首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Considering climatic uncertainties in management planning is a prerequisite for sustainable forest management (SFM). The aim of the study was to evaluate climate change vulnerability of the current SFM strategy for commercial forests managed by the Austrian Federal Forests. To that end vulnerability indicators were defined in a stakeholder process (selected indicators were productivity, timber and carbon stocks, biodiversity, disturbances, a tree species’ position in fundamental niche space, silvicultural flexibility and cost intensity) and their performance under climate change scenarios assessed with an ecosystem model. Multi criteria analysis techniques were employed in a partial aggregation of indicators to locate forest stands on a vulnerability surface. Results revealed high vulnerability particularly in the second half of the twenty-first century, where 39.6% of the 164.550 ha study area were assessed highly vulnerable to climate change, indicating a strong decline in the functions and services represented by the indicator system. Water-limited sites on calcareous bedrock were most negatively affected whereas assessment units at higher altitudes responded predominately positive to climate warming. The presented approach, transparently integrating multiple management objectives and allowing a quantitative comparison of vulnerabilities between sites and management strategies, contributes to the development of operational and efficient climate change adaptation measures in forest management.  相似文献   

2.
A physiological growth and yield model was applied for assessing the effects of forest management and climate change on the carbon (C) stocks in a forest management unit located in Finland. The aim was to outline an appropriate management strategy with regard to C stock in the ecosystem (C in trees and C in soil) and C in harvested timber. Simulations covered 100 years using three climate scenarios (current climate, ECHAM4 and HadCM2), five thinning regimes (based on current forest management recommendations for Finland) and one unthinned. Simulations were undertaken with ground true stand inventory data (1451 hectares) representing Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and silver birch (Betula pendula) stands. Regardless of the climate scenario, it was found that shifting from current practices to thinning regimes that allowed higher stocking of trees resulted in an increase of up to 11% in C in the forest ecosystem. It also increased the C in the timber yield by up to 14%. Compared to current climatic conditions, the mean increase over the thinning regimes in the total C stock in the forest ecosystem due to the climate change was a maximum of 1%; but the mean increase in total C in timber yield over thinning regimes was a maximum of 12%.  相似文献   

3.
GLOBAL CLIMATE CHANGE ADAPTATION: EXAMPLES FROM RUSSIAN BOREAL FORESTS   总被引:2,自引:0,他引:2  
The Russian Federation contains approximately 20% of the world's timber resources and more than half of all boreal forests. These forests play a prominent role in environmental protection and economic development at global, national, and local levels, as well as, provide commodities for indigenous people and habitat for a variety of plant and animal species. The response and feedbacks of Russian boreal forests to projected global climate change are expected to be profound. Large shifts in the distribution (up to 19% area reduction) and productivity of boreal forests are implied by scenarios of General Circulation Models (GCMs). Uncertainty regarding the potential distribution and productivity of future boreal forests complicates the development of adaptation strategies for forest establishment, management, harvesting and wood processing. Although a low potential exists for rapid natural adaptation of long-lived, complex boreal forests, recent analyses suggest Russian forest management and utilization strategies should be field tested to assess their potential to assist boreal forests in adaptation to a changing global environment. Current understanding of the vulnerability of Russian forest resources to projected climate change is discussed and examples of possible adaptation measures for Russian forests are presented, including: (1) artificial forestation techniques that can be applied with the advent of failed natural regeneration and to facilitate forest migration northward; (2) silvicultural measures that can influence the species mix to maintain productivity under future climates; (3) identifying forests at risk and developing special management adaptation measures for them; (4) alternative processing and uses of wood and non-wood products from future forests; and (5) potential future infrastructure and transport systems that can be employed as boreal forests shift northward into melting permafrost zones. Current infrastructure and technology can be employed to help Russian boreal forests adapt to projected global environmental change, however many current forest management practices may have to be modified. Application of this technical knowledge can help policymakers identify priorities for climate change adaptation.  相似文献   

4.
Climate change related impacts, such as increased frequency and intensity of wildfires, higher temperatures, extreme changes to ecosystem processes, forest conversion and habitat degradation are threatening tribal access to valued resources. Climate change is and will affect the quantity and quality of resources tribes depend upon to perpetuate their cultures and livelihoods. Climate impacts on forests are expected to directly affect culturally important fungi, plant and animal species, in turn affecting tribal sovereignty, culture, and economy. This article examines the climate impacts on forests and the resulting effects on tribal cultures and resources. To understand potential adaptive strategies to climate change, the article also explores traditional ecological knowledge and historical tribal adaptive approaches in resource management, and contemporary examples of research and tribal practices related to forestry, invasive species, traditional use of fire and tribal-federal coordination on resource management projects. The article concludes by summarizing tribal adaptive strategies to climate change and considerations for strengthening the federal-tribal relationship to address climate change impacts to forests and tribal valued resources.  相似文献   

5.
Terrestrial ecosystems provide a range of important services to humans, including global and regional climate regulation. These services arise from natural ecosystem functioning as governed by drivers such as climate, atmospheric carbon dioxide mixing ratio, and land-use change. From the perspective of carbon sequestration, numerous studies have assessed trends and projections of the past and future terrestrial carbon cycle, but links to the ecosystem service concept have been hindered by the lack of appropriate quantitative service metrics. The recently introduced concept of the Greenhouse Gas Value (GHGV) accounts for the land-atmosphere exchanges of multiple greenhouse gases by taking into consideration the associated ecosystem pool sizes, annual exchange fluxes and probable effects of natural disturbance in a time-sensitive manner.We use here GHGV as an indicator for the carbon sequestration aspects of the climate regulation ecosystem service, and quantify it at global scale using the LPJ-GUESS dynamic global vegetation model. The response of ecosystem dynamics and ecosystem state variables to trends in climate, atmospheric carbon dioxide levels and land use simulated by LPJ-GUESS are used to calculate the contribution of carbon dioxide to GHGV. We evaluate global variations in GHGV over historical periods and for future scenarios (1850–2100) on a biome basis following a high and a low emission scenario.GHGV is found to vary substantially depending on the biogeochemical processes represented in LPJ-GUESS (e.g. carbon–nitrogen coupling, representation of land use). The consideration of disturbance events that occur as part of an ecosystem's natural dynamics is crucial for realistic GHGV assessments; their omission results in unrealistically high GHGV. By considering the biome-specific response to current climate and land use, and their projections for the future, we highlight the importance of all forest biomes for maintaining and increasing biogeochemical carbon sequestration. Under future climate and carbon dioxide levels following a high emission scenario GHGV values are projected to increase, especially so in tropical forests, but land-use change (e.g. deforestation) opposes this trend. The GHGV of ecosystems, especially when assessed over large areas, is an appropriate metric to assess the contribution of different greenhouse gases to climate and forms a basis for the monetary valuation of the climate regulation service ecosystems provide.  相似文献   

6.
Climate Risks and Their Impact on Agriculture and Forests in Switzerland   总被引:4,自引:1,他引:4  
There is growing evidence that, as a result of global climate change, some of the most severe weather events could become more frequent in Europe over the next 50 to 100 years. The paper aims to (i) describe observed trends and scenarios for summer heat waves, windstorms and heavy precipitation, based on results from simulations with global circulation models, regional climate models, and other downscaling procedures, and (ii) discuss potential impacts on agricultural systems and forests in Switzerland. Trends and scenarios project more frequent heavy precipitation during winter corresponding, for example, to a three-fold increase in the exceedance of today's 15-year extreme values by the end of the 21st century. This increases the risk of large-scale flooding and loss of topsoil due to erosion. In contrast, constraints in agricultural practice due to waterlogged soils may become less in a warmer climate. In summer, the most remarkable trend is a decrease in the frequency of wet days, and shorter return times of heat waves and droughts. This increases the risk of losses of crop yield and forage quality. In forests, the more frequent occurrence of dry years may accelerate the replacement of sensitive tree species and reduce carbon stocks, and the projected slight increase in the frequency of extreme storms by the end of the century could increase the risk of windthrow. Some possible measures to maintain goods and services of agricultural and forest ecosystems are mentioned, but it is suggested that more frequent extremes may have more severe consequences than progressive changes in means. In order to effectively decrease the risk for social and economic impacts, long-term adaptive strategies in agriculture and silviculture, investments for prevention, and new insurance concepts seem necessary.  相似文献   

7.
India has 64 Mha under forests, of which 72% are tropical moist deciduous, dry deciduous, and wet evergreen forest. Projected changes in temperature, rainfall, and soil moisture are considered at regional level for India under two scenarios, the first involving greenhouse gas forcing, and the second, sulphate aerosols. Under the former model, a general increase in temperature and rainfall in all regions is indicated. This could potentially result in increased productivity, and shift forest type boundaries along attitudinal and rainfall gradients, with species migrating from lower to higher elevations and the drier forest types being transformed to moister types. The aerosol model, however, indicates a more modest increase in temperature and a decrease in precipitation in central and northern India, which would considerably stress the forests in these regions.Although India seems to have stabilized the area under forest since 1980, anthropogenic stresses such as livestock pressure, biomass demand for fuelwood and timber, and the fragmented nature of forests will all affect forest response to changing climate. Thus, forest area is unlikely to expand even if climatically suitable, and will probably decrease in parts of northeast India due to extensive shifting cultivation and deforestation. A number of general adaptation measures to climate change are listed.  相似文献   

8.
Anthropogenic climate change poses a significant threat to Texas’ coastal habitats and in the Galveston Bay region, there is just under 1200 square miles of freshwater marsh and undeveloped dry upland. These habitats provide residents with a variety of key ecosystem services but are threatened by global climate change. Effective management of these resources requires multidisciplinary knowledge, combining an understanding of the potential biophysical habitat alterations associated with sea level rise with the measurement of residents’ value for coastal resources. In this study, we utilize a discrete choice experiment to investigate individuals’ preferences for future conditions of Texas habitats within the Galveston Bay region. Utilizing modeled output for coverage of freshwater marsh and undeveloped dry upland in the year 2050, respondents are asked to make trade-offs between coastal conditions with no further management actions and outcomes associated with specific management interventions. From this framework, we estimate Galveston Bay regional residents’ value for freshwater marshes and undeveloped uplands. Our results indicate that individuals are willing to conserve habitat under threat from sea level rise, but that they are likely unaware of the dynamic nature of that change. As a result, residents may place less emphasis on the role of the habitat migration in response to sea level rise.  相似文献   

9.
Human activities have altered the distribution and quality of terrestrial ecosystems. Future demands for goods and services from terrestrial ecosystems will occur in a world experiencing human-induced climate change. In this study, we characterize the range in response of unmanaged ecosystems in the conterminous U.S. to 12 climate change scenarios. We obtained this response by simulating the climatically induced shifts in net primary productivity and geographical distribution of major biomes in the conterminous U.S. with the BIOME 3 model. BIOME 3 captured well the potential distribution of major biomes across the U.S. under baseline (current) climate. BIOME 3 also reproduced the general trends of observed net primary production (NPP) acceptably. The NPP projections were reasonable for forests, but not for grasslands where the simulated values were always greater than those observed. Changes in NPP would be most severe under the BMRC climate change scenario in which severe changes in regional temperatures are projected. Under the UIUC and UIUC + Sulfate scenarios, NPP generally increases, especially in the West where increases in precipitation are projected to be greatest. A CO2-fertilization effect either amplified increases or alleviated losses in modeled NPP. Changes in NPP were also associated with changes in the geographic distribution of major biomes. Temperate/boreal mixed forests would cover less land in the U.S. under most of the climate change scenarios examined. Conversely, the temperate conifer and temperate deciduous forests would increase in areal extent under the UIUC and UIUC + Sulfate scenarios. The Arid Shrubland/Steppe would spread significantly across the southwest U.S. under the BMRC scenario. A map overlay of the simulated regions that would lose or gain capacity to produce corn and wheat on top of the projected distribution of natural ecosystems under the BMRC and UIUC scenarios (Global mean temperature increase of +2.5 °C, no CO2 effect) helped identify areas where natural and managed ecosystems could contract or expand. The methods and models employed here are useful in identifying; (a) the range in response of unmanaged ecosystem in the U.S. to climate change and (b) the areas of the country where, for a particular scenario of climate change, land cover changes would be most likely.  相似文献   

10.
An issue that arises when considering the potential damages of climate change is whether it is possible to slow or stop human caused climate change. One suggestion to reduce the threat of global warming is to change our management of forests to offset carbon emissions. This study examines the impacts of such a policy on environmental amenities in existing Douglas-fir forests. In this analysis Douglas-fir forest management is modelled in a Faustmann framework, where the forest produces three goods: timber, carbon sequestration and amenities. Using this framework, the level of amenities under profit-maximizing and carbon-sequestration management regimes are compared. The change in the level of seven specific amenities is modelled. These amenities include trout, wildlife diversity, visual aesthetics, soil stability, deer populations, elk populations, and water yield. The study finds that the effect of a carbon sequestration policy will depend on the discount rate chosen. In most situations externalities vary less than plus or minus ten percent. However, those externalities that exhibit discontinuities in their relationship to forest age may vary a hundred percent or more depending on the discount rate used.  相似文献   

11.
The extent to which nations and regions can actively shape the future or must passively respond to global forces is a topic of relevance to current discourses on climate change. In Australia, climate change has been identified as the greatest threat to the ecological resilience of the Great Barrier Reef, but is exacerbated by regional and local pressures. We undertook a scenario analysis to explore how two key uncertainties may influence these threats and their impact on the Great Barrier Reef and adjacent catchments in 2100: whether (1) global development and (2) Australian development is defined and pursued primarily in terms of economic growth or broader concepts of human well-being and environmental sustainability, and in turn, how climate change is managed and mitigated. We compared the implications of four scenarios for marine and terrestrial ecosystem services and human well-being. The results suggest that while regional actions can partially offset global inaction on climate change until about mid-century, there are probable threshold levels for marine ecosystems, beyond which the Great Barrier Reef will become a fundamentally different system by 2100 if climate change is not curtailed. Management that can respond to pressures at both global and regional scales will be needed to maintain the full range of ecosystem services. Modest improvements in human well-being appear possible even while ecosystem services decline, but only where regional management is strong. The future of the region depends largely on whether national and regional decision-makers choose to be active future ‘makers’ or passive future ‘takers’ in responding to global drivers of change. We conclude by discussing potential avenues for using these scenarios further with the Great Barrier Reef region's stakeholders.  相似文献   

12.
A potential impact of climate change in the south Asian context in general and the Indian subcontinent in particular is an increase in rainfall, in some areas up to 50%. Using an extensive information base available on the dynamics of landscape structure and function of the northeastern hill areas of India, scenarios on landscape changes, as an adaptation to climate change, have been constructed. Climate change would impose a variety of stresses on sustainable livelihood of the inhabitants of the rain-forested areas through stresses on ecosystem function. It is concluded that appropriate management strategies for natural forests and plantation forestry should go hand in hand with a comprehensive rural ecosystem rehabilitation plan.  相似文献   

13.
明确气候变化背景下大兴安岭林区气候干湿状况特征,揭示其对森林火灾的影响,可为该区域森林火灾管理和森林资源保护提供科学依据。基于大兴安岭林区1974—2016年标准化降水指数(SPI),采用统计分析和对比分析方法,系统研究不同干湿情景对森林火灾发生次数及过火面积的影响,并讨论不同等级干旱对其影响的异同性。结果表明:1974—2016年,年、季尺度上大兴安岭林区气候均呈湿润化趋势。森林火灾发生次数多(少)和过火面积大(小)与气候的干湿状况(等级)基本一致,但森林火灾的发生次数与气候干湿状况相关更为密切。年尺度上,SPI与火灾次数呈负相关,与过火面积的自然对数则呈较弱的负相关;季尺度上,各季节SPI与对应的林火次数和过火面积自然对数均呈显著的负相关,但与过火面积的相关程度差异较大,以春季相关最为显著,秋季次之,夏季则相对较弱;不同季节SPI与年林火次数和过火面积自然对数呈负相关,前一年冬季SPI对当年火灾次数的贡献最大。可见,气候干湿状况对森林火灾的影响存在明显的滞后效应。SPI不仅能较好地反映区域气候的干湿状况,亦能较好地指示森林火灾发生的可能性及发生火灾的过火面积的相对变化情况,可为森林火灾预测和管理提供科学依据。  相似文献   

14.
This study aims to demonstrate the potential of a process-based regional ecosystem model, LPJ-GUESS, driven by climate scenarios generated by a regional climate model system (RCM) to generate predictions useful for assessing effects of climatic and CO2 change on the key ecosystem services of carbon uptake and storage. Scenarios compatible with the A2 and B2 greenhouse gas emission scenarios of the Special Report on Emission Scenarios (SRES) and with boundary conditions from two general circulation models (GCMs) – HadAM3H and ECHAM4/OPYC3 – were used in simulations to explore changes in tree species distributions, vegetation structure, productivity and ecosystem carbon stocks for the late 21st Century, thus accommodating a proportion of the GCM-based and emissions-based uncertainty in future climate development. The simulations represented in this study were of the potential natural vegetation ignoring direct anthropogenic effects. Results suggest that shifts in climatic zones may lead to changes in species distribution and community composition among seven major tree species of natural Swedish forests. All four climate scenarios were associated with an extension of the boreal forest treeline with respect to altitude and latitude. In the boreal and boreo-nemoral zones, the dominance of Norway spruce and to a lesser extent Scots pine was reduced in favour of deciduous broadleaved tree species. The model also predicted substantial increases in vegetation net primary productivity (NPP), especially in central Sweden. Expansion of forest cover and increased local biomass enhanced the net carbon sink over central and northern Sweden, despite increased carbon release through decomposition processes in the soil. In southern Sweden, reduced growing season soil moisture levels counterbalanced the positive effects of a longer growing season and increased carbon supply on NPP, with the result that many areas were converted from a sink to a source of carbon by the late 21st century. The economy-oriented A2 emission scenario would lead to higher NPP and stronger carbon sinks according to the simulations than the environment-oriented B2 scenario.  相似文献   

15.
Under the threat of global warming it is important to determine the impact that future changes in climate may have on the environment and to what extent any adverse effects can be mitigated. In this study we assessed the impact that climate change scenarios may have on soil carbon stocks in Canada and examined the potential for agricultural management practices to improve or maintain soil quality. Historical weather data from 1951 to 2001 indicated that semi-arid soils in western Canada have become warmer and dryer and air temperatures have increased during the spring and winter months. Results from the Canadian Center for Climate Modelling and Analysis (CCCma) Coupled Global Climate Model (CGCM1,2) under two climate change forcing scenarios also indicated that future temperatures would increase more in the spring and winter. Precipitation increased significantly under the IPCC IS92a scenario and agreed with historical trends in eastern Canada whereas the IPCC SRES B2 scenario indicated very little change in precipitation and better matched historical trends in western Canada. The Century model was used to examine the influence of climate change on agricultural soil carbon (C) stocks in Canada. Relative to simulations using historical weather data, model results under the SRES B2 climate scenario indicated that agricultural soils would lose 160 Tg of carbon by 2099 and under the IS92a scenario would lose 53 Tg C. Carbon was still lost from soils in humid climatic regions even though C inputs from crops increased by 10–13%. Carbon factors associated with changes in management practices were also estimated under both climate change scenarios. There was little difference in factors associated with conversion from conventional to no-till agriculture, while carbon factors associated with the conversion of annual crops to perennial grass were lower than for historical data in semi-arid soils because water stress hampered crop production but were higher in humid soils.  相似文献   

16.
Deforestation has contributed significantly to net greenhouse gas emissions, but slowing deforestation, regrowing forests and other ecosystem processes have made forests a net sink. Deforestation will still influence future carbon fluxes, but the role of forest growth through aging, management, and other silvicultural inputs on future carbon fluxes are critically important but not always recognized by bookkeeping and integrated assessment models. When projecting the future, it is vital to capture how management processes affect carbon storage in ecosystems and wood products. This study uses multiple global forest sector models to project forest carbon impacts across 81 shared socioeconomic (SSP) and climate mitigation pathway scenarios. We illustrate the importance of modeling management decisions in existing forests in response to changing demands for land resources, wood products and carbon. Although the models vary in key attributes, there is general agreement across a majority of scenarios that the global forest sector could remain a carbon sink in the future, sequestering 1.2–5.8 GtCO2e/yr over the next century. Carbon fluxes in the baseline scenarios that exclude climate mitigation policy ranged from −0.8 to 4.9 GtCO2e/yr, highlighting the strong influence of SSPs on forest sector model estimates. Improved forest management can jointly increase carbon stocks and harvests without expanding forest area, suggesting that carbon fluxes from managed forests systems deserve more careful consideration by the climate policy community.  相似文献   

17.
Global environmental change leads to degradation of tropical forests in many countries. In response to this pressure, programs for payments for ecosystem services (PES) are developing and organizations are emerging which manage forests in order to supply ecosystem services, rather than only harvest timber. Typically such services are carbon sequestration, biodiversity conservation, pollination, and watershed protection. Public or private actors interested to invest in or donate money for the provisioning of such services are faced with the problem of choosing the appropriate organization supplying ecosystem services. The goal of this paper was to develop an assessment framework based on the balanced scorecard concept including drivers, impact, performance and context variables. Results of a survey of international market actors were used to determine assessment criteria and their weights. Putting the focus of this paper on drivers and impacts, we assessed Latin American organizations that “sell” ecosystem services from tropical forests in terms of their general management, marketing, forest management, client and stakeholder satisfaction, and forest ecosystem status. We found that supplying organizations vary widely with respect to their achievements in these areas. However, the variance of assessment results is influenced even more by the variance in weights the international market actors allocate to the assessment criteria. The insights of this study can contribute to the continuous improvement of management processes in supplying organizations and can support investors and donors in their decision-making with respect to organization supplying ecosystem services.  相似文献   

18.
在气候变暖背景下,大兴安岭森林大火导致多年冻土退化,植被发生更新和演替,对森林生态系统服务功能造成重要影响。文中选取大兴安岭北部多年冻土区满归和阿龙山火烧区为研究对象,通过定量方法计算了林火后,固碳释氧效益损失;净化环境效益损失,包括吸收SO2和粉尘净化价值;水文效益损失,包括防洪和涵养水源效益;小气候效益损失;保护野生生物以及游憩效益损失。研究发现,满归和阿龙山火烧后,生态系统服务效益损失重大。其中,固碳释氧效益和净化环境效益损失较大,分别占总效益损失的42.34%和41.94%;水文效益和保护野生生物效益损失较小,分别为2.82%和0.80%;小气候效益和游憩效益居中,分别占8.61%和3.49%。即使针叶林生态系统恢复到阔叶林生态系统,净化环境效益损失仍然可达69.3%。由此看来,保护多年冻土区的针叶林,减少森林火灾的发生对维持多年冻土区森林生态系统的稳定性和可持续发展至关重要。  相似文献   

19.
South-eastern Spain is a key area for assessing the effects of climate change on biodiversity since it presents an ecotone between the Mediterranean biome and the subtropical shrublands of arid lands. The forests of Tetraclinis articulata constitutes an especially relevant case. A species distribution model has been developed, regionalised climate change scenarios for South-eastern Spain were generated and expected changes in the suitability area of this species were estimated under B2 and A2 SRES scenarios for the time slice 2020–2050. Moreover, land use in the present and future potential habitat has been analysed. The high sensitivity of T. articulata is expressed not only as effects of climate change in the near future when compared to the present-day situation but also in the remarkable differences under scenarios B2 and A2. Under scenario B2 the suitable area for T. articulata would expand six-fold whereas under A2 the potential habitat would disappear from its present-day distribution and would move to a small area in the interior mountains. Under scenario B2 the future potential habitat in the coastal location would include enough area of shrublands, the main effective habitat of the species. Moreover, the present and future potential habitat partially overlaps, which facilitates the species migration. On the contrary, in the interior potential habitat the land use is less favourable for the effective habitat, the actual and future potential habitat do not overlap and the low dispersal capabilities of the species prevents natural migration to the interior to be expected.  相似文献   

20.
Responses of vegetation distribution to climate change in China   总被引:1,自引:1,他引:0  
Climate plays a crucial role in controlling vegetation distribution and climate change may therefore cause extended changes. A coupled biogeography and biogeochemistry model called BIOME4 was modified by redefining the bioclimatic limits of key plant function types on the basis of the regional vegetation–climate relationships in China. Compared to existing natural vegetation distribution, BIOME4 is proven more reliable in simulating the overall vegetation distribution in China. Possible changes in vegetation distribution were simulated under climate change scenarios by using the improved model. Simulation results suggest that regional climate change would result in dramatic changes in vegetation distribution. Climate change may increase the areas covered by tropical forests, warm-temperate forests, savannahs/dry woodlands and grasslands/dry shrublands, but decrease the areas occupied by temperate forests, boreal forests, deserts, dry tundra and tundra across China. Most vegetation in east China, specifically the boreal forests and the tropical forests, may shift their boundaries northwards. The tundra and dry tundra on the Tibetan Plateau may be progressively confined to higher elevation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号