首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2003年夏季临安地区大气气溶胶离子成分的尺度分布特征   总被引:16,自引:0,他引:16  
文中利用2003年夏季在浙江临安大气本底污染监测站观测的资料,分析了临安的气溶胶质量浓度、离子成分的尺度分布特点及主要离子间的相互关系。初步结果显示,该期间临安气溶胶主要以粒径小于2.1μm的细粒子为主,约占总质量浓度的66%,其中粒径小于0.65μm的粒子可达总质量浓度的50%,远高于其他各级尺度段上的粒子浓度。与质量浓度分布相似,可溶性无机离子成分主要集中在粒径小于2.1μm(记为PM2.1)的细粒子中,PM2.1粒子中可溶性无机离子约占所有尺度段(包括所有5级)离子质量浓度总和的88%。其中粒径小于0.65μm的亚微米粒子中的离子质量浓度是细粒子的主要部分,占所有尺度段上离子质量浓度总和的77%。SO42-,NH4+和K+是PM2.1中决定性的离子成分。相关分析和离子平衡表明,PM2.1中SO42-与NH4+和K+有很高的相关,在粒径小于0.65μm的亚微米粒子中,非海盐硫酸盐(Nss-SO42-)主要为(NH4)2SO4,由气-粒转化产生;而在粒径为0.65~2.1μm尺度段,Nss-SO42-除(NH4)2SO4外,可能还有K2SO4,Na2SO4等存在。  相似文献   

2.
广州地区旱季一次典型灰霾过程的特征及成因分析   总被引:18,自引:1,他引:17  
通过研究2009年11月广州市气溶胶颗粒物质量浓度(PM10、PM2.5、PM1)、黑碳浓度、散射系数(Scatter)等大气成分要素,以及微波辐射计、激光雷达及风廓线雷达所探测的风、温、湿等边界层结构,统计分析广州旱季一次典型灰霾过程(2009年11月23—29日)中气溶胶颗粒物及其光学特性的时空变化特征,并配合天气形势背景、边界层结构对其形成原因进行详细分析。在典型灰霾过程中,黑碳浓度高达58.7μg/m3,散射系数高达1 902.7 Mm-1,PM10浓度高达423.5μg/m3,PM2.5浓度高达355.7μg/m3,PM1浓度高达286.5μg/m3。通过对同期的气象条件分析表明在广州地区旱季,区域性污染过程,特别是灰霾天气的形成具有以下三种气象条件:大气边界层高度较低;高压变性出海的天气形势与之密切相关;在偏东和偏南气流带来的高湿度环境下,气溶胶吸湿增长效应显著,导致出现严重灰霾天气。  相似文献   

3.
保定市大气颗粒物中含碳组分粒径分布   总被引:5,自引:0,他引:5  
北京-天津-河北地区工业城市保定大气颗粒物(Particulate matter,PM)污染严重,保定大气颗粒物尤其是细粒子和超细粒子污染严重,其中含碳组分具有重大贡献,PM1.1、PM2.1和PM2.1-9.0中含碳气溶胶总量(total carbonaceous aerosols,TCA)分别占到(49±20)%、(45±19)%和(19±7)%。PM9.0中的含碳气溶胶主要富集在PM2.1乃至PM1.1中。颗粒物浓度谱分布及含碳气溶胶富集量呈显著季节变化,由于采暖过程秋冬季各粒径段有机碳(organic carbon,OC)和元素碳(elemental carbon,EC)的浓度均增加,秋、冬季节细颗粒物中OC浓度可高达44.0±38.3、78.5±30.2μg m-3,EC浓度分别为3.5±1.6、8.5±6.8μg m-3。各个季节OC和EC在总悬浮颗粒物(total suspended particulate,TSP)中的几何平均直径(geometric mean diameter,GMD)均集中在较小粒径段。粗颗粒物中OC的GMD在春夏季较高,秋季减少,而冬季最低。而粗颗粒物中EC的GMD则是冬季最高,夏季最低。保定0.4μm的颗粒物中OC/EC比值4个季节的水平较为稳定,春、夏、秋、冬季OC/EC比值分别为5.2、3.5、4.1和5.4,来源主要为交通和燃煤。其余几个粒径段的颗粒物的来源更为复杂,其来源主要为燃煤、木材和生物质。  相似文献   

4.
临安大气气溶胶理化特性季节变化   总被引:4,自引:2,他引:4       下载免费PDF全文
分别利用碳成分分析仪、离子色谱仪和原子吸收光谱仪等获取浙江省临安地区大气气溶胶在春、夏、秋、冬四季的质量浓度、离子与碳成分特性,并对不同粒径气溶胶成分分布特点作了较详细分析。结果表明:气溶胶质量浓度、可溶性离子浓度以及碳成分浓度具有明显的季节变化趋势。整个尺度范围内,气溶胶质量浓度季节变化特点为春季浓度最高,达到534 μg/m3;冬季次之,质量浓度为117.21 μg/m3;夏季浓度最低,平均为65.7 μg/m3;秋季质量浓度98.6 μg/m3。可溶性离子成分在气溶胶中所占比例具有明显的季节性,其中夏季最高为49.4%,春季最低为11.3%。硫酸根离子SO42-和氨根离子NH4+和硝酸根离子NO3- 3种离子浓度之和约占离子总量的75%~83%。受温度影响,硝酸根离子NO3-浓度随季节变化幅度较大,夏季平均浓度为1.7 μg/m3, 冬季平均浓度为11.5 μg/m3,是夏季浓度的6.8倍。碳浓度分布特点显示,气溶胶中元素碳浓度春季最高,夏季最低。有机碳浓度春季最高,冬季最低。气溶胶粒度分布特点也非常明显。四季中粒径小于11 μm(PM11)的气溶胶均占气溶胶总量的90%以上,粒径小于2.1 μm(PM2.1)的气溶胶占到气溶胶总量的53%以上。可溶性离子在粒径小于2.1 μm气溶胶颗粒中,以硫酸根离子、氨根离子和硝酸根离子为主。碳成分尺度分布特征为颗粒越小,有机碳及元素碳浓度越高。  相似文献   

5.
利用2006年3~5月北京上甸子本底站气溶胶细粒子(PM2.5)质量浓度、吸收和散射系数的连续观测资料,对2006年春季上甸子本底站清洁、污染输送及典型沙尘天气下气溶胶的消光特性进行了分析.结果显示:①本底站在春季清洁情况下PM2.5质量浓度、吸收和散射系数的日均值水平分别为:10 μg/m3、7 Mm-1和20Mm-1左右,单散射反照率分布在0.71~0.78之间;此次观测到的污染输送过程中PM2.5质量浓度、吸收和散射系数平均值分别为:145 μg/m3、44.5 Mm-1、374.3 Mm-1,单散射反照率分布在0.84~0.94之间;沙尘影响期间,PM2.5质量浓度、吸收和散射系数以及单散射反照率的测量结果分布在248.2~424.1 μg/m3、10.8~44.7Mm-1、225.4~392.5 Mm-1和0.89~0.96之间.②观测得出,沙尘影响集中的时段细粒子质量浓度、气溶胶散射系数和气溶胶吸收系数都成倍地上升,其中质量浓度和散射系数上升的幅度要高于吸收系数.③3种天气条件的对比结果显示.受沙尘天气影响PM2.5质量浓度明显上升,且逐时波动幅度大;吸收系数远高于清洁天气下的观测结果,但比污染输送过程的测量结果偏低;散射系数同样高于清洁天气下的观测结果,与污染输送情况下的测量结果接近.沙尘天气导致颗粒物浓度明显上升,其对气溶胶粒子散射作用的贡献要大于吸收作用.  相似文献   

6.
黑碳气溶胶光学厚度的全球分布及分析   总被引:11,自引:2,他引:11  
马井会  郑有飞  张华 《气象科学》2007,27(5):549-556
利用全球气溶胶数据集GADS(Global Aerosol Data Set)计算了冬夏两季黑碳气溶胶质量浓度分布以及在波长0.55μm处的光学厚度、吸收系数和散射系数在全球的分布,并分析了原因。通过分析黑碳气溶胶复折射指数虚部、单次散射反照率、非对称因子、吸收系数、散射系数和消光系数随波长的变化,得出黑碳气溶胶的吸收系数和散射系数在小于0.5μm的短波范围内具有相同的数量级,随着波长的增大,吸收系数比散射系数大几个数量级;黑碳气溶胶对小于1μm的短波有强烈的吸收作用。另外还给出了冬夏两季南北半球及全球黑碳气溶胶平均光学厚度值、7个地区黑碳气溶胶光学厚度及质量浓度最大值,其中冬季黑碳气溶胶光学厚度的最大值为0.027 5,位于东亚地区;而质量浓度最大值为1.555μg/m3,位于西欧地区。  相似文献   

7.
北京上甸子秋冬季大气气溶胶的散射特征   总被引:6,自引:3,他引:6  
柯宗建  汤洁 《大气科学》2007,31(3):553-559
分析了北京上甸子秋冬季气溶胶散射系数的变化特征、散射系数与PM2.5质量浓度的关系, 结合气象资料分析了风场对气溶胶散射系数变化的影响。通过研究得出, 上甸子秋冬季气溶胶散射系数平均值和标准差分别为179.7 Mm-1和253.2 Mm-1;阴天条件下的散射系数明显高于晴天;散射系数与PM2.5质量浓度之间有较好的相关性, 其相关系数为0.93;此外, 由于上甸子特殊的地理位置, 风场对气溶胶散射系数的影响显著, 不同风向条件下气溶胶散射系数差别很大。  相似文献   

8.
广州冬季大气消光系数的贡献因子研究   总被引:12,自引:1,他引:11  
2008年1月1~31日和2月6~24日在广州城区每天采集一个PM2.5样品,对样品进行有机碳、元素碳及水溶性离子分析,利用美国IMPROVE能见度方程计算得到广州冬季大气消光系数.结果发现:冬季PM2.5 日均值质量浓度为89.0±53.4/μg·m~(-3),OC(Organics Carban)质量浓度为16.9±11.9μg·m~(-3),EC(Element Carbon)质量浓度为5.9±3.4 μg·m~(-3),水溶性离子总浓度为43.9±23.5μg·m~(-3).冬季大气消光系数均值为342±185 Mm~(-1).广州冬季大气消光系数主要贡献者为(NH_4)_2SO_4、NH_4NO_3、POM(Par-ticular organic matter)、EC和NO_2,对消光系数的贡献率分别为36.3%、14.5%、26.6%、17.4%和5.2%.  相似文献   

9.
沙尘传输路径上气溶胶浓度与干沉降通量的粒径分布特征   总被引:1,自引:0,他引:1  
利用2002年春季中国北京、青岛和日本福冈3个地区的分级气溶胶浓度资料,结合改进的Wil-liams模型,分析了沙尘传输路径上空气动力学直径≤11μm气溶胶(PM11)浓度和干沉降通量的粒径分布特征,并估算了黄海海域春季PM11的干沉降通量及不同粒径气溶胶的贡献。结果表明:3个地区PM11浓度粒径分布在非沙尘时期呈双峰分布,两个峰值分别出现在细颗粒(<2.1μm)部分和粗颗粒(2.1~11μm)部分;沙尘时期,3个地区PM11浓度粒径分布均趋于单峰分布,峰值位于粗颗粒部分,并且越靠近沙尘源地,这种趋势越明显。较强沙尘天气时期,粗颗粒部分的浓度峰值粒径从沙尘源地附近到黄海西岸、东岸呈降低趋势,但在一般沙尘天气时期,这种现象并不明显。沙尘时期和非沙尘时期,3个地区粗颗粒的干沉降通量均随粒径增加而增大,细颗粒的干沉降通量随粒径的变化不明显。虽然沙尘时期粗颗粒沉降通量较非沙尘时期有明显增加,但粗颗粒对PM11干沉降通量的贡献与非沙尘时期相比,并没有明显的变化。较强沙尘天气时期,3个地区粗颗粒的干沉降通量明显高于一般沙尘天气时期;细颗粒的干沉降通量较一般沙尘天气时期略有增加。黄海海域春季沙尘时期PM11的干沉降通量约为31.70~58.59mg.m-2.d-1,非沙尘时期约为8.33~15.94mg.m-2.d-1。粗颗粒是黄海海域春季PM11干沉降通量的主要贡献者,约占PM11干沉降通量的94.2%以上。  相似文献   

10.
2010年春季民勤沙地近地面沙尘气溶胶浓度特征   总被引:4,自引:2,他引:2       下载免费PDF全文
为了更好地研究沙尘气溶胶起沙和输送特征,2010年4—5月,在民勤周边沙地利用EZ LIDAR ALS300ALS450型激光雷达和GRI MM180型颗粒物采样器进行了大气气溶胶的外场连续观测,取得了晴天、浮尘、扬沙和沙尘暴天气条件下沙尘气溶胶总后向散射垂直剖面图和PM10、PM2.5、PM1.0质量浓度采样资料,其中包2010年4月24日特强沙尘暴过程资料。结果表明:春季民勤近地层大气中沙尘气溶胶浓度较高,且随气象要素的变化很大;在整个观测期内,PM10、PM2.5和PM1.0的平均质量浓度分别为202.3、57.4μg/m3和16.7μg/m3。在不同天气条件下,PM10、PM2.5和PM1.0质量浓度的变化有较好的相关性,但变化趋势有所不同。在沙尘暴天气条件下,PM10的日平均质量浓度高达2469.1μg/m3,是背景天气条件下PM10日平均质量浓度的100多倍,是浮尘天气条件下PM10日平均质量浓度的8倍,是扬沙天气条件下PM10日平均质量浓度的2倍。PM2.5在沙尘暴天气下日平均质量浓度为460.3μg/m3,是背景天气条件下PM2.5日平均质量浓度的45倍,是浮尘天气条件下PM2.5日平均质量浓度的6倍,是扬沙天气条件下PM2.5日平均质量浓度的1.4倍。PM1.0在沙尘暴天气条件下的日平均浓度为92.7μg/m3,是背景天气条件下PM1.0日平均浓度的13倍,是浮尘天气条件下PM1.0日平均浓度的7倍,是扬沙天气条件下PM1.0日平均浓度的1.3倍。可见,风速增大时,沙尘粒子浓度的增加对粒子粒径是有选择的,小粒子比重随沙尘浓度增加而相对减小,大粒子比重随沙尘浓度增加而相对增多。通过对2010年4月24日特强沙尘暴过程的研究表明,一次沙尘暴过程往往包括沙尘暴、扬沙和浮尘天气中的两种类型。通过对激光雷达数据分析发现,在强沙尘暴发生过程当中,民勤沙地发生了非常严重的风蚀起沙现象。  相似文献   

11.
利用2015年4月—2016年3月东洞庭湖滨湖气溶胶和同期气象资料,对PM10、PM2.5质量浓度特征与气象条件的关系进行了分析,并对一次典型高浓度气溶胶过程及其成因进行了探讨。结果表明:全年PM10、PM2.5质量浓度分别为116.5、59.9μg/m3,且均为夏季各月小,冬季各月大。一天中,气溶胶质量浓度早晨最小、午后最大。全年PM10、PM2.5质量浓度分别超过国家2级标准66%、71%,1年中有1/4的日期超过国家2级标准,且基本出现在12月—次年3和10月。随着气温的升高、降水量级和风力的增大,日均气溶胶质量浓度明显减小。大雨、暴雨和3级以上的风对气溶胶有较明显的稀释和清除作用。主导风向与工业点源布局、北方大气污染源输送方向一致,导致当地气溶胶浓度增大。低空明显的偏北风将我国北方外来高污染源输送至岳阳,导致2015年12月11—12日气溶胶爆发性增长。  相似文献   

12.
长春市气溶胶质量浓度变化特征浅析   总被引:1,自引:0,他引:1  
1引言大气气溶胶是指大气中悬浮的固体或液体粒子。气溶胶质量浓度是单位体积大气中所含气溶胶的质量,单位为mg/m^3。其中PMl0(粒径小于等于10μm)和PM2.5(粒径小于等于2.5μm)的质量浓度是衡量空气质量的重要指标。  相似文献   

13.
中国北方气溶胶散射和PM10浓度特征   总被引:14,自引:10,他引:4  
利用积分浊度计和PM10浓度监测仪,对中国北方2005年观测的气溶胶散射系数σsp与可吸入颗粒物PM10质量浓度的分析表明,张北站σsp年均值为130 Mm-1,民勤站σsp年均值为116 Mm-1;四季中都是冬季均值最高,张北站sσp为301.6 Mm-1,民勤站σsp为170.9 Mm-1,这说明张北站的气溶胶散射情况比民勤站显著。而PM10浓度反映了不同的变化规律,张北站PM10年均值为53μg.m-3,民勤站PM10年均值为130μg.m-3;四季中都是春季均值最高,张北站PM10为82.2μg.m-3,民勤站PM10为190.1μg.m-3,这说明民勤站的PM10污染比张北站严重很多。张北站的质量散射效率α年均值为2.4 m2.g-1,民勤站的α年均值为1.1 m2.g-1,这与张北站全年主要受城市污染型气溶胶的影响,而民勤站全年主要受沙尘气溶胶的影响有密切关系。α具有反映中国北方两种典型气溶胶的能力。  相似文献   

14.
珠江三角洲地区的灰霾天气研究进展   总被引:10,自引:0,他引:10  
珠江三角洲地区是我国气溶胶污染较严重的地区之一,也是国内较早开展灰霾天气研究的地区,从灰霾标准、科学概念、长期变化趋势、细粒子污染本质、水平输送和垂直扩散能力以及气溶胶的光学特性和物理化学特性方面进行了研究。结果表明,近年来珠江三角洲地区的气溶胶污染日趋严重,气溶胶云一年四季都出现,且长期稳定存在,重污染区位于珠江口以西的珠江三角洲西侧。灰霾天气主要出现在10月至次年4月。灰霾导致能见度恶化。自20世纪80年代初开始,该地区的能见度急剧恶化,灰霾天气显著增加,其中有3次大的波动,分别代表珠江三角洲经济发展相伴随的粗颗粒气溶胶污染、硫酸盐+粗颗粒气溶胶污染、光化学过程的细粒子+硫酸盐和粗颗粒气溶胶的复合污染时期。雾和轻雾造成的低能见度的长期变化趋势,没有由于人类活动影响或经济发展影响带来的趋势性变化,其波动主要反映了气候波动固有的年际和年代际变化。珠江三角洲能见度的恶化主要与细粒子关系比较大,PM10有一半年份的年均值超过国家二级标准的年均值浓度限值(70μg m–3),而细颗粒物(即PM2.5)各年都超过国家二级标准的年均值限值(35μg m–3),尤其是有些年份年均值浓度超过标准限值的2倍,细粒子浓度甚高。另外,近年细颗粒物占PM10的比重非常高,可达57%~79%,黑碳气溶胶浓度非常高,月均值达到5.0~9.1μg m–3,黑碳气溶胶污染严重。和20余年前的资料相比较,细粒子在气溶胶中的比重有明显增加,有机碳和硝酸盐、铵盐的占比增加,而硫酸盐占比略有减少,钙占比明显减少。区域气流停滞区的形成是发生严重灰霾天气的主要气象条件,垂直输送能力不足也是加重灰霾天气的气象条件之一。  相似文献   

15.
南京市主城区大气颗粒物来源探讨   总被引:9,自引:0,他引:9       下载免费PDF全文
在2005-05-03——05-27期间,用Anderson九级采样器在南京市两个采样点采集大气气溶胶样品,同时进行了部分排放源的采集。用X射线—荧光光谱仪(XRF)分析得到气样及源样中PM10的化学成分,分析了南京市大气气溶胶的元素质量谱分布,进行了PM10的富集因子分析,并应用化学质量平衡法(CMB)计算各类源对气溶胶PM10的贡献。结果表明,各类污染源对南京市气溶胶PM10的贡献率分别为:建筑尘(35.45%)、煤烟尘(22.13%)、土壤尘(20.27%)、硫酸盐(5.43%)、汽车尘(4.61%)、海盐(1.91%)、冶炼尘(1.69%)、其它源(8.51%)。文中还结合了南京市TSP和PM2.5的来源解析结果,分析了南京市不同粒径气溶胶颗粒物的污染特征。  相似文献   

16.
利用沈阳地区2010年全年大气总消光系数、气体分子吸收系数、气溶胶吸收和散射系数以及大气可吸入颗粒物数浓度的小时数据,对沈阳地区的大气消光特别是气溶胶消光性质进行了高时间分辨率的研究。结果表明:总消光系数和气溶胶散射系数在一天内呈单周期峰谷型分布,05—06时(北京时间,下同)达到峰值,15时达到谷值。大气总消光系数在雪天最大、霾天次之、晴天最小。气溶胶消光系数与粒子数浓度的相关性随着粒径的减小而增大。  相似文献   

17.
合肥市不同天气条件下大气气溶胶粒子理化特征分析   总被引:6,自引:2,他引:4  
为探讨合肥市霾天气大气气溶胶粒子的组成及来源,在2012-2013年代表性月份用安德森分级采样器在合肥市区进行大气气溶胶粒子采样,并分析各样本中水溶性无机离子成分(NH4+、Mg2+、Ca2+、Na+、 K+、NO2-、NO3-、Cl-、SO42-)。根据同期气象资料把采样背景天气分为晴空、雾、霾、轻雾等4类,详细分析了这4种天气下大气细粒子(指PM2.1)和粗粒子(粒径大于2.1 μm部分)的浓度、组成以及主要离子组分的异同。结果表明:(1)观测期间晴空天多对应空气质量优良,雾、霾天对应轻度到重度污染,从晴空天到雾、霾天,PM2.1浓度大幅度上升,且其占总悬浮颗粒物(TSP)的比例显著上升。(2)从晴空天到雾、霾天,水溶性无机离子质量占PM2.1质量浓度的比例上升,分别为46%(晴空)、67%(霾)、61%(雾)、80%(轻雾)。PM2.1中水溶性无机离子浓度居前3位的雾、霾天是SO42-、NO3-和NH4+,晴空天为SO42-、Ca2+、NO3-。(3)与晴空天相比,霾天PM2.1中水溶性无机离子浓度变化倍数最大的是NO3-(为晴空的6.1倍,下同)、其次是NH4+(3.6倍)和SO42-(3.0倍);雾和轻雾天PM2.1中水溶性无机离子浓度变化最大的是NO3-(>10倍)、其次是NH4+(>5倍)和Cl-(>4.0倍)。(4)4种天气下,与人为污染有关的离子(SO42-、NO3-、Cl-、NH4+)尺度谱存在显著差异,呈双峰型、单峰型、三峰型等;而Ca2+的尺度谱无明显变化,基本上都呈双峰型。(5)在粒径3.3 μm以下,阳、阴离子平衡较好,随着尺度增大变差,且晴空天比雾、霾天差。主要阴离子浓度间、Cl-和Na+间的比值和相关性,在晴空天和雾、霾天差异较大。   相似文献   

18.
应用WRF—Chem(Weather Research and Forecasting Model with Chemistry)模式模拟研究了2007年8月京津冀地区近地面O3、NO2、PM2.5浓度的时空变化特征,将模拟结果与观测数据进行详细对比,结果表明,模式可以较好地模拟O3、PM2.5,浓度的空间分布和时间变化特征,成功再现了8月33和PM2.5的几次积累增加过程,其中O,的模拟值与观测值的相关系数为0.69~0.86,PM2.5的相关系数为0.44~0.49,但模式对NO2的模拟相对较差,相关系数为0.27~0.43。北京、天津地区为O3月均低值区,月均体积浓度约30×10^-9,渤海及京津冀以西地区O3月平均体积浓度可达60×10^-9;PM2,呈现南高北低的分布特征,变化范围为120~240μg/m3。14时月平均03体积浓度在北京、天津地区低于周边地区,约为60×10^-9;而PM2.5质量浓度在环渤海地区和河北南部较高,为100~120μg/m^3。8月17日北京出现一次典型的高浓度O,污染事件,14时北京地区温度达到33℃,O3体积浓度为80×10^-9~110×10^-9。在局地排放、化学反应和外来输送的共同作用下,渤海西岸和北岸PM2.5的质量浓度超过120μg/m3,其中二次气溶胶质量浓度为50~100μg/m3,一次排放人为气溶胶质量浓度为10~20μg/m3,海盐质量浓度为1~7μg/m3,二次气溶胶是该地区PM2.5的主要贡献者。  相似文献   

19.
广州市大气能见度影响因子的贡献研究   总被引:25,自引:4,他引:21  
通过对广州市2004年10月1日~11月5日污染性气体NO2、气溶胶散射系数和吸收系数以及粒子化学成分组成等观测资料的分析,得到了影响广州市大气能见度因子的贡献比例:大气气溶胶散射bsa为75.26%、大气气溶胶吸收baa为12.89%、水汽bsw为5.78%、气体吸收bag为3.68%、大气分子散射bsg为2.38%;给出了不同粒径段气溶胶对散射的贡献比例;然后采用逐步多元线性回归得到了大气干气溶胶散射系数与PM2.5、PM10及化学成分的经验关系式;并给出了广州市区气溶胶的质量散射系数。  相似文献   

20.
针对京津冀地区主要大气污染物NOx(氮氧化物)和PM2.5(大气中粒径小于或等于2.5μm的颗粒物),应用柴油车尾气净化技术及中小锅炉烟气脱硝技术,并根据2015年和2030年我国能源规划,设计3种技术应用情景,采用WRF-CAMx耦合模式,对京津冀地区大气中NOx和PM2.5进行了应用情景模拟。结果表明,单独应用柴油车尾气净化技术后(方案1),北京、天津地区大气中的NOx浓度降低幅度达20%,河北地区降低5%;PM2.5的浓度降低幅度约10%;应用柴油车尾气净化技术和2015年能源规划情景(方案2),京津冀地区大气中NOx和PM2.5浓度的降低幅度均超过20%;应用柴油车尾气净化技术和2030年能源规划情景(方案3),该地区NOx浓度降低幅度与之相当,PM2.5浓度降低幅度超过30%。可见脱硝技术和清洁能源利用的有效性依赖于其应用比例。二次气粒转化的化学过程形成的硝酸盐、硫酸盐和铵盐对该地区空气中PM2.5浓度的贡献很大,冬、春、秋季硝酸盐最大贡献高达60%,夏、秋季硫酸盐最大贡献超过70%,铵盐四季最大贡献约25%。这说明PM2.5的主要前体物NOx、SO2、NH3、VOCs (Volatile Organic Compounds)、CO等均大幅度削减才能有效降低该地区空气中PM2.5浓度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号