首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Esmaiel Malek   《Atmospheric Research》2008,88(3-4):367-380
An automated-ventilated radiation station has been set up in a mountainous valley at the Logan Airport in northern Utah, USA, since mid-1995, to evaluate the daily and annual radiation budget components, and develop an algorithm to study cloudiness and its contribution to the daily and annual radiation. This radiation station (composed of pyranometers, pyrgeometers and a net radiometer) provides continuous measurements of downward and upward shortwave, longwave and net radiation throughout the year. The surface temperature and pressure, the 2-m air temperature and humidity, precipitation, and wind at this station were also measured. A heated rain gauge provided precipitation information. Using air temperature and moisture and measured downward longwave (atmospheric) radiation, appropriate formula (among four approaches) was chosen for computation of cloudless-skies atmospheric emissivity. Considering the additional longwave radiation during the cloudy skies coming from the cloud in the waveband which the gaseous emission lacks (from 8–13 μm), an algorithm was developed which provides continuous 20-min cloud information (cloud base height, cloud base temperature, percent of skies covered by cloud, and cloud contribution to the radiation budget) over the area during day and night. On the partly-cloudy day of 3 February, 2003, for instance, cloud contributed 1.34 MJ m− 2 d− 1 out of 26.92 MJ m− 2 d− 1 to the daily atmospheric radiation. On the overcast day of 18 December, 2003, this contribution was 5.77 MJ m− 2 d− 1 out of 29.38 MJ m− 2 d− 1. The same contribution for the year 2003 amounted to 402.85 MJ m− 2 y− 1 out of 9976.08 MJ m− 2 y− 1. Observations (fog which yielded a zero cloud base height and satellite cloud imaging data) throughout the year confirmed the validity of the computed data. The nearby Bowen ratio station provided the downward radiation and net radiation data. If necessary, these data could be substituted for the missing data at the radiation station. While the automated surface observing systems (ASOS) ceilometer at the Logan airport provides only the overhead cloud information, the proposed algorithm provides this information over the valley. The proposed algorithm is a promising approach for evaluation of the cloud base temperature, cloud base height, percent of skies covered by cloud, and cloud contribution to the daily and annual radiation budget at local and regional scales.  相似文献   

2.
In the present study, the wet and dry depositions of particulate NO3, SO42−, Cl and NH4+ were measured using a wet/dry sampler as a surrogate surface. Gas phase compounds of nitrogen, sulfur and chloride (HNO3, NH3, SO2 and HCl) were measured by an annular denuder system (ADS) equipped with a back up filter for the collection of particles with diameter ≤ 5 μm. Ambient concentrations of NO, NO2 and SO2 were also taken into consideration. Sampling was conducted at an urban site in the center of the city of Thessaloniki, northern Greece. The presence of the aerosol species was examined by cold/warm period and the possible compounds in dry deposits were also considered. Dry deposition fluxes were found to be well correlated with ambient particle concentrations in order to be used for the calculation of particle deposition velocity. Average particulate deposition velocities calculated were 0.36, 0.20, 0.20 and 0.10 cm s− 1 for Cl, NO3, SO42− and NH4+, respectively. Total dry deposition fluxes (gas and particles) were estimated at 3.24 kg ha− 1 year− 1 for chloride (HCl + p-Cl), 9.97 kg ha− 1 year− 1 for nitrogen oxidized (NO + NO2 + HNO3 + p-NO3), 5.32 kg ha− 1 year− 1 for nitrogen reduced (NH3 + p-NH4) and 15.77 kg ha− 1 year− 1 for sulfur (SO2 + p-SO4). 70–90% total dry deposition was due to gaseous species deposition. The contribution of dry deposition to the total (wet + dry) was at the level of 60–70% for sulfur and nitrogen (oxidized and reduced), whereas dry chloride deposition contributed 35% to the total. The dry-to-wet deposition ratio of all the studied species was found to be significantly associated with the precipitation amount, with nitrogen species being better and higher correlated. Wet, dry and total depositions measured in Thessaloniki, were compared with other countries of Europe, US and Asia.  相似文献   

3.
We present results of direct aerosol radiative forcing over a French Mediterranean coastal zone based on one year of continuous observations of aerosol optical properties during 2005–2006. Monthly-mean aerosol optical depth at 440 nm ranged between 0.1 and 0.34, with high Angstrom coefficient (α > 1.2). The single scattering albedo (at 525 nm) estimated at the surface ranged between 0.7 and 0.8, indicating significant absorption. The presence of aerosols over the Mediterranean zone during summer decreases the shortwave radiation reaching the surface by as much as 26 ± 3.9 W m− 2, and increases the top of the atmosphere reflected radiation by as much as 5.2 ± 1.0 W m− 2. The shortwave atmospheric absorption translates to an atmospheric heating of 2.5 to 4.6 K day− 1. Concerted efforts are needed for investigating the possible impact of the increase in heating rate on the maintenance of heat-waves frequently occurring over this coastal region during summer time.  相似文献   

4.
The changing chemical composition of cloud water and precipitation in the Western Sudety Mountains are discussed against the background of air-pollution changes in the Black Triangle since the 1980s until September 2004. A marked reduction of sulphur dioxide emissions between the early 1990's and the present (from almost 2 million tons to around 0.2 million tons) has been observed, with a substantial decline of sulphate and hydrogen concentration in cloud water (SO42− from more than 200 to around 70 μmol l− 1; H+ from 150 to 50 μmol l− 1) and precipitation (SO42− from around 80 to 20–30 μmol l− 1; H+ from around 60 to 10–15 μmol l− 1) samples. At some sites, where fog/cloud becomes the major source of pollutants, deposition hot spots are still observed where, for example, nitrogen deposition can exceed 20 times the relevant critical load. The results show that monitoring of cloud water chemistry can be a sensitive indicator of pollutant emissions.  相似文献   

5.
The study of fog dynamics in the island of Tenerife began in 1993 at six sites. The analysis of the relationship between fog and several meteorological parameters was conducted at the site located at Anaga. Anaga is located at the summit of a mountain range, at an altitude of 842 m and 3.5 km away from the north-western coastline of the island. The study uses hourly data of the three summer months (June, July and August) that were collected over a period of nine years — from 1996 to 2005. The mean summer (June–August) rainfall was found to be 21.2 mm whilst the total volume of fog water collected was 879.9 l m− 2; the daily average fog water collection was 9.5 l m− 2 day− 1, and the hourly average about 0.4 l m− 2 h− 1. Although these amounts were recorded with wind speeds of between 8 and 12 m s− 1, the correlation between water collected and wind speed is not statistically significant. In spite of this, the volume of fog water collected and wind speed showed a very distinct daily behavioural pattern, their frequency and speed reaching their minimum at 12 a.m. and their maximum from 7 p.m. to 8 a.m. GMT. The importance of this research is that it shows that the fog in the Canary Islands occurs more frequently and makes a more significant contribution to the growth of vegetation in the summer (the dry season) than in the winter, when fog accompanies rainfall.  相似文献   

6.
The potential resources on the ion-stimulated syntheses effects of aerosol particles of lower troposphere in test sites in the arctic, mountain, arid and forest areas as the function of irradiation time and gas-precursor concentration were experimentally and theoretically evaluated. The dust-free outdoor air was irradiated with an ionization current of 10− 6 A by α-rays from isotope 239Pu. The total output of radiolytic aerosols (RA) with a diameter of 3–1000 nm was found to be 0.05–0.1 molecules per 1 eV of absorbed radiation, while the physical upper limit is 0.25–0.4 molecules/eV. In an interval of exposition time from 6 to 800 s (adsorbed energy is 3 · 1012–1014 eV/cm3) the RA mass concentration at different sites was increased from 1–10 to 50–500 μg/m3. According to the liquid chromatography data the major RA material is the H2O/HNO3 solution with acid concentration  25%. The used physical model presents new aerosols as a product from small and intermediate ion association through formation of neutral clusters and describes adequately some of the peculiarities in field experiment data. Introducing SO2, NH3, and also hydrochloric, nitric and sulphuric acid vapours with concentration 0.1–1 mg/m3 in the irradiated air stimulated an increase of mass aerosol concentration by a factor of 8–30. The mean size also decreased by a factor of 3–5. These facts allowed us to expect that the chemical composition of radiolytic aerosols generated in outdoor air would noticeably differ after addition of the gas-precursors.  相似文献   

7.
Black carbon relationships with emissions and meteorology in Xi'an, China   总被引:4,自引:0,他引:4  
Aerosol black carbon (BC) was measured every 5 min at Xi'an, China from September 2003 to August 2005. Daily BC concentrations ranged from 2 to 65 μg m− 3, averaging 14.7 ± 9.5 μg m− 3 and displayed clear summer minima and winter maxima. BC typically peaked between 0800 and 1000 LST and again between 2000 and 2200 LST, corresponding with morning and evening traffic combined with nighttime residential cooking and heating. The nocturnal peak was especially evident in winter, when more domestic heating is used and pollutant-trapping surface-inversions form earlier than in summer. BC frequency distributions the most commonly occurring concentrations occurred between 5 and 10 μg m− 3 in all four seasons. BC ranged from 1.6% and 15.6%, and averaged 8.3% of PM2.5. A clear inverse relationship between BC and wind speed (WS) was found when WS was below 2.5 to 3.0 m s− 1, implying a local origin for BC. Mixed layer depths (MLDs) were shallower during BC episodes compared to cleaner conditions.  相似文献   

8.
This paper is written to report observations of the structure of the atmospheric surface layer over a coastal industrialized equatorial area. The observations were recorded at Prai Industrial Park, Penang (5° 22′ N, 100° 23′ E) a relatively simple terrain area during the south-west monsoon season in the period of three months using slow response systems. The limitations of the instruments used and its effects on the results are discussed. Wind turbulence and temperature were measured on a 10 m tower and analyzed using eddy correlation method and Monin–Obukhov similarity relations to obtain the normalized standard deviation of longitudinal (σu/u), lateral (σv/u) and vertical wind velocity fluctuations (σw/u) with respect to stability parameter z/L. From the results of the analysis, we found that most of turbulence is generated by shear or mechanical force. It was found that the average neutral value of σu/u is 2.35, 1.98 for σv/u and 1.47 for σw/u with a significantly lower than the proportionality to the power of 1/3 during unstable atmospheric conditions, and thus do not obey Monin–Obukhov similarity theory. It was observed that σu/u and σv/u values increase linearly in the range of 0 < z/L < 2 and fairly well correlated while σw/u does not.  相似文献   

9.
A two-dimensional cloud model with bin microphysics was used to investigate the effects of cloud condensation nuclei (CCN) concentrations and thermodynamic conditions on convective cloud and precipitation developments. Two different initial cloud droplet spectra were prescribed based on the total CCN concentrations of maritime (300 cm− 3) and continental (1000 cm− 3) air masses, and the model was run on eight thermodynamic conditions obtained from observational soundings. Six-hourly sounding data and 1-hourly precipitation data from two nearby weather stations in Korea were analyzed for the year 2002 to provide some observational support for the model results.For one small Convective Available Potential Energy (CAPE) ( 300 J kg− 1) sounding, the maritime and continental differences were incomparably large. The crucial difference was the production of ice phase hydrometeors in the maritime cloud and only water drops in the continental cloud. Ice phase hydrometeors and intrinsically large cloud drops of the maritime cloud eventually lead to significant precipitation. Meanwhile negligible precipitation developed from the continental cloud. For the three other small CAPE soundings, generally weak convective clouds developed but the maritime and continental clouds were of the same phases (both warm or both cold) and their differences were relatively small.Model runs with the four large CAPE ( 3000 J kg− 1) soundings demonstrated that the depth between the freezing level (FL) and the lifting condensation level (LCL) was crucial to determine whether a cloud becomes a cold cloud or not, which in turn was found to be a crucial factor to enhance cloud invigoration with the additional supply of freezing latent heat. For two large CAPE soundings, FL–LCL was so deep that penetration of FL was prohibitive, and precipitation was only mild in the maritime clouds and negligible in the continental clouds. Two other soundings of similarly large CAPE had small FL–LCL, and both the maritime and continental clouds became cold clouds. Precipitation was strong for both but much more so in the maritime clouds, while the maximum updraft velocity and the cloud top were slightly higher in continental clouds. Although limited to small CAPE cases, more precipitation for smaller FL–LCL for a selected group of precipitation and thermodynamic sounding data from Korea was in support of these model results in its tendency.These results clearly demonstrated that the CCN effects on cloud and precipitation developments critically depended on the given thermodynamic conditions and not just the CAPE but the entire structure of the thermodynamic profiles had to be taken into account.  相似文献   

10.
An important part of the Energy Balance Experiment (EBEX-2000) was the measurement of the net radiation and its components. Since the terrain, an irrigated cotton field, could not be considered homogeneous, radiation measurements were made at nine sites using a variety of radiation instruments, including pyranometers, pyrgeometers and net radiometers. At several of these sites multiple instruments were employed, which enabled us to compare instruments and assess accuracies. At all sites the outgoing longwave and shortwave radiation and the net radiation were measured, while the incoming radiation was supposed to be uniformly distributed over the field and was therefore measured at three sites only. Net radiation was calculated for all sites from the sum of its four components, and compared with the direct measurement of net radiometers. The main conclusions were: (a) the outgoing shortwave radiation showed differences of up to 30 W m−2 over the field; the differences were not clearly related to the irrigation events; (b) the outgoing longwave radiation showed differences of up to 50 W m−2; the differences increased during the periods of irrigation; (c) the net radiation showed differences of several tens of W m−2 across the field, rising to 50 W m−2 or more during the periods of irrigation; (d) the net radiation is preferably to be inferred from its four components, rather than measured directly, and (e) attention should be paid to the characteristics of pyranometers that measure the outgoing radiation, and thus are mounted upside down, while they are commonly calibrated in the upward position. The error in the net radiation at EBEX-2000 is estimated at max (25 W m−2, 5%) per site during the day and 10 W m−2 at night. The National Center for Atmospheric Research is supported by the National Science Foundation.  相似文献   

11.
Coastal nucleation events and behavior of cluster ions were characterized through the measurements of air ion mobility distributions at the Mace Head research station on the west coast of Ireland in 2006. We measured concentrations of cluster ions and charged aerosol particles in the size range of 0.34–40 nm. These measurements allow us to characterize freshly nucleated charged particles with diameters smaller than 3 nm. The analysis shows that bursts of intermediate ions (1.6–7 nm) are a frequent phenomenon in the marine coastal environment. Intermediate ion concentrations were generally close to zero, but during some nucleation episodes the concentrations increased to several hundreds per cm3. Nucleation events occurred during most of the measurement days. We classified all days into one of seven classes according to the occurrence and type of new particle formation. Nucleation events were observed during 207 days in 2006, most prominently in the spring and summer months. Rain-induced events, in turn, were observed during 132 days. Particle formation and growth events mostly coincided with the presence of low tide. Also small cluster ions (0.34–1.6 nm) were characterized. Average concentrations of small ions were 440 cm− 3 for the negative ions and 423 cm− 3 for the positive ions. Average mean mobilities of small ions were 1.86 cm2V− 1s− 1 and 1.49 cm2V− 1s− 1 for the negative and positive polarities, respectively. Concentrations of small ions were observed to be strongly dependent on the variations of meteorological parameters including wind speed and direction.  相似文献   

12.
Dew and rain water collection in the Dalmatian Coast, Croatia   总被引:1,自引:0,他引:1  
Passive dew harvesting and rainwater collection requires a very small financial investment but can exploit a free, clean (outside urban/industrial zones) and inexhaustible source of water. This study investigates the relative contributions of dew and rain water in the Mediterranean Dalmatian coast and islands of Croatia, with emphasis on the dry summer season. In addition, we evaluate the utility of transforming abandoned roof rain collectors (“impluviums”) to collect dew water too. Two sites were chosen, an exposed open site on the coast favourable to dew formation (Zadar) and a less favourable site in a cirque of mountains in Komiža (Vis Island). Between July 1, 2003 and October 31, 2006, dew was collected two or three times per day on a 1 m2 inclined (30°) test dew condenser, together with standard meteorological data (air temperature and relative humidity, cloud cover, windspeed and direction). Maximum yields were 0.41 mm in Zadar and 0.6 mm in Komiža. The mean yearly cumulative dew yields were found to be 20 mm (Zadar) and 9.3 mm (Komiža). Because of its physical setting, Komiža represents a poor location for dew collection. However, during the dry season (May to October), monthly cumulative dew water yield can represent up to 38% of water collected by rainfall. In both July 2003 and 2006, dew water represented about 120% of the monthly cumulative rain water. Refurbishing the abandoned impluviums to permit dew collection could then provide useful supplementary water, especially during the dry season. As an example, the 1300 m2 impluvium at Podšpilje near Komiža could provide, in addition to rain water, 14,000 L dew water per year.  相似文献   

13.
Using high-speed cameras, we have recorded the leaders contained in four natural negative cloud-to-ground (CG) lightning flashes in the summers of 2006 and 2007 at Conghua, Guangdong, China. It was found that the downward negative leaders preceding the first return stroke could propagate at quite different speeds. In one flash, the average speed of the downward negative stepped leader with no branches is about 2.2 × 106 m s− 1, while that of the other 3 flashes are all of the order of 105 m s− 1 with multilevel branches. The luminosity of the leaders shows an increasing tendency in propagating downward to the ground. For the leaders preceding the subsequent strokes, although all of them exhibit high speeds as reported previously. One subsequent leader exhibits an increasing speed from 5.2 × 105 m s− 1 to 1.7 × 106 m s− 1 during its propagation from about 1.26 to 0.36 km above the ground, and its luminosity also increased. The speed and luminosity of a leader between subsequent strokes of a natural lightning appear to decrease as it developed downward. Its speed ranges from 1.1 × 106 to 1.1 × 105 m s− 1, with a height between 1.15 and 0.81 km above the ground.  相似文献   

14.
Low-molecular-weight carbonyl compounds, generated by photochemical reactions in the atmosphere and found in the exhaust of motor vehicles, have recently come to the attention of researchers because some of them are suspected carcinogens or mutagens. Six bifunctional carbonyl compounds were detected and measured in a suburban site 30 km northwest of the Tokyo metropolitan area. Samples were taken on five sunny days between 2 August and 11 August 2003 with a low-volume denuder and three-filter tandem system using O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) as a sorbent. Bifunctional carbonyls were measured by gas chromatography–mass spectrometry after two derivatization processes with PFBHA and N,O-bis(trimethylsilyl)-trifluoroacetamide (BSTFA). The average total (gas plus particle) concentrations were 162.8 ng m− 3 for pyruvic acid, 113.7 ng m− 3 for methylglyoxal, 36.0 ng m− 3 for glycolaldehyde and 58.6 ng m− 3 for glyoxal.  相似文献   

15.
In their note on correction of measurements with the REBS Q*4 net radiometer, Oliver and Wright discuss a problem of high general interest, namely that of wavelength-dependent responsivities in net radiometry. They suggest that old measurements can be corrected by a simple addition of 40% of the net longwave radiation. It is shown that this is only the first of two necessary steps needed for a good correction. The 40% value suggested by Oliver and Wright leads to night-time radiation values that are typically 20–25% too negative. It is also suggested that their 40% correction varies with time and place of measurement as well as with the way the radiometer was originally calibrated. This percentage should be replaced by a correction factor based on a design-dependent responsivity difference of around 63% multiplied by a factor depending on the relative importance of longwave and shortwave radiation components prevailing for the measurements to be corrected. The second step in the correction procedure should be a recalibration of the signal achieved after equalizing responsivity for negative and positive values of net radiation. It is finally suggested that the cause of the malfunction of the double-dome radiometer has to do with the transmission properties of the polyethylene shield and not with properties of the heat-absorbing surface or entrapped hot air.  相似文献   

16.
During the spring of 2005, the total particle concentrations and the submicron aerosol size distributions were measured on board the research vessel over the south sea of Korea and the Korean sector of the Yellow Sea. Similar measurements were made over the East China Sea in autumn 2005. The aerosol properties varied dynamically according to the meteorological conditions, the proximity to the land masses and the air mass back trajectories. The average total particle concentration was the lowest over the East China Sea, 4335 ± 2736 cm 3, but the instantaneous minimum, 837 cm 3, for the entire ship measurement was recorded during the Yellow Sea cruise. There was also a long (more than 6 h) stretch of low total particle concentrations that fell as low as 1025 cm 3 during the East China Sea cruise when the ship was the farthest from the shores and the air mass back trajectories resided long hours over the sea. These observations lead to the suggestion of ~ 1000 cm 3 as the background total particle concentration over the marine boundary layer in the studied region of the Yellow Sea and the East China Sea, implying significant anthropogenic influence even for the background value. In the mean time, average aerosol size distributions were unimodal and the mode diameter ranged between 52 and 86 nm, excluding the fog periods, which suggests that the aerosols measured in this study experienced relatively less aging processes within the marine boundary layer.  相似文献   

17.
A total of 48 precipitation samples have been collected from individual precipitation events at the Nam Co Monitoring and Research Station for Multisphere Interactions (Nam Co Station, 30°47′N, 90°58′E; 4730 m a.s.l) located in the central Tibetan Plateau from August 2005 to August 2006. All samples were analyzed for major cations (NH4+, Na+, K+, Ca2+ and Mg2+) and anions (Cl, NO3 and SO42−), conductivity and pH. Precipitation pH values ranged from 6.03 to 7.38 with an average value of 6.59. The high pH is due to large inputs of crustal aerosols in the atmosphere, which contain a large fraction of carbonate. Ca2+ is the dominant cation in precipitation with an average value of 65.58 μeq L− 1 (4.91–301.41 μeq L− 1), accounting for 54% of the total cations in precipitation. HCO3 is the predominant anion, accounting for 62% of the total anions. When compared with data from a snow pit in the Zhadang Glacier 50 km away (5800 m a.s.l), major ion concentration in precipitation at the Nam Co Station is much higher due to local aerosol inputs. Correlation and empirical orthogonal function (EOF) analysis indicate that regional crustal aerosols and species from combustion emissions of residents are the major sources for these ions, lake salt aerosols from the Nam Co nearby and regional mineral aerosols from dry lake sediments are secondary sources, and sea salt contribution is the least due to the long distance transport.  相似文献   

18.
This paper presents the development of a simple and precise analytical method for the determination of nitrogen dioxide in ambient air. In this method nitrogen dioxide is determined in the form of nitrite. The determination of nitrogen dioxide needs no reagents except for a solution of sodium hydroxide mixed with sodium arsenite (NaOH–Na2As2O3) which is used as an absorbing reagent for trapping the nitrogen dioxide from the atmosphere in the form of nitrite, i.e., a prior analysis step. The determination of submicrogram levels of nitrogen dioxide is based on the selection of a strong and sharp quantitative analytical peak at 1380 cm− 1 using diffuse reflectance infrared spectroscopy (DRS-FTIR). The limit of detection (LOD) and the limit of quantification of the method are found to be 0.008 μg g− 1 NO2 and 0.05 μg g− 1 NO2, respectively. The precision in terms of standard deviation and relative standard deviation value at a level of 2 μg NO2 / 0.1 g KBr for n = 10 is found to be 0.036 μg NO2 and 1.8%, respectively. The relative standard deviation (n = 10) for the determination of nitrogen dioxide in ambient air was observed to be in the range 2.6–3.8%. The method proposed is time-saving and eliminates the slow and cumbersome steps of pH maintenance of the reaction mixture and color formation of the EPA recommended spectrophotometric and other methods for quantitative determination of nitrogen dioxide.  相似文献   

19.
The main objective of this study is to investigate the chemical characteristics of biomass burning aerosol and its impact on regional air quality during an agricultural waste burning period in early summer in the rural areas of Korea. A 12-h integrated intensive sampling of biomass burning aerosol in the fine and coarse modes was conducted on 2–20 June 2003 in Gwangju, Korea. The collected samples were analyzed for concentrations of mass, ionic, elemental, and carbonaceous species. Average concentrations of fine and coarse mass were measured to be 67.9 and 18.7 μg m− 3 during the biomass burning period, 41.9 and 18.8 μg m− 3 during the haze period, and 35.6 and 13.3 μg m− 3 during the normal period, respectively. An exceptionally high PM2.5 concentration of 110.3 μg m− 3 with a PM2.5/PM10 ratio of 0.79 was observed on 6 June 2003 during the biomass burning period. The potassium ratio method was used to identify biomass burning samples. The average ratio of potassium in the fine mode to the coarse mode (FK/CK) was 23.8 during the biomass burning period, 6.0 during the haze period, and 4.7 during the normal period, respectively. A FK/CK ratio above 9.2 was considered a criterion for biomass burning event in this study. Particulate matter from the open field burning of agricultural waste has an adverse impact on visibility, human health, and regional air quality.  相似文献   

20.
Using a high-speed camera system and two electric field antenna systems, we have documented the initial processes of an altitude-triggered negative lightning (ATNL). The optical records clearly show that ATNL begins with the inception and propagation of an upward positive leader (UPL) and then a simultaneous propagation of UPL and downward negative leader (DNL), known as the bidirectional leader process, follows. Based on the optical records, it is inferred that (1) the triggering height is about 371 m; (2) the two-dimensional (2D) propagation speed of the UPL in its inception phase is about 3.8–5.5 × 104 m s− 1 during its propagation from about 393 to 452 m above the ground; (3) the grey levels of the DNL are about one order of magnitude higher than that of the UPL in their inception phase; (4) a discharge phenomenon propagating along the elevated triggering wire part of the lightning channel occurs after the mini-return stroke (MRS), with a 2D propagation speed of about 1.6–2.0 × 105 m s− 1. Combined with the simultaneous electric field change records, it is further inferred that (1) the UPL incepts about 932 μs earlier than the unstable DNL and about 4.1 ms earlier than the stable DNL; (2) the unstable DNL propagates downward intermittently three times with a time interval of about 1 ms, and each propagation contains a different number of steps with an average step length of about 7 m; (3) the stable DNL incepts at the tip of the unstable one, with a 2D propagation speed of about 1.9 × 105 m s− 1, an average step length of about 3 m, and a stepping time interval varying from 6 to 31 µs with a mean value of 15 µs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号