首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于京津冀地区80个环境监测站PM_(2.5)浓度逐时监测资料和气象观测资料,以2016年12月16—21日和2017年1月1—7日雾和霾天气为例,分析PM_(2.5)浓度演变的气象条件。结果表明:气象条件在北京地区污染物浓度爆发性增长过程中具有重要作用。北京地区12月19—20日PM_(2.5)浓度出现爆发性增长,小时浓度在8 h内上升201μg·m~(-3),主要是边界层南风分量由地面增厚至700 m,700 m以上弱下沉抑制作用,结合地面辐合线维持所致;20—21日北京地区PM_(2.5)浓度维持高值且无日变化,是由于低空1.5 km出现弱回暖,逆温层显著增厚增强且无明显日变化,导致高浓度气溶胶无法有效扩散。综合来看,2016年12月16—21日污染物浓度爆发性增长的原因以外源性污染物输送为主;2017年1月3—4日污染物浓度爆发性增长原因与局地极端不利扩散条件及污染排放等其他因素有关。  相似文献   

2.
杨浩  许冠宇  白永清  刘琳 《气象》2018,44(11):1454-1463
基于湖北省PM_(2.5)大气成分逐日监测数据和高分辨率气象再分析资料,利用EOF方法对2015—2016年湖北省近两年冬季月份PM_(2.5)的污染分型并分析其天气特征,探讨PM_(2.5)质量浓度与大尺度环流因子相关性,并计算得到海平面气压指数。结果表明:冬季PM_(2.5)质量浓度湖北中部高于东西部,时间序列上存在较大波动,且近两年有明显下降趋势。湖北省冬季PM_(2.5) EOF前4个特征向量时间系数的方差贡献为86. 2%,能够反映PM_(2.5)空间场的主要特征。湖北省PM_(2.5)污染的天气型特征主要有两类:传输型污染和本地累积型,前者造成的PM_(2.5)污染浓度高于后者。传输型分别表现出全区污染、西部污染和中北部污染,全区污染时段湖北近地层以偏北气流为主,有利于将北方地区PM_(2.5)输送到湖北省;西部污染在于偏东气流将东部污染物以及沿海地区水汽输送到湖北省,同时受鄂西山脉的阻挡,污染物在湖北省西部地区聚积;中北部污染表现为东北和西北气流的汇集效应。本地累积型在静稳天气条件和地形共同作用下造成湖北东部污染和中南部污染。三种传输型污染物输送通道分别为北路输送、东路输送和东北路输送。东亚冬季风系统的高层东亚大槽和低层大陆冷高压减弱时,PM_(2.5)质量浓度增加。关键区的海平面气压相关指数与湖北省PM_(2.5)质量浓度和EOF第一模态时间系数相关性较好,对预报预测有一定指示意义。  相似文献   

3.
基于肇庆市2014—2018年PM_(2.5)质量浓度数据,使用HYSPLIT模式计算肇庆市干季的后向气流轨迹,并应用聚类分析法、潜在源贡献因子分析和质量浓度权重轨迹分析方法评估PM_(2.5)污染物的外来输送特征和潜在源区。结果表明:(1)2015—2018年肇庆市PM_(2.5)污染维持在较高水平,2017—2018年PM_(2.5)污染略有加重趋势;(2)污染较重的月份主要在1—4和10—12月,1月PM_(2.5)污染最严重,而6月PM_(2.5)质量浓度最低,5、7和8月无PM_(2.5)污染超标;(3)全年PM_(2.5)日平均质量浓度与风速相关性最高,干季与风速的相关系数有所提高;(4)干季影响肇庆的气流有5条,其中超过1/2源自东北和偏北方向的气流,来自东北方向的气流轨迹对PM_(2.5)污染贡献最高,其次来自偏西方向绕过珠三角北部进入肇庆的轨迹和广东省内短距离输送的轨迹;(5)肇庆市干季PM_(2.5)外来输送潜在源区主要位于肇庆辖区内和珠三角中南部城市以及粤东、粤东北部分地区,其中佛山、珠海、中山、东莞、惠州、广州南部对肇庆PM_(2.5)质量浓度贡献均超过60μg/m;。  相似文献   

4.
利用WRF-Chem模式,模拟了2014年1月3—4日深圳市发生的一次冷锋前大陆高压脊影响下的重度霾污染天气过程的发生、发展及消散各阶段的温度场、风场、大气边界层以及污染物的三维结构特征,分析了PM_(2.5)时空变化特征及与气象环境场的关系,结果表明:(1)模式对该次重霾污染天气过程PM_(2.5)模拟值与实测值的相关性较好,能够较好地再现该次霾过程的污染物质量浓度场特征,但PM_(2.5)质量浓度整体略偏大;(2)PM_(2.5)质量浓度模拟结果表明,高质量浓度位于深圳中西部地区,中西部污染较东部严重,PM_(2.5)污染时段主要出现在20:00—02:00,与霾严重时段相吻合;(3)通过分析此次污染过程温度场、风场、大气边界层以及污染物的三维结构,首要污染物PM_(2.5)质量浓度的分布与大陆高压脊影响下造成的持续大范围弱北风、强下沉气流、较低的大气边界层以及逆温层有密切关系。持续弱北风和强下沉气流不利于污染物的水平和垂直扩散,较低大气边界层促进污染物在边界层内快速积累;逆温层的存在进一步抑制了大气垂直扩散能力,使得霾天气加剧。  相似文献   

5.
文章以2013年为基准年对京津冀地区2014–15年的PM_(2.5)浓度变化趋势作了分析,并结合区域空气质量模式NAQPMS研究了气象条件和大气控制措施对PM_(2.5)浓度变化的贡献。研究结果表明:京津冀地区2014–15年PM_(2.5)年平均浓度较2013年有明显下降,其中:南部城市(邢台、邯郸、石家庄和沧州)PM_(2.5)浓度下降由气象条件和排放源控制共同作用,排放源控制起主导作用;天津市和廊坊市2014年PM_(2.5)浓度下降有赖于排放源控制,气象条件总体不利于污染物扩散,2015年则由气象条件和排放源控制共同作用,以排放源控制为主导作用;受制于不利气象条件影响,北京市PM_(2.5)浓度下降幅度较其它污染城市更小(2014和2015年分别为4%和9%)。在采暖季和非采暖季的对比中,2015年采暖季期间,整个区域重污染下的PM_(2.5)浓度下降幅度显著大于其它时期,这表明当前该区域大气污染治理正朝精细化的方向发展。  相似文献   

6.
利用1980—2013年石家庄地区12个气象台站能见度资料,结合相对湿度和PM_(2.5)、PM_(10)浓度数据,分析了石家庄地区能见度的时空分布特征,通过研究能见度与相对湿度和PM_(2.5)、PM_(10)浓度的关系,建立大气能见度的多元非线性预报模型。结果表明:(1)1980年以来石家庄地区年平均能见度以-1.0 km·(10 a)~(-1)的速率呈下降趋势,夏季下降趋势最明显,春季下降趋势最小;(2)1998年前后石家庄地区能见度变化较大,1999—2013年平均能见度较1980—1998年下降了15.3%,且空间变化也较明显,1998年之前分别在中北部和中南部存在2个高值中心,在市区和赵县存在2个低值中心,1998年之后则呈由东向西逐渐递减的分布形势;(3)能见度与相对湿度存在显著的指数函数关系,而与PM_(2.5)和PM_(10)浓度均呈幂函数关系。据此建立的能见度与相对湿度和PM_(2.5)、PM_(10)浓度的多元非线性拟合模型能较好地反映能见度的变化规律,并对能见度具有一定的预报能力。  相似文献   

7.
利用大气观测、探测及污染物探测资料、NCEP再分析资料和GDAS资料,对2013年10月26—29日一次持续性重霾天气过程中的气象要素和气溶胶演变特征进行分析。结果表明:本次持续性霾天气过程中,临沂地区PM_(2.5)污染严重,大气中PM_(2.5)的小时平均浓度工业区城区郊区,污染最严重时分别为365,344,284μg·m~(-3);较小的地面平均风速及PM_(2.5)浓度的稳定上升和较低的地面湿度为本次霾天气过程的形成和发展提供了有利条件;当临沂地区以南风或西南风为主时,市区霾天气加重,上游空气污染具有平流输送特征。贴地逆温层的形成,导致污染物在低空不断积累,造成污染浓度的持续升高。地方政府应加快产业结构调整,控制企业的污染物排放,才是治理雾霾的根本办法。  相似文献   

8.
利用2013—2014年上海地区6种空气污染物小时浓度和逐日空气质量分指数(IAQI)的监测资料,统计分析了上海地区空气污染的变化特征及其气象影响因子。结果表明:2014年上海地区空气质量优良率达77.0%,空气质量总体较2013年明显好转。2013—2014年上海地区AQI具有季节性特征,表现为冬季空气质量较差、秋季空气质量较好的特征,其中12月空气质量最差。由首要污染物分布可知,上海地区最主要的污染物为PM_(2.5),其中冬季PM_(2.5)污染出现最多;O_3则为夏季的主要污染物。由污染物浓度的周循环变化可知,上海地区PM_(2.5)、PM_(10)、NO_2和O_3浓度均存在周末低于工作日的"周末效应",但PM_(10)和NO_2浓度的"周末效应"更显著。由2014年上海地区霾日与PM_(2.5)浓度的变化可知,当PM_(2.5)浓度达到轻度及以上污染时,霾天气出现的概率大幅提高,但二者并非对应的关系。天气形势对PM_(2.5)污染影响较大,基于上海地区天气形势特点可以将PM_(2.5)污染的地面形势分为7种类型,其中高压中心型和高压楔型为PM_(2.5)污染的主要天气型。由于上海地区冬季冷空气活动频繁,西北风将上游地区颗粒物输送至本地,易造成较严重的污染天气;同时在冷高压的控制下,高压中心型和高压楔型天气频繁出现,导致颗粒物不易扩散,也易造成空气污染。夏季和秋季在副热带高压的控制下,水平和垂直扩散条件均较好,不易出现PM_(2.5)污染,但由于气温较高,光照条件较好,易出现O_3污染。  相似文献   

9.
长三角4个省会(直辖市)城市(上海、南京、合肥、杭州)中,合肥与南京的PM_(2.5)浓度演变有较高的一致性。应用聚类分析的方法对2013—2015年合肥非降水日(日降水量低于10 mm)100 m高度(代表近地层)和1000 m高度(代表边界层中上部)的72 h后向轨迹进行分类,结合合肥2013—2015年PM_(2.5)日均浓度资料,探讨近地层和边界层中上部输送轨迹与长三角西部PM_(2.5)浓度的关系。近地层和边界层中上部分别得到7组和6组不同的后向轨迹;不同输送轨迹对应的PM_(2.5)浓度、重污染(重度以上污染,PM_(2.5)日均浓度大于150μg/m3)天数、能见度、地面风速、相对湿度等都有显著不同,尤其是在近地层。100 m高度,平均长度最短、来向偏东的轨迹组对应的PM_(2.5)浓度均值最高(约是组内均值最低值的2倍)、重污染天数最多,且占比最高(30%),重污染日对应的气流在过去72 h下降高度均值仅28 m,明显低于其他PM_(2.5)污染等级日;来向偏西北、长度较短的轨迹组,PM_(2.5)浓度均值和重污染天数为第2高,这一类轨迹占比14%,气流到达本地前存在明显的下沉运动,反映了远距离输送加剧本地PM_(2.5)重污染的特征。这两类轨迹常对应PM_(2.5)日均浓度的上升。PM_(2.5)平均浓度最低的2个轨迹组分别是来自东北和西南的较长轨迹组,所占比例分别为6.4%和10.3%,这2类轨迹往往对应着PM_(2.5)日均浓度下降。1000 m高度的结果与100 m高度结果类似,但PM_(2.5)平均浓度的组间差异不及100 m高度,与2001—2005年PM10浓度与输送轨迹的关系不同。对3 a中84个重污染日两个高度的后向轨迹进行聚类,近地层和边界层中上部各得到7类和6类PM_(2.5)重污染日的天气形势。近地层92%的重污染日对应的海平面气压形势场上,从华北到华东属于均压区,气压梯度小,轨迹来向以偏东到偏北方向为主,垂直方向延伸高度在950 hPa以下。1000 m高度,77%的重污染日属于相对较短的轨迹组,对应的850 hPa高度场特征为从中国西北(新疆)到东南受高压控制,长三角或位于高压底部,或位于两高压之间的均压区。这对PM_(2.5)浓度预报有较好的指示意义。  相似文献   

10.
京津冀地区一次严重霾天气过程及其影响因素分析   总被引:1,自引:0,他引:1  
利用大气污染监测资料、常规气象观测资料及NCEP再分析资料,对2013年1月9—17日京津冀地区一次严重霾天气过程的特征及其与气象条件的关系进行分析。结果表明:此次霾天气过程京津冀地区6个城市(北京、天津、石家庄、保定、邯郸、唐山)的PM10、SO2和NO2污染物日平均浓度均较高,变化趋势基本相同,其中PM10日平均浓度的变化幅度最大,峰值出现在11—13日之间;石家庄、保定和邯郸市的污染最严重,PM10日平均浓度最大值分别为0.94 mg·m-3、0.95 mg·m-3和0.82 mg·m-3。SO2和NO2日平均浓度的变化幅度较小,但浓度值均较大,基本为0.10 mg·m-3以上。影响此次霾天气过程的大范围环流形势为纬向型,存在较强的逆温层,弱下沉运动使近地层大气处于静稳状态,不利于污染物扩散,而近地面较小的风速和低层相对湿度小于90%为霾的形成提供了有利条件。另外,后向轨迹分析表明,此次污染过程京津冀地区的气团主要来自新疆地区,路径主要是从西北气流转为西南气流,携带南方的湿空气和污染物向京津冀地区输送。  相似文献   

11.
天津重污染天气混合层厚度阈值及应用研究   总被引:2,自引:1,他引:1  
蔡子颖  张敏  韩素芹  李培彦  刘敬乐  姚青 《气象》2018,44(7):911-920
在对比云高仪反演数据和中尺度模式不同边界层方案模拟数据的基础上,构建天津地区混合层厚度数据集,并收集2009—2015年天津地区PM_(2.5)质量浓度和能见度资料,开展天津地区重污染天气混合层厚度阈值和相关规律研究。结果表明:2000—2015年期间天津地区混合层厚度呈现波动性逐年增加趋势,与255m气象塔观测近年天津地区逆温层底升高以及夜间边界层高度增加有较强的一致性。统计显示PM_(2.5)日均质量浓度和混合层厚度呈现指数关系,混合层厚度越低PM_(2.5)质量浓度越高,其阈值天津地区可以以200、400、600和800 m作为界限判断大气污染垂直扩散能力,当日均混合层厚度200m时,天津地区重污染天气出现概率52%,中度以上霾出现概率46%,需要特别关注。PM_(2.5)日均质量浓度和混合层厚度的负相关并不适用于所有过程,对于输送型过程由于大气污染的输送一般由高空影响地面,在污染的起始阶段,混合层厚度的增加,反而有利于上层大气污染物向下的传输,使得近地面PM_(2.5)质量浓度升高,在运用混合层厚度阈值指标时需要特别考虑。  相似文献   

12.
利用2011—2013年北京市朝阳区国家一般气象站PM_(2.5)、O_3、NO、NO_x、CO和SO_2的大气成分监测资料,分析了朝阳区6种主要大气污染物浓度不同时间尺度的变化特征.结果表明:2011—2013年朝阳区PM_(2.5)浓度呈明显增长的趋势,达到重度污染等级的日数增多;而O_3、NO、NO_x、CO和SO_2等气态污染物的年平均浓度变化较小,无明显增长的趋势,5种气态污染物浓度季节差异明显.除O_3浓度为夏季高、冬季低外,PM_(2.5)、NO、NO_x、CO和SO_2浓度均为夏季低、冬季高,可能与冬季采暖期排放的污染物增多有关.污染物浓度的日变化除O_3呈单峰型外,其他5种污染物浓度日变化均大致呈双峰型,可能与人类活动及天气条件有关.朝阳区与宝联、顺义、上甸子地区等代表"城市—近郊—远郊站点的污染物浓度日变化存在极大的差异性,其中PM_(2.5)浓度差异最明显,朝阳站PM_(2.5)浓度日变化呈双峰型,宝联站PM_(2.5)浓度日变化呈三峰型,昌平和上甸子站PM_(2.5)浓度为峰值出现在夜间的单峰型日变化.由此可见,不同地区因城市化发展程度不同,导致局地污染物浓度存在明显的差异.  相似文献   

13.
北京一次持续霾天气过程气象特征分析   总被引:6,自引:0,他引:6       下载免费PDF全文
2013年1月10-14日,北京平原地区出现了水平能见度在2 km以下、以PM2.5为首要污染物、空气质量持续5 d维持在重度以上污染水平的霾天气。综合分析此次霾天气过程的天气形势、北京地区常规和加密气象资料以及城郊连续观测的PM2.5浓度资料。结果表明:此霾过程期间,北京高空以平直纬向环流为主,受西北偏西气流控制,没有明显冷空气南下影响北京地区,地面多为不利于污染物扩散和稀释的弱气压场;大气层结稳定、风速小(日平均风速小于2 m·s-1)、相对湿度较大(日平均相对湿度在70 %以上)、逆温频率高强度大,边界层内污染物的水平和垂直扩散能力差;北京城区及南部的京津冀地区人类活动排放污染物强度大,在相对稳定和高湿的天气背景下,受地形和城市局地环流的影响,北京本地污染物累积和区域污染物输送以及PM2.5细粒子在高湿条件下的物理化学转化等过程共同作用造成此次北京城区及平原地区污染物浓度快速增长并持续偏高,高浓度PM2.5对大气消光有显著影响,造成低能见度和持续霾天气。  相似文献   

14.
采用江苏省淮安市地面5个监测站2013年1月1日—2015年12月31日PM_(10)、PM_(2.5)、SO_2、NO_2、CO、O_3逐日质量浓度资料及同期气象资料,统计分析了该地区空气污染季节变化特征及其与气象条件的关系;采用MODIS的光学厚度AOD(Aerosol Optical Depth)资料和火点资料分析了2013年12月发生在淮安的一次持续性大气污染事件。研究结果表明,淮安空气质量AQI指数(Air Quality Index)在春冬季较高,夏秋季较低,污染天气发生在春冬季的概率为23.6%,夏秋季的概率为13.3%。淮安地区的首要大气污染物为颗粒物污染,其中PM_(10)、PM_(2.5)占比分别达到25.2%、48.9%,PM_(10)中PM_(2.5)比率年平均为61.0%,臭氧是第2大污染物,占比为25.8%。表征大气柱气溶胶浓度的AOD的季节变化与地面颗粒物浓度截然不同,颗粒物浓度1月和12月出现极高值,而这两个月AOD月平均值却在一年中达到极低值,AOD最高值出现在7月。另外,AQI与降水、气温、风速、相对湿度呈负相关关系,但相关程度较弱。  相似文献   

15.
利用2016—2018年重庆市荣昌区冬季PM_(2.5)质量浓度监测数据,结合地面气象观测资料、L波段探空雷达资料、ERA-Interim再分析资料及全球资料同化系统(GDAS)数据,并与HYSPILT模型相结合,分析荣昌区冬季PM_(2.5)污染的气象影响因素及区域传输特征。结果表明:(1)2016—2018年荣昌区冬季PM_(2.5)污染超标频率高达56.3%,但空气质量有好转趋势。PM_(2.5)质量浓度日变化有2个峰值,分别出现在12:00和23:00;(2)荣昌区冬季PM_(2.5)污染主要受降水、逆温层、低层风速等气象条件影响。当925 hPa以下和700~600 hPa存在明显逆温层结,500 hPa呈西北气流或平直西风气流,850 hPa以下为偏东北弱风时不利于PM_(2.5)扩散,易发生重度污染天气。日降水量R>2.0 mm时,降水对PM_(2.5)具有明显的正清除,且清除能力随着降水等级的增大而增大,R<1.0 mm时,降水对PM_(2.5)表现为负清除,微量降水期间不利的扩散条件加之颗粒物吸湿增长作用反而导致PM_(2.5)质量浓度增加,空气质量恶化;(3)荣昌区冬季PM_(2.5)污染主要受距离荣昌区西北和东北方向约300 km范围内的成渝城市群城市间污染物区域输送影响,外域颗粒污染物的传输是荣昌区冬季PM_(2.5)污染的重要原因。  相似文献   

16.
利用CHAP PM_(2.5)、MODIS MCD19A2、ERA5再分析等数据集,以及SNPP/VIIRS卫星监测火点等数据,从污染物后向轨迹、环流形势、高低空动力结构配置等方面入手,采用最小二乘法等多种分析方法对滇西南地区年均和四季PM_(2.5)浓度时空分布及季节性突增的成因进行探究。结果表明:研究区PM_(2.5)浓度和气溶胶光学厚度空间分布均呈北低南高,东弱西强;PM_(2.5)浓度年内7月最低、3月最高。2—4月稳定的污染源输送造成研究区春季PM_(2.5)浓度值高且波动较其余季节小,但变化百分率空间分布差异更明显;近20年PM_(2.5)浓度变化百分率减少程度以-30%~—20%居多,夏、秋、冬季变化百分率则以小于-30%为主。研究区紧邻的缅甸东部和老挝北部一年中超过90%的火点发生在2—4月,在偏西气流引导下,途经高火点区的偏西向(西南向)污染物短距离输送,在上空中低层辐散的动力作用下造成下沉,致使研究区PM_(2.5)浓度季节性升高。较大范围利于污染物扩散的气象条件和更多降水的清洗,可减少境外大气污染物输送对滇西南地区PM_(2.5)污染的贡献。关键区境外火点数变化对PM_(2.5)浓度及气溶胶光学厚度的影响表现为显著正相关,且其对PM_(2.5)的影响滞后于火点数变化2天左右,二者相关程度由南向北逐渐减弱。  相似文献   

17.
利用2014—2016年宁波市镇海地区逐时气象观测资料和大气成分监测资料,对宁波地区霾天气的变化特征进行统计分析。结果表明:2014—2016年宁波地区霾天气小时出现频率为28.8%,湿霾出现频率为61.0%。近3 a宁波地区霾天气小时出现频率呈下降趋势,秋冬季(11月至翌年1月)霾天气小时出现频率较高,夏季(6—8月)霾天气小时出现频率较低;从日变化来看,霾天气小时出现频率峰值集中出现在上午09时和夜间20—23时。宁波地区重度霾的PM_(2.5)、PM_(10)颗粒物浓度为轻微霾的2.13倍和1.92倍,干霾颗粒物浓度高于湿霾,宁波地区霾天气的颗粒物组成较稳定,PM_(2.5)/PM_(10)比重为0.7左右。宁波地区颗粒物浓度与风速和降水量的相关性较好,春季和夏季风速与PM_(2.5)浓度的相关性较高,秋季和冬季风速与PM_(10)浓度的相关性较高;降水与PM_(10)浓度的相关性高于PM_(2.5)浓度。静稳天气时地面风速小易造成细颗粒物浓度的积累增长,冬季西北偏北风和东北风是影响宁波地区PM_(2.5)浓度变化的重要输送路径,当风向为西北风时,冬季和春季PM_(10)浓度增加明显。  相似文献   

18.
利用浙江宁波7个县(市)区的能见度、雾、霾、风速、相对湿度等气象资料和细颗粒物PM_(2.5)浓度数据,运用统计分析、后向轨迹模拟及聚类分析等方法研究了宁波地区能见度的时空分布特征及其影响因素。结果表明:1980—2013年,宁波地区能见度总体呈由西北到东南逐渐转好的空间分布特征,且中南部呈逐年下降态势,而北部则呈上升趋势,这与风速和相对湿度减少有关,但不同区域其主要影响因子存在差异。能见度和PM_(2.5)浓度均有明显的季节和日变化特征,且二者呈明显反位相,相关系数为-0.532,其中冬季PM_(2.5)浓度最高,能见度最低,夏季反之;13:00—17:00为PM_(2.5)浓度谷值、能见度峰值,01:00—08:00为PM_(2.5)浓度峰值、能见度谷值。气团输送轨迹分析表明,宁波地区共有来自5个方位的6类轨迹气团,其中西北方向的轨迹4对该区PM_(2.5)浓度影响最大,偏东方向的轨迹6对PM_(2.5)浓度影响最小,能见度最好,而对能见度影响最大的是来自西北方向的轨迹2和偏西方向的轨迹3。  相似文献   

19.
利用2014—2016年的中国气象局地面观测资料和中国环境保护部公布的6种大气污染物浓度数据,对降雨天气前后的大气污染物浓度变化进行分析。结果表明:在京津冀、长三角和珠三角区域,降雨天气后6种大气污染物浓度降低的时次约占43%—60%,其中PM_(10)浓度降低最为明显,PM_(2.5)、O_3、SO_2和NO_2次之,最不明显的是CO。一般而言,降水天气前大气污染物浓度越高,降雨后浓度降低的时次所占比例越大,浓度降低值也越大,但当降雨天气前大气污染物浓度较低时,降雨天气后浓度升高的个例也很多,约占21%—61%。京津冀地区由于平均大气污染物浓度较高,降水天气对大气污染浓度的降低效果比长三角和珠三角地区更明显。对于大多数降雨时次,小时降水量越大,大气污染物浓度降低的时次所占比例越大,但浓度降低值反而越小。例外的是,小时雨强大于10 mm的降雨后,京津冀地区的O_3和SO_2浓度以及长三角地区的PM_(10)、PM_(2.5)和SO_2浓度降低程度不如小时雨强小于10 mm时;而珠三角地区的NO_2和O_3在降雨后的浓度变化对小时雨强不敏感。在京津冀地区,降雨天气对较大浓度的O_3清除作用非常明显。在长三角和珠三角地区,降雨前CO浓度较低时,降雨后浓度升高时次比浓度减小的多;另外,降雨天气对SO_2的清除作用非常明显。  相似文献   

20.
2014年深圳市东北部吓陂监测站PM_(2.5)的年均质量浓度为47.0μg/m~3,在全市处于较高污染状态,并呈现出冬季秋季春季夏季的季节变化特征。气象要素的分析表明,2014年吓陂监测站夏季时降水较多、湿度最大、风速最大、气温最高、边界层高度最高,最有利于污染物的扩散和清除;冬季时降水最少、湿度最小、风速最小、气温最低、边界层高度最低,最不利于污染物的扩散和清除。后向轨迹聚类分析表明,吓陂监测站的后向轨迹主要分为5类,其中来自北方内陆地区的气团污染最重,来自南海地区的气团污染最轻。进一步利用潜在源贡献因子进行源区识别分析,结果表明:2014年吓陂监测站的PM_(2.5)主要来源于本地源的排放及周边地区(尤其是广东东北部地区)的短距离输送,此外江西等内陆地区的长距离传输在一定程度上也可能导致吓陂监测站PM_(2.5)质量浓度的升高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号