feed from cropland, available cropland will not be enough. The scenario that makes use of pastures for ruminant production and food waste for pigs, uses considerably less cropland and could provide 40–56 kg per capita per year of red meat. However, such a livestock future would not reduce GHG emissions from agriculture on current levels. This study confirms previous research that to achieve a sustainable food future, action is needed on all fronts; improved supply and reduced demand and waste.  相似文献   

5.
In this article, we evaluate and compare results from three integrated assessment models (GCAM, IMAGE, and ReMIND/MAgPIE) regarding the drivers and impacts of bioenergy production on the global land system. The considered model frameworks employ linked energy, economy, climate and land use modules. By the help of these linkages the direct competition of bioenergy with other energy technology options for greenhouse gas (GHG) mitigation, based on economic costs and GHG emissions from bioenergy production, has been taken into account. Our results indicate that dedicated bioenergy crops and biomass residues form a potentially important and cost-effective input into the energy system. At the same time, however, the results differ strongly in terms of deployment rates, feedstock composition and land-use and greenhouse gas implications. The current paper adds to earlier work by specific looking into model differences with respect to the land-use component that could contribute to the noted differences in results, including land cover allocation, land use constraints, energy crop yields, and non-bioenergy land mitigation options modeled. In scenarios without climate change mitigation, bioenergy cropland represents 10–18 % of total cropland by 2100 across the different models, and boosts cropland expansion at the expense of carbon richer ecosystems. Therefore, associated emissions from land-use change and agricultural intensification as a result of bio-energy use range from 14 and 113 Gt CO2-eq cumulatively through 2100. Under climate policy, bioenergy cropland increases to 24–36 % of total cropland by 2100.  相似文献   

6.
Intensifying land use is often seen as a corollary of improving rural livelihoods in developing countries. However, land use intensification (LUI) frequently has unintended impacts on ecosystem services (ES), which may undermine the livelihoods of the same people who could benefit from intensification. Poorer households are disproportionately dependent on ES, so inequalities may also rise. A disaggregated analysis of LUI is thus fundamental to better understand how LUI can progress in an equitable manner. Using a suite of multi-scale, multidisciplinary social-ecological methods and operationalising multidimensional concepts of land use intensity and wellbeing, we examine three case studies in rural Mozambique. Drawing on interviews, focus group discussions, 1576 household surveys and geospatial data from 27 Mozambican villages, we assess how wellbeing and inequality change with three common LUI pathways: transitions to smallholder commercial crop production, charcoal production, and subsistence expansion. Wellbeing improved with intensification of smallholder commercial and subsistence agriculture, inequality did not change. Unsustainable intensification of charcoal production showed no overall effect on either wellbeing or inequality. Improvements in wellbeing amongst the poorest households were only found with intensification of commercial crop production, where villages had better access to markets. Our findings suggest that socioeconomic benefits from agricultural intensification and expansion may overcome localised environmental trade-offs, at least in the short term. However, unsustainable charcoal resource management and limited productive investment opportunities for rural households resulted in both reduced market access and limited wellbeing improvements. Sustainable and inclusive markets are therefore crucial developments alongside LUI to sustain wellbeing improvements for all households, to ensure that no one is left behind.  相似文献   

7.
Urban growth has received little attention in large-scale land change assessments, because the area of built-up land is relatively small on a global scale. However, this area is increasing rapidly, due to population growth, rural-to-urban migration, and wealth increases in many parts of the world. Moreover, the impacts of urban growth on other land uses further amplified by associated land uses, such as recreation and urban green. In this study we analyze urban land take in cropland areas for the years 2000 and 2040, using a land systems approach. As of the year 2000, 213 Mha can be classified as urban land, which is 2.06% of the earth’s surface. However, this urban land is more than proportionally located on land that is suitable and available for crop production. In the year 2040, these figures increase to 621 Mha, or 4.72% of all the earth’s surface. The increase in urban land between 2000 and 2040 is also more than proportionally located on land that is suitable and available for crop production, thus further limiting our food production capacity. The share of urban land take in cropland areas is highest in Europe, the Middle-East and Northern Africa, and China, while it is relatively low in Oceania and Sub-Saharan Africa. Between 2000 and 2040, urban growth caused the displacement of almost 65 Mton of crop production, which could yield an expansion of up to 35 Mha of new cropland. Land-use planning can influence both the location and the form of urbanization, and thus appears as an important measure to minimize further losses in crop production.  相似文献   

8.
We explore how smallholder agricultural systems in the Kenyan highlands might intensify and/or diversify in the future under a range of socio-economic scenarios. Data from approximately 3000 households were analyzed and farming systems characterized. Plausible socio-economic scenarios of how Kenya might evolve, and their potential impacts on the agricultural sector, were developed with a range of stakeholders. We study how different types of farming systems might increase or diminish in importance under different scenarios using a land-use model sensitive to prices, opportunity cost of land and labour, and other variables. We then use a household model to determine the types of enterprises in which different types of households might engage under different socio-economic conditions. Trajectories of intensification, diversification, and stagnation for different farming systems are identified. Diversification with cash crops is found to be a key intensification strategy as farm size decreases and labour costs increase. Dairy expansion, while important for some trajectories, is mostly viable when land available is not a constraint, mainly due to the need for planting fodders at the expense of cropland areas. We discuss the results in relation to induced innovation theories of intensification. We outline how the methodology employed could be used for integrating global and regional change assessments with local-level studies on farming options, adaptation to global change, and upscaling of social, environmental and economic impacts of agricultural development investments and interventions.  相似文献   

9.
A long history of household-level research has provided important local-level insights into climate adaptation strategies in the agricultural sector. It remains unclear to what extent these strategies are generalizable or vary across regions. In this study we ask about three potential key factors influencing farming households’ ability to adapt: access to weather information, household and agricultural production-related assets, and participation in local social institutions. We use a 12-country data set from sub-Saharan Africa and South Asia to explore the links between these three potential drivers of agricultural change and the likelihood that farmers made farm-associated changes, such as adopting improved crop varieties, increasing fertilizer use, investing in improved land management practices, and changing the timing of agricultural activities. We find evidence that access to weather information, assets, and participation in social institutions are associated with households that have reported making farming changes in recent years, although these results vary across countries and types of practices. Understanding these drivers and outcomes of farm-associated changes across different socio-economic and environmental conditions is critical for ongoing dialogues for climate-resilient strategies and policies for increasing the adaptive capacity of smallholders under climate change.  相似文献   

10.
Global agricultural development programs aim to support smallholder farmers and farming communities by strengthening sustainable and resilient food production systems – which can also promote climate change mitigation as a co-benefit by reducing the emissions and enhancing removals of greenhouse gases (GHG). This study presents estimated GHG emissions reductions of almost 100 agricultural development projects over 51 low- and middle-income countries supported by the International Fund for Agriculture Development (IFAD), USAID-Feed the Future (FTF) Initiative, and Foreign, Commonwealth and Development Office (FCDO, previously DfID). Together, these projects promoted a net GHG emissions reduction of 6.5 MtCO2e per year. The forest management and promotion of improved agroforestry systems in the project areas contributed the most to the total mitigation co-benefits of the investment portfolios (∼3.9 MtCO2e/y). Improved crop management with minimum tillage practices, residue incorporation, water management in paddy rice, and the use of organic fertilizers also made a large contribution to the GHG emissions reduction (∼1.5 MtCO2e/y). Grass and pasture land management across the selected projects account for a net emission reduction of 0.2 MtCO2e/y. The implementation of improved agricultural practices in combination proves more effective for improving productivity and generating mitigation co-benefits than used in isolation. However, the aggregate impacts of soil organic carbon (SOC) sequestration should be interpreted carefully, which quickly can be lost quick. The interventions promoted by the global agricultural development programs have shown immense potential in reducing net GHG emissions or emission intensity in agriculture and allied sectors. For moving forward to achieve the net-zero and 1.5 °C goals including food security, the global agriculture development programs need to prioritize working on agriculture policy development and implementation so that agriculture expansion does not continue to drive land-use change. This needs to move from the traditional agriculture development programs to transformational changes.  相似文献   

11.
Sustainable food systems face trade-offs between demands of low environmental pressures per unit area and requirements of increasing production. Organic farming has lower yields than conventional agriculture and requires the introduction of nitrogen (N) fixing legumes in crop rotations. Here we perform an integrated assessment of the feasibility of future food systems in terms of land and N availability and the potential for reducing greenhouse gas (GHG) emissions. Results show that switching to 100% organic farming without additional measures results in N deficiency. Dietary change towards a reduced share of animal products can aggravate N limitations, which can be overcome through the implementation of a combination of agroecological, circular economy and decarbonization strategies. These measures help to recycle and transfer N from grassland. A vegan diet from fully decarbonized conventional production performs similarly as the optimized organic scenario. Sustainable food systems hence require measures beyond the agricultural sector.  相似文献   

12.
Multiple cropping, defined as harvesting more than once a year, is a widespread land management strategy in tropical and subtropical agriculture. It is a way of intensifying agricultural production and diversifying the crop mix for economic and environmental benefits. Here we present the first global gridded data set of multiple cropping systems and quantify the physical area of more than 200 systems, the global multiple cropping area and the potential for increasing cropping intensity. We use national and sub-national data on monthly crop-specific growing areas around the year 2000 (1998–2002) for 26 crop groups, global cropland extent and crop harvested areas to identify sequential cropping systems of two or three crops with non-overlapping growing seasons. We find multiple cropping systems on 135 million hectares (12% of global cropland) with 85 million hectares in irrigated agriculture. 34%, 13% and 10% of the rice, wheat and maize area, respectively are under multiple cropping, demonstrating the importance of such cropping systems for cereal production. Harvesting currently single cropped areas a second time could increase global harvested areas by 87–395 million hectares, which is about 45% lower than previous estimates. Some scenarios of intensification indicate that it could be enough land to avoid expanding physical cropland into other land uses but attainable intensification will depend on the local context and the crop yields attainable in the second cycle and its related environmental costs.  相似文献   

13.
The Kyoto Protocol introduces the possibility that changes in carbon stock on agricultural and forest land and soils may be counted against countries’ commitments to reduce their greenhouse gas emissions. Including activities related to land use change and forestry in the international climate change agreement may stimulate new incentives for soil-conservation practices domestically. However, a primary criteria for their inclusion relates to the level of accuracy and transparency with which carbon stock changes can be assessed. Parties will also be concerned with the wider environmental impact of different sequestration practices, and the impact of offsets on overall emissions targets. This paper examines these issues for agricultural soils, considering recent research in North America. It is argued that incentives for carbon sequestration practices may need to be implemented independently of actual stock changes because farm-level soil monitoring would be very costly. In the USA, priority should be given to establishing incentives for cover crops and to expanding conservation tillage programs. These activities provide a range of ancillary environmental benefits. In contrast, improvements in biomass yield tend to rely on higher fertilizer inputs with their related environmental costs. Carbon accumulated through any of these activities is easily lost if the practices are discontinued, and so assessment procedures are needed that would avoid overestimating sequestration. Annual accumulation in agricultural soils could be equivalent to about 10% of Annex I carbon dioxide emissions, and therefore options for limiting sink credits from soils should be considered.  相似文献   

14.
Historical increases in agricultural production were achieved predominantly by large increases in agricultural productivity. Intensification of crop and livestock production also plays a key role in future projections of agricultural land use. Here, we assess and discuss projections of crop yields by global agricultural land-use and integrated assessment models. To evaluate these crop yield projections, we compare them to empirical data on attainable yields by employing a linear and plateauing continuation of observed attainable yield trends. While keeping in mind the uncertainties of attainable yields projections and not considering future climate change impacts, we find that, on average for all cereals on the global level, global projected yields by 2050 remain below the attainable yields. This is also true for future pathways with high technological progress and mitigation efforts, indicating that projected yield increases are not overly optimistic, even under systemic transformations. On a regional scale, we find that for developing regions, specifically for sub-Saharan Africa, projected yields stay well below attainable yields, indicating that the large yield gaps which could be closed through improved crop management, may also persist in the future. In OECD countries, in contrast, current yields are already close to attainable yields, and the projections approach or, for some models, even exceed attainable yields by 2050. This observation parallels research suggesting that future progress in attainable yields in developed regions will mainly have to be achieved through new crop varieties or genetic improvements. The models included in this study vary widely in their implementation of yield progress, which are often split into endogenous (crop management) improvements and exogenous (technological) trends. More detail and transparency are needed in these important elements of global yields and land use projections, and this paper discusses possibilities of better aligning agronomic understanding of yield gaps and yield potentials with modelling approaches.  相似文献   

15.
Climate change will affect agricultural production by subsistence farms in crop centers of origin, where landraces are conserved in situ. Various strategies for adaptation to climate change have been proposed. In this paper we examine the prospects of what we call the ‘transgenic adaptation strategy’, i.e. the appeal to use transgenic seeds to adapt to climate change, through the lens of smallholder maize farming in Mexico. Landraces are the bedrock of maize production in Mexico. We consider how maize farmers may respond to climate change and the effects of those responses on crop diversity. In this paper, we argue that the promotion of the transgenic adaptation strategy is problematic for biological and social reasons. Smallholder livelihoods in southern Mexico could suffer a disproportionate negative impact if transgenic technology is privileged as a response to climate change. Agroecological and evolutionary approaches to addressing the effects of climate change on smallholder agriculture provides an alternative adaptive strategy.  相似文献   

16.
Climate change impacts food production systems, particularly in locations with large, vulnerable populations. Elevated greenhouse gases (GHG), as well as land cover/land use change (LCLUC), can influence regional climate dynamics. Biophysical factors such as topography, soil type, and seasonal rainfall can strongly affect crop yields. We used a regional climate model derived from the Regional Atmospheric Modeling System (RAMS) to compare the effects of projected future GHG and future LCLUC on spatial variability of crop yields in East Africa. Crop yields were estimated with a process-based simulation model. The results suggest that: (1) GHG-influenced and LCLUC-influenced yield changes are highly heterogeneous across this region; (2) LCLUC effects are significant drivers of yield change; and (3) high spatial variability in yield is indicated for several key agricultural sub-regions of East Africa. Food production risk when considered at the household scale is largely dependent on the occurrence of extremes, so mean yield in some cases may be an incomplete predictor of risk. The broad range of projected crop yields reflects enormous variability in key parameters that underlie regional food security; hence, donor institutions’ strategies and investments might benefit from considering the spatial distribution around mean impacts for a given region. Ultimately, global assessments of food security risk would benefit from including regional and local assessments of climate impacts on food production. This may be less of a consideration in other regions. This study supports the concept that LCLUC is a first-order factor in assessing food production risk.  相似文献   

17.
Food production in China is a fundamental component of the national economy and driver of agricultural policy. Sustaining and increasing output to meet growing demand faces significant challenges including climate change, increasing population, agricultural land loss and competing demands for water. Recent warming in China is projected to accelerate by climate models with associated changes in precipitation and frequency of extreme events. How changes in cereal production and water availability due to climate change will interact with other socio-economic pressures is poorly understood. By linking crop and water simulation models and two scenarios of climate (derived from the Regional Climate Model PRECIS) and socio-economic change (downscaled from IPCC SRES A2 and B2) we demonstrate that by the 2040s the absolute effects of climate change are relatively modest. The interactive effects of other drivers are negative, leading to decreases in total production of ?18% (A2) and ?9% (B2). Outcomes are highly dependent on climate scenario, socio-economic development pathway and the effects of CO2 fertilization on crop yields which may almost totally offset the decreases in production. We find that water availability plays a significant limiting role on future cereal production, due to the combined effects of higher crop water requirements (due to climate change) and increasing demand for non-agricultural use of water (due to socio-economic development). Without adaptation, per capita cereal production falls in all cases, by up to 40% of the current baseline.By simulating the effects of three adaptation scenarios we show that for these future scenarios China is able to maintain per capita cereal production, given reasonable assumptions about policies on land and water management and progress in agricultural technology. Our results are optimistic because PRECIS simulates much wetter conditions than a multi-model average, the CO2 crop yield response function is highly uncertain and the effects of extreme events on crop growth and water availability are likely to be underestimated.  相似文献   

18.
中国农业气象业务系统(CAgMSS)设计与实现   总被引:1,自引:0,他引:1       下载免费PDF全文
中国农业气象业务系统(CAgMSS)是基于C/S架构,研发的面向国家级和省级农业气象服务的业务工作平台,主要包括农业气象监测评价、作物产量预报、灾害监测评估、农用天气预报等子系统,是农业气象业务的基础性软件。系统融合现代信息技术和农业气象业务技术,实现了全部子系统数据管理、模型运算、产品制作等业务流程的一体化。系统采用大型关系型数据库规范了农业气象各类业务数据,基于插件技术集成各项业务功能,实现多元数据、多指标、多模型在农业气象监测、评价、预报等领域的综合应用,提高了农业气象产品的定量化、精细化、客观化水平。系统于2012年投入业务应用,基于该系统制作的农业气象情报、作物产量气象预报、农业气象灾害影响评估、关键农时农事气象保障等服务产品,在指导全国农业生产和防灾减灾中发挥了重要作用,明显提高了农业气象业务能力和业务工作效率。  相似文献   

19.
With the intensification of agriculture, the simplification of crop rotations, and the rise in demand for meat, dairy and cereal products, legume production and consumption are at an historic low in Europe. But as the environmental consequences of agriculture (biodiversity loss, high greenhouse gas emissions, water pollution) and the health outcomes of modern diets (heart disease, cancer, diabetes, obesity) become better known, so great and varied hopes are being expressed about the future role of legumes in the food system. This paper catalogues and scrutinises these hopes, mapping the promissory narratives now orbiting around legumes. It identifies six food futures, each of which is made possible through the greater use of legumes in various production, processing, marketing and consumption contexts. These promissory narratives are theorised as contrasting responses to three major areas of contestation in the food systems literature. Namely i) the sustainability of livestock management, ii) the role of technology in different visions of the ‘good diet’, and iii) the merits of different models for how to make agricultural management more sustainable. It identifies the promiscuity of legumes – in terms of the range of food futures they permit – before distilling three points of consensus amongst advocates of the potential of legumes. These points of consensus relate to their nitrogen fixing capacity, their high protein content, and their long-standing historical role in the context of European food and farming. This map of legume dreams serves to guide deliberations amongst researchers, policymakers and industry stakeholders about the futures of plant-based food in Europe.  相似文献   

20.
Climate Change Impacts for the Conterminous USA: An Integrated Assessment   总被引:1,自引:0,他引:1  
PNNLs Agriculture and Land Use is used to demonstrate the impact of potential changes in climate on agricultural production and land use in the United States. AgLU simulates production of four crop types in several world regions, in 15-yr time steps from 1990 to 2095. Changes in yield of major field crops in the United States, for 12 climate scenarios, are obtained from simulations of the EPIC crop growth model. Results from the HUMUS model are used to constrain crop irrigation, and BIOME3 model is used to simulate productivity of unmanaged ecosystems. Assumptions about changes in agricultural productivity outside the United States are treated on a scenario basis, either responding in the same way as in the United States, or not responding to climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号