首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
We analyse cross-wind-integrated statistics of theconcentration field of a conserved scalar for pointand line sources in grid turbulence. In particular,using wind-tunnel measurements we calculate thecross-wind integrated probability density function(pdf) for the scalar concentration. We then use thatquantity in the exact evolution equation for the pdfto calculate the cross-wind integrated mean of therate of dissipation of scalar variance, conditional onthe scalar concentration. Much of the variation ofthese statistics with distance downstream is accountedfor by scaling with concentration, length and timescales based on the development of the mean plume.This scaling thus suggests some simple practicalparameterisations of these statistics in terms ofmean-field quantities. One of the motivations for thiswork is to find a simple parameterisation for thescalar dissipation that can be used for modellingchemical reactions in plumes.We also consider the cross-wind integral of the firstfew moments of the concentration field and show thatthe integration greatly simplifies the budgets forthese moments. Thus the first moment is just thedownstream flux of the scalar, which is constant. Thesecond moment budget provides a check on the meandissipation estimated directly from the pdf evolutionequation.  相似文献   

3.
Observations of the dispersion of a contaminant plume in the atmospheric boundary layer, obtained using a Lidar, are analysed in the coordinate frame relative to the instantaneous centre of mass of the plume, as well as the absolute (or fixed) coordinate frame. The study extends the work presented in a previous article, which analysed the structure of the probability density function (pdf) of concentration within the relative coordinate frame. Firstly, the plume displacement component, or plume meander, is analysed and a simple parametric form for the pdf of the plume centreline position is suggested. This is then used to analyse the accuracy and applicability of absolute framework statistical quantities obtained by a convolution of the relative frame statistical quantity with the plume centreline pdf.  相似文献   

4.
Concentration probability density functions (pdfs) calculated according to fluctuating plume models in one- and two-dimensions, representing the limiting cases of one-dimensional dispersion from a line source or a point source in strongly anisotropic turbulence and of axisymmetric dispersion from a point source in isotropic turbulence, are discussed and analyzed in terms of the location of the sampling point within the mean plume and of the ratio, s/m, of the standard deviations for relative dispersion and meandering.In both cases, the pdfs cover the finite concentration range from zero to C 0, the centreline concentration of the instantaneous plume. The main difference between them is that whereas the 2-D pdf is always unimodal, the 1-D pdf has a singularity at C 0 which under some circumstances results in a bimodal form. However, the probability associated with this singularity is not always significant. Differences of practical importance in the shape of the pdfs occur mainly for centreline or near-centreline sampling locations when meandering is not too much larger than relative dispersion (1 < m 2/s2 < 10) and for sampling locations a distance of order s from the centreline when relative dispersion is not too much larger than meandering (1 < s 2/m2 < 5).Comparison against wind tunnel measurements not too far downstream of a line source in grid turbulence shows that the 1-D model reproduces the essential features and trends of the measurements. Under appropriate circumstances the measurements show the bimodal pdf predicted by the 1-D model (but not by the 2-D model) confirming that the effect of the anisotropy in the source distribution is observable.Present address: School of Mechanical Engineering, Aristotle University, Thessaloniki, 54006 Thessaloniki, Greece.  相似文献   

5.
Direct numerical simulation is used to investigate the interference arising from the dispersion of passive scalar plumes released from a pair of point sources in a fully-developed wall-bounded shear flow. Four different lateral separations of the two sources for both near ground-level and elevated releases are considered. The downwind evolution of the correlation between the plume concentrations along the centreline between the two sources and the behaviour of the lateral profiles of the correlation at various locations downwind of the two sources are examined in detail. Differences in the exceedance probability over a high concentration level for a single plume and the total plume are highlighted and studied, and the effects of destructive and constructive interferences on the exceedance probabilities for the total plume are used to explain these differences. One significant result is that all higher-order (third-order and above) moments of the total concentration can be inferred from the application of a clipped-gamma distribution using the information embodied in only the first- and second-order concentration moments of each single plume, and in the cross-correlation coefficient of the instantaneous concentration of the two plumes.  相似文献   

6.
The fluctuations of the instantaneous values of line integrated concentrations across plumes from point sources diffusing in turbulent shear flows, and in grid generated turbulence, have been studied experimentally using a fast response system which measured the attenuation of the intensity of an infrared beam crossing the plume. Analysis of the measurements show that the dimensionless statistical properties of the fluctuations at different distances from the source at each flow are approximately similar, in the sense that they depend primarily on the relative off-center location of the line of integration and almost independent of the distance from the source and the nature of the turbulence in the flows, as long as the characteristic length of the mean plume is not large compared to the size of the large eddies. The characteristic time of the fluctuations, on the other hand, was found to grow with the distance from the source and the autocorrelations of the fluctuations, particularly in the case of a plume diffusing in grid generated turbulence, were it found to be proportional to the lateral size of the mean plume. A—5/3 decay law of the power spectrum of the fluctuations was observed in the low frequency range which corresponds to the scale of the large eddies. The decay of the fluctuations caused by smaller eddies was much faster, as expected.  相似文献   

7.
We analyze the reliability of the Lagrangian stochastic micromixing method in predicting higher-order statistics of the passive scalar concentration induced by an elevated source (of varying diameter) placed in a turbulent boundary layer. To that purpose we analyze two different modelling approaches by testing their results against the wind-tunnel measurements discussed in Part I (Nironi et al., Boundary-Layer Meteorology, 2015, Vol. 156, 415–446). The first is a probability density function (PDF) micromixing model that simulates the effects of the molecular diffusivity on the concentration fluctuations by taking into account the background particles. The second is a new model, named VP\(\varGamma \), conceived in order to minimize the computational costs. This is based on the volumetric particle approach providing estimates of the first two concentration moments with no need for the simulation of the background particles. In this second approach, higher-order moments are computed based on the estimates of these two moments and under the assumption that the concentration PDF is a Gamma distribution. The comparisons concern the spatial distribution of the first four moments of the concentration and the evolution of the PDF along the plume centreline. The novelty of this work is twofold: (i) we perform a systematic comparison of the results of micro-mixing Lagrangian models against experiments providing profiles of the first four moments of the concentration within an inhomogeneous and anisotropic turbulent flow, and (ii) we show the reliability of the VP\(\varGamma \) model as an operational tool for the prediction of the PDF of the concentration.  相似文献   

8.
9.
Results are presented from an experimental investigation of turbulent dispersion of a saline plume of large Schmidt number (Sc=830) in a turbulent boundary-layer shear flow simulated in a laboratory water channel. The dispersion measurements are obtained in a neutrally buoyant plume from an elevated point source over a range of downstream distances, where both plume meandering and fine-structure variations in the instantaneous plume are important. High-resolution measurements of the scalar fluctuations in the plume are made with a rake of conductivity probes from which probability distributions of concentration at various points throught the plume are extracted from the time series.Seven candidate probability distributions were tested, namely, the exponential, lognormal, clipped normal, gamma, Weibull, conjugate beta, andK-distributions. Using the measured values of the conditional mean concentration, , and the conditional fluctuation intensity,i p , the Weibull distribution provided the best match to the skewness and kurtosis over all downstream fetches. The skewness and kurtosis were always overpredicted by the lognormal probability density function (pdf), and underpredicted by the gamma pdf. The conjugate beta distribution for which the model parameters are determined using a method of moments based on the fluctuation intensity,i p , and skewness,S p , was capable of modeling the distribution of scalar concentration over a wide range of positions in the plume.  相似文献   

10.
This paper presents a new model of concentration fluctuations for neutrally buoyant gas clouds dispersing in a wind tunnel. It is derived from a series of exact results, which apply in the hypothetical case when there is no molecular diffusion, coupled with a probability density function model previously used to describe steady releases of contaminant. A simple self-similar relationship between the evolution of the concentration intensity and mean is established. As a first step the time independent variant of the model, applicable to a continuous plume, is tested against some previously published experimental data for steady wind-tunnel releases. Comparisons of experimental results and model predictions at different downwind positions, heights and source geometry are presented. Then, the results for the time dependent model, applicable to instantaneous releases, are discussed. The experimental evidence presented here supports the self-similar relationship established earlier. The implications for modelling higher moments of concentration and the fixed point probability density function are investigated.  相似文献   

11.
A meandering plume model that explicitly incorporatesinternal fluctuations has been developed and used to model the evolutionof concentration fluctuations in point-source plumes in grid turbulenceobtained from a detailed water-channel simulation. This fluctuating plumemodel includes three physical parameters: the mean plume spread in fixedcoordinates, which represents the outer plume length scale; the meaninstantaneous plume spread in coordinates attached to the instantaneousplume centroid, which represents the inner plume length scale; and, theconcentration fluctuation intensity in the meandering reference frame,which represents the in-plume fluctuation scale. These parameters arespecified in terms of a set of coupled dynamical equations that modeltheir development with downstream distance from the source. Explicitexpressions for the concentration moments of arbitrary integral orderand the concentration probability density function have been obtainedfrom the fluctuating plume model. Detailed comparisons of model predictionsagainst water-channel measurements for the first four concentrationmoments and the concentration probability distributions generally showvery good overall quantitative agreement. Exact quantitative conditions,expressed in terms of the physical parameters of the fluctuating plumemodel, have been derived for the emergence of off-centreline peaks inthe concentration variance profile. These quantitative conditions havebeen illustrated in terms of a diagram of states of the dispersing plume,and the qualitatively different regimes of plume concentration variancebehaviour on this state diagram have been identified and characterized.  相似文献   

12.
Wave-Modified Flux and Plume Dispersion in the Stable Boundary Layer   总被引:2,自引:1,他引:1  
The effects of a pressure jump and a following internal gravity wave on turbulence and plume diffusion in the stable planetary boundary layer are examined. The pressure jump was accompanied by a sudden increase in turbulence and plume dispersion. The effects of wave perturbations on turbulence statistics are analysed by calculating fluxes and variances with and without the wave signal for averaging times ranging from 1 to 30 min. The wave signals are obtained using a band-pass filter. It is shown that second-order turbulence quantities calculated without first subtracting the wave perturbations from the time are greater than those calculated when the wave signal is separated from the turbulence. Estimates of the vertical dispersion of an elevated tracer plume in the stable boundary layer are made using an elastic backscatter lidar. Plume dispersion observed 25 m downwind of the source increases rapidly with the arrival of the flow disturbances. Measured plume dispersion and plume centreline height correlate with the standard deviation of the vertical velocity but not with the wave signal.  相似文献   

13.
A Lagrangian stochastic model for the motion of heavy particles has been developed by coupling a stochastic model for the motion of fluid elements to the Stokes equations of motion of a particle in a turbulent flow. The effects of crossing trajectories and continuity are incorporated by generalising Csanady's (1963) ideas developed for stationary homogeneous turbulence; effects of turbulence inhomogeneity and nonstationarity are embodied in the stochastic model for the fluid motion.The model has been used particularly to examine the effects of turbulence nonstationarity through simulations of the dispersion of heavy particles in the decaying homogeneous turbulence which is obtained by Taylor-transforming grid turbulence. Significant differences from the stationary case occur, mainly as a result of the growth of the turbulent time scale with time.The importance of the source location in influencing both passive scalar and particle dispersion in grid turbulence is highlighted by the model and can be simply accounted for by nondimensionalisation using the r.m.s. turbulence velocity at the source and the mean travel time from the grid to the source as velocity and time scales, respectively. Reconciliation of the three different experiments of Snyder and Lumley (1971), Wells and Stock (1983) and Ferguson (1986) reporting heavy particle flow and dispersion statistics in wind tunnel grid turbulence has been attempted using this nondimensionalisation. A good correspondence between the various data sets was not obtained because the source in the Wells and Stock, and Ferguson experiments was located at the grid where the self-similar development of the turbulence which underlies the scaling is not appropriate.The model matches the data for the heaviest particles used by Snyder and Lumley reasonably well. For very light particles, it correctly reverts to the passive scalar limit, while the experimental data in general do not properly approach this limit.  相似文献   

14.
Experiments have been carried out to investigate the dispersion of plumes at short range in the atmospheric boundary layer during stable and unstable conditions. The experiments and measurement system are described, and the results are compared with those of previous experiments. The slow meandering under stable conditions found by Mylne (1992) is not present here (probably because of topographic effects), so the plume is present on the mean centreline more often, and timescales are shorter, under stable conditions. Associated with this, statistics during stable conditions exhibit greater stability to changes in total sampling time. Intensity is found to be greater under unstable conditions, but there do not appear to be large differences in the shape of the probability density function between stable and unstable conditions. The intermittency is calculated using several variations on the conventional definition. The values obtained vary substantially according to which definition is used (although they are always higher in the stable than in the unstable experiments), demonstrating the sensitivity to both the precise definition and to measurement system characteristics. It is shown that even at very short range the mean and variance of concentration are determined almost entirely by the fluid not emanating from the source. Thus the partition between source and non-source fluid suggested by Chatwin and Sullivan (1989), while providing a more scientifically sound definition of intermittency, does not have an obvious direct practical application.  相似文献   

15.
The micromixing technique, widely used in engineering calculations of mixing and chemical reaction, is extended to atmospheric boundary-layer flows. In particular, a model based on the interaction-by-exchange-with-the-conditional-mean (IECM) micromixing approach is formulated to calculate concentration fluctuation statistics for a line source and a point source in inhomogeneous and non-Gaussian turbulence in the convective boundary layer. The mixing time scale is parameterised as a linear function of time with the intercept value determined by the source size at small times. Good agreement with laboratory data for the intensity of concentration fluctuations is obtained with a value of 0.9 for the coefficient of the linear term in the time-scale parameterisation for a line source, and a value of 0.6 for a point source. Calculation of higher-order moments of the concentration field for a line source shows that non-Gaussian effects persist into the vertically well-mixed region. The cumulative distribution function predicted by the model for a point source agrees reasonably well with laboratory data, especially in the far field. In the limit of zero mixing time scale, the model reduces to a meandering plume model, thus enabling the concentration variance to be partitioned into meandering and relative components. The meandering component is shown to be more persistent for a point source than for a line source.  相似文献   

16.
The knowledge of the concentration probability density function (pdf) is of importance in a number of practical applications, and a Lagrangian stochastic (LS) pdf model has been developed to predict statistics and concentration pdf generated by continuous releases of non-reactive and reactive substances in canopy generated turbulence. Turbulent dispersion is modelled using a LS model including the effects of wind shear and along-wind turbulence. The dissipation of concentration fluctuations associated with turbulence and molecular diffusivity is simulated by an Interaction by Exchange with the Conditional Mean (IECM) micromixing model. A general procedure to obtain the micromixing time scale needed in the IECM model useful in non-homogeneous conditions and for single and multiple scalar sources has been developed. An efficient algorithm based on a nested grid approach with particle splitting, merging techniques and time averaging has been used, thus allowing the calculation for cases of practical interest. The model has been tested against wind-tunnel experiments of single line and multiple line releases in a canopy layer. The approach accounted for chemical reactions in a straightforward manner with no closure assumptions, but here the validation is limited to non-reacting scalars.  相似文献   

17.
Observations of the dispersion of a contaminant plume in theatmospheric boundary layer, obtained using a Lidar, are analysedin a coordinate frame relative to the instantaneous centre of massof the plume. To improve the estimates of relative dispersionstatistics, maximum entropy inversion is used to remove noise fromthe Lidar concentration profiles before carrying out the analysis.A parametric form is proposed for the probability density function(pdf) of concentration, consisting of a mixture of a betadistribution and of a generalised Pareto distribution (GPD). Thispdf allows for the possibility of a unimodal or bimodaldistribution, and is shown to give a satisfactory fit toobservations from a range of positions relative to the source. Thevariation of the fitted parameters with crossplume location isanalysed, and the maximum possible concentration is found todecrease away from the plume centre.  相似文献   

18.
The joint probability density function (PDF) of turbulent velocity and concentration of a passive scalar in an urban street canyon is computed using a newly developed particle-in-cell Monte Carlo method. Compared to moment closures, the PDF methodology provides the full one-point one-time PDF of the underlying fields containing all higher moments and correlations. The small-scale mixing of the scalar released from a concentrated source at the street level is modelled by the interaction by exchange with the conditional mean (IECM) model, with a micro-mixing time scale designed for geometrically complex settings. The boundary layer along no-slip walls (building sides and tops) is fully resolved using an elliptic relaxation technique, which captures the high anisotropy and inhomogeneity of the Reynolds stress tensor in these regions. A less computationally intensive technique based on wall functions to represent the boundary layers and its effect on the solution are also explored. The calculated statistics are compared to experimental data and large-eddy simulation. The present work can be considered as the first example of computation of the full joint PDF of velocity and a transported passive scalar in an urban setting. The methodology proves successful in providing high level statistical information on the turbulence and pollutant concentration fields in complex urban scenarios.  相似文献   

19.
Observations of 1-s average concentration fluctuations during two trials of a U.S. Army diffusion experiment are presented and compared with model predictions based on an exponential probability density function (pdf). The source is near the surface and concentration monitors are on lines about 30 to 100 m downwind of the source. The observed ratio of the standard deviation to the mean of the concentration fluctuations is about 1.3 on the mean plume axis and 4 to 5 on the mean plume edges. Plume intermittency (fraction of non-zero readings) is about 50%; on the mean plume axis and 10%; on the mean plume edges. A meandering plume model is combined with an exponential pdf assumption to produce predictions of the intermittency and the standard deviation of the concentration fluctuations that are within 20%; of the observations.  相似文献   

20.
An analysis of wind tunnel data of dispersion from elevated point sources over a flat floor and gently sloping, 2-D hills is performed. (The data were obtained by Khurshudyan et al., 1981.) Formulas for the mixing lengths and the Lagrangian time scales are tested, suitable for use in various dispersion models. Some expressions for the vertical first moments of the plume concentration distribution suitable for shear flow (Hunt, 1985) are also tested.Then, a normalization is suggested, based on the source mean flow and turbulence parameters, for the ground-level concentration maximum value and position along the plume centerline. Using this normalization, the maximum position is almost constant, regardless of source height variation and of whether the hill is present or not, at least for source positions upstream or over the top.The maximum values allow the determination of normalized terrain amplification factors TAFN, which are shown to be in most cases closer to one than the corresponding TAF obtained without normalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号