首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 437 毫秒
1.
本文提出了一种面向计算机编程的任意基线雷达反射率因子垂直剖面算法,建立了由地球球面展开的平面雷达极坐标系与计算机屏幕直角坐标系的坐标转换关系。通过计算雷达反射率因子垂直剖面直角坐标系中的格点在雷达极坐标系中的仰角、方位角、斜距,采用垂直线性内插方法得到该格点雷达反射率因子分析值。  相似文献   

2.
区域雷达网同步观测对比分析   总被引:5,自引:0,他引:5  
利用长江中游的合肥、宜昌、武汉、常德和长沙雷达周围的1:25万的地形高度数据得到各雷达的混合扫描仰角和等射束高度拼图。选用2004年7月17—19日5部雷达同步观测的雷达体扫资料,分析了各雷达的最低扫描仰角;在尽量排除地物杂波、波束阻挡、距离衰减和波束展宽等因素影响的情况下,对比分析了5部雷达构成的有重叠覆盖区的7个雷达对的反射率因子差异。结果表明:(1)对雷达最低扫描仰角进行分析可以检查雷达的仰角标定,武汉和合肥雷达平均最低观测仰角比VCP21扫描方式规定的要低;(2)用雷达对等距离线上的反射率垂直剖面可以分析雷达对同步观测的回波空间位置和强度差异,常德雷达和其周围雷达同步观测的回波高度明显偏低;(3)用雷达对等距离线上某高度的反射率因子曲线变化的一致程度可以分析雷达的方位标定,这5部雷达没有明显的方位定标偏差;(4)用雷达对等距离线上某高度的平均反射率因子差可以分析雷达对同步观测的系统观测差,宜昌雷达和其周围的雷达相比,观测的回波强度偏强,而武汉和其周围的雷达相比,观测的回波强度偏弱;(5)反射率因子差的时间平均值随着反射率因子的大小变化而变化,当观测的反射率因子越大时雷达对的反射率因子差的时间平均值也越大。  相似文献   

3.
新一代天气雷达网资料的三维格点化及拼图方法研究   总被引:31,自引:6,他引:31  
肖艳姣  刘黎平 《气象学报》2006,64(5):647-657
文中研究了几种把球坐标系下的雷达网反射率体扫资料插值到统一的笛卡尔坐标系下的经纬度网格上以及用多个雷达的反射率网格资料进行三维拼图的方法,并对多个雷达同步观测的反射率因子的空间一致性、系统误差以及雷达等距离线上回波的水平和垂直结构进行了分析。结果发现:在雷达资料格点化过程中,径向和方位上的最近邻居法和垂直方向的线性内插法的结合(NVI方法)是一种有效的雷达资料分析方法,它既能得到空间比较连续的反射率分析场,同时也较好地保留了体扫资料中原有的反射率结构特征;广州雷达和梅州雷达同步观测的空间一致性比较好;在多个雷达资料合成拼图的过程中,距离指数权重平均法能提供空间连续的三维反射率拼图数据,拼图也减轻了由雷达波束几何学引起的各种问题。  相似文献   

4.
双极化多普勒天气雷达的CAPPI产品指等高平面位置显示产品,即雷达做体扫时获取的极坐标形式的三维数组按照用户设置的高度,应用测高公式,选取该高度平面上的上下两个仰角相应的数据,然后用内插方法得到的相应产品,该产品的图像高度相等,可以较方便的分析天气回波信息在某高度上的水平分布,便于和临近该高度的天气图相结合进行分析。其相关产品的研发,对准确反应降水回波情况、降低回波在垂直方向的干扰、突出或剔除零度层亮带影响、消除地物回波影响具有重要作用。在考虑电磁波发生折射的情况下,主要研究了雷达数据平面拼图的算法,用插值法得到3km高度处一些基本反射率因子、差分反射率因子、比相差、相关系数等参量的CAPPI图,并将它们的格点数据一一显示出来。  相似文献   

5.
天气雷达数据三维格点化是天气雷达组网拼图的基础,本文研究了几种把球坐标系下的分辨率不均匀的雷达反射率资料(dBZ)插值到统一的分辨率均匀的笛卡尔坐标系下的方法,并采用模拟的天气雷达回波数据对这几种方法进行了比较分析,主要对空间反射率强度值的连续性及是否保留了雷达资料中原始的反射率结构特征进行对比分析。   相似文献   

6.
多普勒雷达实时反射率因子垂直廓线观测研究   总被引:3,自引:2,他引:3  
使用2002年6~7月长江中游地区宜昌S波段多普勒雷达在两次大范围混合性强降水过程中部分时段体积扫描强度数据以及周边100km范围内的7个雨量计整理成10min记录一次的雨量资料,分析了实时雷达反射率因子垂直廓线的特征。研究表明:反射率因子垂直廓线可反映出所选区域上空零度层亮带高度位置、回波的垂直变化规律等信息,以此分析降水的类型、云中粒子的发展变化;从雷达连续体扫得到的中、低仰角对应高度上的实时反射率因子垂直廓线的变化规律、PPI图像上对应雨量站点上空的回波变化情况及10min记录一次的地面雨量的变化趋势对比来看,发现三者能很好地统一起来,可用来较细致地分析降水云体的变化,有利于在无地面雨量计的地区分析降水量的大小、确定降水类型、估测降水的发展;对无亮带、反射率因子值较大而且越低仰角值越大的反射率因子垂直廓线的区域,对应地面上常有对流性强降水出现。  相似文献   

7.
将雷达50 km探测半径的可视范围分为4个区域,分别获取平均反射率因子垂直廓线,确定与对应区域的雨量计匹配最佳的平均反射率因子廓线上的Z值;同时获取雷达波束被阻挡地区各雨量计高空平均反射率因子垂直廓线,并寻找该廓线与可视区域内的平均反射率因子垂直廓线相关性最好的廓线,以及被阻挡区域的Z值对应的最佳匹配高度上的Z值,对其进行降水估计。采用安徽合肥雷达站和雨量计站点资料进行试验,并进行误差分析,结果表明:利用最佳匹配方法得出的平均反射率因子垂直廓线上的Z值对雷达波束被阻挡区域的降水估计效果有一定改进。  相似文献   

8.
该文介绍了一种自动识别和移除雷达反射率因子资料中亮带的算法, 并对该算法进行了初步测试。该算法利用的是插值到直角坐标系中的雷达反射率因子资料, 其配置和运行也相对简单, 但却对移除亮带比较有效。首先, 设定一套雷达反射率因子垂直廓线的理想模板, 这些理想的模板能够在最大程度上反映不同亮带存在区域的雷达实际反射率因子的垂直廓线特征。然后, 在水平方向每个点上, 进行理想模板和实际反射率因子垂直廓线在垂直和水平两个方向上的拟合和差异计算, 来自动识别雷达反射率因子中存在的连续亮带区域。最后, 利用亮带之上和亮带之下的反射率因子值对亮带中的反射率因子值进行插值纠正, 就可以移除亮带。利用位于天津塘沽的我国新一代天气雷达 (CINRAD/SA) 的反射率因子资料, 通过个例分析和准业务运行试验, 均表明这个简单算法可以识别和移除绝大多数影响雷达定量降水估计的反射率因子亮带区域, 但是实际雷暴区域的反射率因子特征受到该算法的影响比较小。计算分析还表明, 在京津地区的初夏, 上述亮带区域一般容易出现在2.5 km左右的高度处。  相似文献   

9.
杨泷  刘黎平  王红艳 《气象科技》2015,43(5):788-793
新一代天气雷达很多位于地形复杂的山区,地形遮挡形成观测盲区,严重影响了新一代天气雷达数据的应用效果。利用基于高分辨率地形数据计算的波束遮挡信息,依据反射率因子垂直廓线,由高仰角无遮挡的反射率因子观测数据得到低仰角完全遮挡区的数据。以杭州雷达为例,通过直接对比反射率因子值和对比填补前后雷达估算降水效果两种途径检验了填补效果,结果表明:填补与观测“真值”有很好的一致性,填补后降水估算效果优于填补前。本文提出一种填补低仰角完全遮挡区的方法,适用于均匀性降水系统。  相似文献   

10.
广东大冰雹风暴单体的多普勒天气雷达特征   总被引:3,自引:1,他引:2       下载免费PDF全文
选取2004—2012年广东省12个大冰雹风暴单体为样本,利用多普勒天气雷达资料,计算了最大反射率因子及其高度等多个雷达参数,分析了三体散射、旁瓣回波和环境温度层上回波特征以及大冰雹与非冰雹风暴单体间的反射率因子垂直廓线差异。结果表明:大冰雹风暴单体发展均非常旺盛,最大反射因子多超过65 dBZ,对应高度几乎都达到5 km。除受周围大范围雷达回波影响外,大冰雹风暴单体均观测到了三体散射或旁瓣回波特征,并具有一定的预报提前量;在0℃和-20℃层高度上的最大反射率因子均超过54 dBZ。大冰雹风暴单体与非冰雹风暴单体相比,低层回波迅速增加,强核心区垂直伸展更深厚,回波垂直递减率更小。  相似文献   

11.
北京夏季强雷暴降水回波结构与闪电特征个例分析   总被引:3,自引:1,他引:2  
利用北京市气象局短时临近交互预报系统(VIPS)资料,对2008年奥运会期间两次强降水天气过程雷达回波结构及闪电时空特征进行了细致分析。结果表明,局地性强雷暴降雨天气中,降雨率峰值与闪电活动峰值关系有超前也有略滞后的情况;关于云闪和地闪出现时间,云闪一般要超前地闪5~15min;强降水回波单体中,总闪电次数的70%以上出现在大于40dBZ的强回波区,当最大回波强度大于60dBZ时,云闪出现在强回波区的概率接近90%,说明回波强度越强,云闪出现在强回波区的概率越大;对云闪与雷达回波垂直结构分析发现,强降水单体中云闪发生的高度主要在6km以上,且云闪发生频数峰值出现在8~11km高度。  相似文献   

12.
An X-band phased-array meteorological radar (XPAR) was developed in China and will be installed in an airplane to observe precipitation systems for research purposes.In order to examine the observational capability of the XPAR and to test the operating mode and calibration before installation in the airplane,a mobile X-band Doppler radar (XDR) and XPAR were installed at the same site to observe convective precipitation events.Nearby S-band operational radar (SA) data were also collected to examine the reflectivity bias of XPAR.An algorithm for quantitative analysis of reflectivity and velocity differences and radar sensitivity of XPAR is presented.The reflectivity and velocity biases of XPAR are examined with SA and XDR.Reflectivity sensitivities,the horizontal and vertical structures of reflectivity by the three radars are compared and analyzed.The results indicated that while the XPRA with different operating modes can capture the main characteristic of 3D structures of precipitation,and the averaged reflectivity differences between XPAR and XDR,and XDR and SA,were 0.4 dB and 6.6 dB on 13 July and-4.5 dB and 5.1 dB on 2 August 2012,respectively.The minimum observed reflectivities at a range of 50 km for XPAR,XDR and SA were about 15.4 dBZ,13.5 dBZ and-3.5 dBZ,respectively.The bias of velocity between XPAR and XDR was negligible.This study provides a possible method for the quantitative comparison of the XPAR data,as well as the sensitivity of reflectivity,calibration,gain and bias introduced by pulse compression.  相似文献   

13.
三维雷达反射率资料用于层状云和对流云的识别研究   总被引:8,自引:0,他引:8  
肖艳姣  刘黎平 《大气科学》2007,31(4):645-654
基于层状云和对流云的雷达反射率分布的三维形态特征,提出了识别层状云和对流云的6个候选识别参数,它们分别是:组合反射率及其水平梯度,反射率因子等于35 dBZ的回波顶高及其水平梯度、垂直累积液态水含量及其密度。通过分析候选识别参数分布图和选取的反射率垂直剖面图,用人机交互方式挑选“真实的”层状云和对流云区,统计这6个候选识别参数分布的概率密度特征;最后确定把分布概率密度更集中的组合反射率水平梯度、35 dBZ的回波顶高的水平梯度和垂直累积液态水含量密度作为识别参数,利用模糊逻辑法进行层状云和对流云的识别。用三个个例进行了识别试验,并把用模糊逻辑法识别的结果与用改进的巅峰值法识别的结果进行了比较,结果表明:用模糊逻辑法和改进的巅峰值法都能合理地识别大部分层状云和对流云;由于改进的巅峰值法只考虑了反射率分布的二维形态特征,它容易把对流核的外围识别成层状云,把厚实的层状云识别成对流云,而考虑了反射率分布的三维形态特征的模糊逻辑法在这两个方面有很大改善。  相似文献   

14.
利用2017—2019年中国气象局大气探测试验基地Ka波段云雷达资料,结合地面自动气象站、激光云高仪资料,从强度、速度、线性退极化比以及晴空回波高度等方面,分析晴空回波垂直结构和变化特征。基于激光和微波对粒子半径和数密度散射的差异,区分云和晴空回波。结果表明:Ka波段云雷达探测到的晴空回波在边界层主要包含层状湍流回波和点状昆虫回波,且回波顶高在3000 m以内。晴空回波强度和高度具有明显的季节和日变化特征,冬季回波顶高较低,夏季回波顶高较高,与地面气温具有很好的相关性,每年的1,2,11,12月几乎没有晴空回波,而7月和8月回波顶平均高度最高。晴空回波反射率因子为-40~-15 dBZ,其中层状湍流回波反射率因子概率密度峰值处反射率因子为-35 dBZ,点状昆虫回波反射率因子概率密度峰值处反射率因子为-30 dBZ。晴空回波垂直移动速度为-1.5~+0.5 m·s-1,整体呈下沉运动。层状湍流回波线性退极化比较点状昆虫回波稍大,一般为-10~-5 dB,点状昆虫回波线性退极化比一般为-15~-8 dB。  相似文献   

15.
石家庄地区反射率因子垂直廓线特征分析   总被引:2,自引:1,他引:1  
利用自动雨量计数据整理成的10 min一次的雨量资料和s波段多普勒天气雷达体积扫描强度数据,对石家庄地区2004~2007年4次天气过程的实时雷达反射率因子垂直廓线的特征进行了分析.结果表明:层状云和混合性降水反射率因子垂直廓线有明显的零度层亮带;短时强降水过程的反射率因子垂直廓线不存在零度层亮带.冰雹过程中反射率凼子垂直廓线变化较大,降雹前反射率因子的极大值在中上层,降雹发生时反射率因子的极大值高度下降,降雹后反射率因子的极大值减弱.降雪过程的反射率因子垂直廓线零度层亮带不明显.在石家庄西部山区,由于零度层亮带的影响.对层状云和混合性降水回波强度和降水量估计偏高.对短时强降水过程的地面降水估计用反射率因子垂直廓线的方法比最低仰角法更加准确,在均匀性降水中可较好地改善地面雨量估算结果,有利于在山区和无雨量计的地区判断强对流天气的发生、发展和估算降水量的大小.  相似文献   

16.
新一代天气雷达由于受到地形限制产生波束遮挡导致波束能量衰减,从而造成雷达探测回波强度偏弱、雷达定量估测降水结果失真,因此对于雷达波束遮挡情况的统计和分析是一项重要的基础研究工作。利用SRTM (Shuttle Radar Topography Mission)数字高程数据对中国目前业务运行的212部新一代天气雷达波束遮挡情况进行模拟计算分析。计算结果包括雷达单站遮蔽角、VCP21模式0.5°、1.5°、2.4°、3.4°、4.3°仰角波束遮挡率、混合扫描及分区混合扫描波束遮挡率、雷达单站探测范围覆盖情况;计算并绘制全国天气雷达组网遮挡率拼图,统计全国天气雷达组网遮挡情况;利用2019年8月广东省11部天气雷达基数据对比验证单站及组网遮挡计算结果。结果表明雷达组网探测面积覆盖率超过70%,整体覆盖效果较好,遮挡计算结果与实际数据对比验证结果高度一致,对雷达数据订正、降水估测等产品具有正贡献。   相似文献   

17.
青藏高原那曲地区地闪与雷达参量关系   总被引:2,自引:2,他引:0       下载免费PDF全文
基于2014—2015年5—9月西藏那曲地区多普勒天气雷达数据,结合地闪观测数据,识别雷暴单体样本,统计分析了地闪位置附近的雷达回波分布特征,并研究了高原雷暴的雷达参量与地闪频次的相关关系。结果表明:那曲地区地闪发生位置附近的雷达最大反射率因子呈正态分布,峰值分布区间集中于34~41 dBZ。发生地闪位置附近的20 dBZ回波顶主要集中于11~15 km高度,30 dBZ回波顶高分布的峰值区间则为8.5~12 km。分析表明:表征局地雷暴对流发展强度的雷达参量与地闪频次之间一对一的相关关系较差,但相关性随地闪频次增加而增强。基于雷达参量分段统计得到的对应分段平均地闪频次与雷达参量之间表现出较强相关关系,体现了宏观上闪电活动强度与雷暴发展强度之间的正向关系。其中,基于原始数值进行区间划分的强回波(组合反射率因子不小于30 dBZ)面积与平均地闪频次的线性相关系数达0.75,基于对数数值区间划分的7~11 km累积可降冰含量的对数值和地闪频次的线性相关系数达0.95。文中对比了多个雷达参量和地闪频次线性拟合与幂函数拟合结果,整体上幂函数拟合略好于线性拟合。  相似文献   

18.
选取2021年6月28日山西省临汾市隰县一次高炮防雹作业过程,利用隰县X波段相控阵双偏振雷达数据分析作业前后强对流云变化的现象和机理。高炮防雹作业后冰雹云单体的宏观特征、动力和微物理的垂直结构均出现短时间明显变化。高炮防雹作业后1 min 55 dBZ顶高急剧下降约2 km至0℃层以下,水平反射率因子ZH的强回波垂直结构在0℃层断裂,径向速度散度显示单体前部和后部的辐合带减弱、消失,差分反射率ZDR在近地面增大,ZDR柱消失,差分相移率KDP在中低层增大,共极化相关系数ρ_(hv)从0℃层到近地面表现为0.94~0.96的柱状区,单体核心上部的过冷水小范围中心消失,0℃层以下由雨夹雹、霰、湿雪及各种雨的混合柱状分布转为低层大雨。这些短时间的明显变化现象支持爆炸防雹理论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号