首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   6篇
  国内免费   2篇
大气科学   14篇
  2023年   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   3篇
  2015年   2篇
  2013年   1篇
  2012年   1篇
排序方式: 共有14条查询结果,搜索用时 187 毫秒
1.
利用天气观测资料和NCEP再分析资料对2004-2013年5-9月影响山东的切变线天气特征和环流形势进行了分析。将影响山东的切变线按热力性质分为冷切变线和暖切变线,10a间影响山东的切变线共发生59次,其中暖切变线出现43次,占切变线总发生次数73%;冷切变线出现16次,占切变线总发生次数27%。切变线发生频数7月最多,6月次之,分别占切变线总数的35.6%和23.7%,9月最少,约占0.05%。影响山东典型切变线的发生与副高关系密切,冷切变线多出现在西风槽东移受阻,在对流层低层逐渐形成,暖切变线则出现在西风带小高压与副高合并,副高北抬时形成。针对2次典型冷暖切变线暴雨天气过程对比分析其暴雨落区、雷达回波特征和动力机制等,结果发现:暖切变线降水的强度、暴雨范围和持续时间明显大于冷切变线降水。暖切变线暴雨的GPS可降水量在强降雨出现前8h快速上升,可降水量峰值对应地面降雨大值,对地面降雨变化反映不敏感,物理量呈垂直分布,强回波单体基本位于暖切变线雨带的中间。冷切变线暴雨的GPS可降水量短时间内增幅大,地面强降雨在峰值出现1h后发生,对地面降雨变化反映较敏感,物理量从低层到高层向北倾斜且上升运动区较深厚,回波单体位于切变线南侧。  相似文献   
2.
基于多普勒天气雷达资料,结合中尺度数值模拟结果,对发生在黄淮流域的2次EF2级非超级单体龙卷风暴结构及低层流场结构特征进行了诊断分析。结果表明,2次龙卷过程都发生在副高边缘,低层存在较大的垂直风切变和强烈的水汽辐合;2次龙卷都有多次及地的特征,其母体风暴生命期都在2h以上;低层速度产品上有显著的小尺度涡旋特征,涡旋中心相邻像素之间的速度差>20m?s-1,对EF2级龙卷预警具有6~20min的时间提前量;风暴后部中下层相对风暴的速度切变显著加强并迅速下传是诱发20100717龙卷涡旋的主因;风暴内部强烈上升气流导致低层涡旋发展,诱发20120818龙卷涡旋的产生。中尺度WRF模式模拟结果能够较好地再现风暴底部气流结构特征。  相似文献   
3.
利用常规气象观测资料、NCEP 1°×1°逐6h的再分析资料、GPS可降雨资料和地闪定位资料,对2013年7月4—5日山东中南部出现的暴雨到大暴雨天气过程的不同阶段特征和成因进行了分析,结果表明:本次暴雨过程是冷暖切变线所引发,暴雨的水汽源于南海;低空急流的强弱和水汽通量的大小呈正相关;暖切变线暴雨的雨强、影响范围和持续时间明显大于冷切变线暴雨;冷、暖切变线GPS可降雨量表现不同,前者短时间内增幅大,地面强降雨在峰值出现1h后发生,对地面降雨变化反映较敏感,后者强降雨出现前8h可降雨量快速上升,可降雨量峰值对应地面降雨大值,对地面降雨变化反映不敏感;冷切变线对流性更强,地闪频次为暖切变线降雨的2倍,正地闪频次为暖切变线降雨的1/2,负地闪频次为暖切变线降雨的2倍;降雨云团正、负地闪活跃程度呈反相位关系,正、负地闪的变化能很好地反映强降雨的变化;冷、暖切变线动力结构不同,前者物理量场从低层到高层向北倾斜,后者则为垂直分布;冷切变线上升运动区较暖切变线深厚。  相似文献   
4.
一次鲁南大暴雨过程成因诊断分析   总被引:1,自引:0,他引:1  
利用常规资料和NCEP再分析资料,对2011年8月26日鲁南地区的大暴雨天气进行了分析。结果表明:副热带高压与热带气旋、西风槽及700hPa以下台风远距离倒槽是此次过程的主要影响系统。东南气流输送了充足的水汽和不稳定能量,建立了不稳定层结,冷空气触发不稳定层结,引起不稳定能量的释放,导致大暴雨产生;暴雨区位于θse高能舌与低能舌交汇的能量锋区上,并与水汽通量密集带处相对应;高层MPV1正的大值区对应着低层负值中心的垂直迭加的配置是暴雨发生发展的有利形势。  相似文献   
5.
一次低槽冷锋暴雨数值模拟和诊断分析   总被引:1,自引:0,他引:1       下载免费PDF全文
利用常规气象观测资料、GPS可降水资料、地闪定位资料以及NCEP 1°×1°再分析格点资料,对2011年7月2—3日山东中北部地区一次低槽冷锋暴雨天气过程进行分析,进一步采用中尺度模式WRF 对此次降水过程开展了高分辨率数值模拟,并对模拟资料进行了诊断分析。得到如下结果:(1)此次降水过程具有强降水持续时间短,短时降水强度大、局地性强等特点,在空间和时间上都具有明显的中尺度特征。(2)整个强降水期间,负地闪占绝对优势,负地闪出现在强对流发展的整个阶段,正地闪出现在强对流减弱消散阶段。云顶温度越低,负地闪越密集,当系统减弱,正地闪迅速增加。当云顶亮温(TBB)下降到最低值,负地闪频数达到极大值时,降雨强度也达到最大。GPS可降水量在暴雨监测和预报中具有重要作用。(3)利用模拟结果的分析显示,散度、涡度和垂直速度的分布与对流系统的发生、发展较一致。  相似文献   
6.
利用大气观测、探测及污染物探测资料、NCEP再分析资料和GDAS资料,对2013年10月26—29日一次持续性重霾天气过程中的气象要素和气溶胶演变特征进行分析。结果表明:本次持续性霾天气过程中,临沂地区PM_(2.5)污染严重,大气中PM_(2.5)的小时平均浓度工业区城区郊区,污染最严重时分别为365,344,284μg·m~(-3);较小的地面平均风速及PM_(2.5)浓度的稳定上升和较低的地面湿度为本次霾天气过程的形成和发展提供了有利条件;当临沂地区以南风或西南风为主时,市区霾天气加重,上游空气污染具有平流输送特征。贴地逆温层的形成,导致污染物在低空不断积累,造成污染浓度的持续升高。地方政府应加快产业结构调整,控制企业的污染物排放,才是治理雾霾的根本办法。  相似文献   
7.
利用常规观测资料、济南多普勒雷达资料、FY-2G资料和加密自动站等资料分析了2016年6月14日一次在华北冷涡背景下发生的超级单体风暴生成及分裂过程,对超级单体分裂过程的雷达回波特征和环境条件进行了详细的分析。结果表明,超级单体风暴发生在地面中尺度辐合线附近,中层短波槽前,高空有中空急流的环境下,触发的对流云团向偏东方向移动中,在不稳定层结和较强的垂直风切变作用下,对流风暴发生分裂且右移性对流风暴发展加强。风暴分裂后环境风左侧的风暴单体并没有受到明显抑制,中尺度辐合线附近的露点锋生抵消了反气旋性风暴的受抑制程度,使反气旋性风暴能有所加强并持续更长的时间。环境风右侧的风暴单体发展加强,且持续时间长达2 h。风暴分裂是在单体发展的初期开始,分裂先从中高层开始,然后向下延伸,分裂后相对于环境风方向,左侧单体为反气旋性左移风暴,右侧为气旋性右移风暴。气旋性右移风暴强烈发展为具有低层的入流缺口、中高层的弱回波区及风暴顶的强辐散,与经典超级单体风暴回波特征类似。分裂后右移风暴伴有深厚持久的中气旋,其起源于中层4~5 km,然后向上和向下发展,最强旋转出现在高层,旋转速度达29 m/s,这与典型超级单体内中气旋都是中层旋转最强有所不同。  相似文献   
8.
山东南部一次大暴雨过程的中尺度特征及成因分析   总被引:1,自引:0,他引:1  
应用常规气象观测及地面加密自动站观测资料、FY-2E红外云图、NCEP再分析资料和多普勒雷达资料,对2012年7月9日山东南部一次大暴雨过程进行诊断分析。结果表明:这次鲁南大暴雨发生在"2高对峙"的环流形势下;高、低空急流的位置和强弱影响大暴雨的落区和降水强度大小;地面β中尺度气旋的发生发展是造成本次大暴雨的最直接原因;贝加尔湖以西高压系统加强引导其北部的干冷空气南下进入鲁南地区是地面辐合加强生成初始β中尺度气旋的触发机制;冷暖空气在暴雨区汇合并触发不稳定能量释放是造成本次大暴雨的根本原因;多普勒雷达VWP产品可以很好地捕捉冷暖空气的活动情况。  相似文献   
9.
应用常规气象资料、FY-2E红外TBB资料、地面加密自动站观测资料和NCEP再分析资料,对2011年7月3日山东中部地区出现的大暴雨过程进行了分析。结果表明:该过程在有利的天气形势下发生,其降水具有中尺度强对流系统特征;强降水落区位于地面自动站风场辐合中心偏冷锋前位置;一个MαCS和一个MβCS是该暴雨过程的直接影响系统;强降水出现在中尺度对流系统(MCS)发展强盛到成熟阶段,降水区最初位于TBB梯度最大处,再沿TBB梯度最大处向下风方移动,并始终处于强冷云顶区后侧;自高纬度向暴雨区低空锲入的东北气流对降水过程起触发作用;强降水区位于低层切变线南侧与水汽通量舌区左侧等值线密集带上,并与假相当位温陡立面密集区位置对应。  相似文献   
10.
1961-2012年山东汛期暴雨气候特征分析   总被引:1,自引:0,他引:1  
利用1961-2012年山东省35个气象站汛期逐日降水资料,采用常规统计法分析了山东省汛期暴雨日数和暴雨强度的时空变化特征,运用均生函数建立山东省汛期暴雨日数和暴雨强度的预测模型,并进行试报和预报检验。结果表明:1961-2012年山东省汛期暴雨日数和暴雨强度均呈减小趋势,但减小趋势不明显,未通过0.05信度的显著性检验。1961-2012年山东省汛期平均暴雨日数为2.2 d,存在3.4 a与准8.0 a周期振荡|暴雨平均强度为67.8 mm·d-1,有2.3 a、3.3 a、6.9 a与准12.0 a的变化周期。1961-2012年山东省汛期暴雨日数和暴雨强度未出现气候突变|山东省暴雨日数和暴雨强度自20世纪70年代中末期至80年代末期出现年代际减小的变化。山东省汛期多年暴雨平均日数和暴雨强度呈自西北向东南逐渐增加的分布趋势。鲁南、山东半岛南部和东部地区是山东省汛期暴雨(连续性暴雨)的多发地带及暴雨强度大值区域。对2003-2012年山东汛期暴雨预测表明,均生函数预测模型可较好拟合山东省汛期暴雨日数和暴雨强度的变化趋势,对山东汛期暴雨有较好的预测能力。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号