首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 924 毫秒
1.
For the 1968 Kansas atmospheric surface-layer experiment, a supplementary analysis is made of the evaluation procedure. Available data on the ratio of wind speeds measured on separate booms show a variation with wind direction which is too large for an open mast. Actually the Kansas mast appears to have carried a bulky array of apparatus at the sonic anemometer levels. It is shown that the air flow interference caused by this obstacle can be satisfactorily estimated by way of potential flow calculations. From these it follows that the sonic anemometer measurements probably have undervalued the free-flow eddy stress by 20% to 30%, which implies that the simultaneous drag plate measurements of stress were generally correct. Also the overestimation of the mean wind speed by the Kansas cup anemometer is found to have been 6% rather than 10%. Some Kansas evaluation results are amended accordingly. The von Kármán constant is found to be 0.41 rather than 0.35, and the near-adiabatic eddy diffusivity ratio K H /K M becomes 1.0 rather than 1.3. The flux-gradient relations (Businger et al., 1971) after similar revision no longer differ significantly from those obtained elsewhere.  相似文献   

2.
Fluctuations in the vertical wind velocity and air temperature were measured with a 1-dimensional sonic anemometer and fine thermocouple over a flat agricultural site in the Rhone Valley, France. Strong Mistral winds with speeds up to 20 m s–1 kept atmospheric conditions very close to neutral and ensured stationarity. Friction velocities estimated both by eddy correlation (sonic plus Gill Bivane) and inertialdissipation (sonic only) methods agreed within 1 and 5 % respectively of traditional profile measurements over the measured range of 0.2 to 1.2 m s–1. The coefficient of eddy transport for heat exceeded that of momentum by a factor of 1.38 (± 0.05), a result almost identical to that obtained in the Kansas experiment (Businger et al., 1971). For - 0.15 >= z/L >= 0.05, the ratio w /u * was 1.69 and 1.34 for unstable and stable conditions, respectively. For ¦z/L¦ >= 0.05, the ratio /T * was 1.40 independent of whether neutrality was approached from either stable or unstable conditions.  相似文献   

3.
Sonic anemometers are capable of measuring the wind speed in all three dimensions at high frequencies (10–50 Hz), and are relied upon to estimate eddy-covariance-based fluxes of mass and energy over a wide variety of surfaces and ecosystems. In this study, wind-velocity measurement errors from a three-dimensional sonic anemometer with a non-orthogonal transducer orientation were estimated for over 100 combinations of angle-of-attack and wind direction using a novel technique to measure the true angle-of-attack and wind speed within the turbulent atmospheric surface layer. Corrections to the vertical wind speed varied from −5 to 37% for all angles-of-attack and wind directions examined. When applied to eddy-covariance data from three NOAA flux sites, the wind-velocity corrections increased the magnitude of CO2 fluxes, sensible heat fluxes, and latent heat fluxes by ≈11%, with the actual magnitude of flux corrections dependent upon sonic anemometer, surface type, and scalar. A sonic anemometer that uses vertically aligned transducers to measure the vertical wind speed was also tested at four angles-of-attack, and corrections to the vertical wind speed measured using this anemometer were within ±1% of zero. Sensible heat fluxes over a forest canopy measured using this anemometer were 15% greater than sensible heat fluxes measured using a sonic anemometer with a non-orthogonal transducer orientation. These results indicate that sensors with a non-orthogonal transducer orientation, which includes the majority of the research-grade three-dimensional sonic anemometers currently in use, should be redesigned to minimize sine errors by measuring the vertical wind speed using one pair of vertically aligned transducers.  相似文献   

4.
Flow distortion errors on wind and friction velocity induced by a box simulating the housing of a gas analyzer used in dry deposition eddy correlation measurements were determined in a field experiment. ‘Undisturbed’ and ‘disturbed’ wind and friction velocities, measured with two dry deposition monitoring systems run simultaneously, were compared, one to the other. In the ‘disturbed’ case the box was mounted below the 3-component probe of the sonic anemometer of one of these systems, while in the ‘undisturbed’ case the box was removed. When the probe was located on the upstream side of the box, the results showed satisfactory agreement with theoretical estimates using Wyngaard’s potential-flow approach and a spherical model for the box. This model can be applied to obtain first-order corrections for flow distortion errors induced by cubic-like (or spherical) obstacles such as a gas analyzer housing used in dry deposition research systems, or to determine the optimal location of this housing relative to the sonic probe in such systems. When the probe was located halfway downstream and halfway to the side of the box, the experimental flow distortion errors did not exceed those for the upstream case. This implies that to keep flow distortion errors in dry deposition systems as small as possible the sonic probe can be placed upstream but also to the side of the gas analyzer housing. The results of our experiments also confirmed that correcting for flow distortion with the commonly used tilt equations yields underestimated values.  相似文献   

5.
An experimental micrometeorological set-up was established at the CARBOEURO-FLUX site in Tharandt, Germany, to measure all relevant variables for the calculation of the vertical and horizontal advective fluxes of carbon dioxide. The set-up includes two auxiliary towers to measure horizontal and vertical CO2 and H2O gradients through the canopy, and to make ultrasonic wind measurements in the trunk space. In combination with the long-term flux tower an approximately even-sided prism with a typical side-length of 50 m was established. It is shown that under stable (nighttime) conditions the mean advective fluxes have magnitudes on the same order as the daily eddy covariance (EC) flux, which implies that they play a significant, but not yet fully understood, role in the carbon budget equation. The two advective fluxes are opposite and seem to cancel each other at night (at least for these measurements). During the day, vertical advection tends to zero, while horizontal advection is still present implying a flow of CO2 out of the control volume. From our measurements, a mean daily gain of 2.2 gC m–2 d–1 for the horizontal advection and a mean daily loss of 2.5 gC m–2d–1 for the vertical advection is calculated for a period of 20 days. However the large scatter of the advective fluxes has to be further investigated. It is not clear yet whether the large variability is natural or due to measurement errors and conceptual deficiencies of the experiment. Similar results are found in the few comparable studies.  相似文献   

6.
Eddy fluxes of CO2 estimated using a sonic anemometer and a closed-path analyser were, on average, 16% lower than those obtained with the same anemometer and an adjacent open-path CO2 analyser. Covariances between vertical windspeed and CO2 density from the closed-path analyser were calculated using data points for CO2 that were delayed relative to anemometer data by the time required for a parcel of air to travel from the tube inlet to the CO2 sensor. Air flow in the intake tube was laminar. Densities of CO2 that had been corrected for spurious fluctuations arising from fluctuations in temperature and humidity were used in the flux calculations. Corrections for the cross-sensitivity of CO2 analysers to water vapour were also incorporated. Spectral analysis of the corrected CO2 signal from the closed-path analyser showed that damping of fluctuations in the sampling tube at frequencies f > 0.1 Hz caused the apparent loss in flux. The measured losses can be predicted accurately using theory that describes the damping of oscillations in a sampling tube. High-frequency response of the closed-path system can be improved substantially by ensuring turbulent flow in the tube, using a combination of high volumetric flow rate and small tube diameter. The analysis of attenuation of turbulent fluctuations in flow through tubes is applicable to the measurement of fluxes of other minor atmospheric constituents using the eddy covariance method.  相似文献   

7.
A modified infrared CO2 gas analyzer, a small thermocouple assembly, a heated-thermocouple anemometer for horizontal wind, and a propeller-type vertical wind sensor were used to measure the eddy fluxes of heat and CO2 above a corn crop. Experimental results of these fluxes are discussed. The main sources of errors of the eddy fluxes using these instruments were estimated:
  1. Sensors with a time constant of 0.5 s appear to be fast enough to detect most of the vertical CO2 transfer as long as the sensors are located at least one meter above the crop surface.
  2. The deviation from steady-state conditions for 10-min periods was found to have a significant effect on the eddy flux estimates.
  3. Temperature fluctuations of the air sample passing through the CO2 infrared gas analyzer were found to be non-negligible but could be easily corrected.
  4. A 1° misalignment of the vertical anemometer affected these eddy fluxes by less than 10% under all circumstances studied.
  相似文献   

8.
The Campbell CSAT3 sonic anemometer is one of the most popular instruments for turbulence measurements in basic micrometeorological research and ecological applications. While measurement uncertainty has been characterized by field experiments and wind-tunnel studies in the past, there are conflicting estimates, which motivated us to conduct a numerical experiment using large-eddy simulation to evaluate the probe-induced flow distortion of the CSAT3 anemometer under controlled conditions, and with exact knowledge of the undisturbed flow. As opposed to wind-tunnel studies, we imposed oscillations in both the vertical and horizontal velocity components at the distinct frequencies and amplitudes found in typical turbulence spectra in the surface layer. The resulting flow-distortion errors for the standard deviations of the vertical velocity component range from 3 to 7%, and from 1 to 3% for the horizontal velocity component, depending on the azimuth angle. The magnitude of these errors is almost independent of the frequency of wind speed fluctuations, provided the amplitude is typical for surface-layer turbulence. A comparison of the corrections for transducer shadowing proposed by both Kaimal et al. (Proc Dyn Flow Conf, 551–565, 1978) and Horst et al. (Boundary-Layer Meteorol 155:371–395, 2015) show that both methods compensate for a larger part of the observed error, but do not sufficiently account for the azimuth dependency. Further numerical simulations could be conducted in the future to characterize the flow distortion induced by other existing types of sonic anemometers for the purposes of optimizing their geometry.  相似文献   

9.
Flow distortion by supporting structures   总被引:3,自引:0,他引:3  
During the 1976 International Turbulence Comparison Experiment, a number of participants found significant values of upflow over the horizontal support arm of the sensor used. For example, the Japanese sonic anemometer reported an average upflow of 2.4 °. By means of model experiments and fitting to a potential flow solution, it is predicted that the horizontal support would introduce an upflow of 0.5 °. Further model experiments with a full sonic anemometer model plus associated structures predicted an upflow of 2.2 °, in reasonable agreement with the observed result. The need for extreme care in the exposure of turbulence sensors is emphasized. The theory is capable of predicting the error incurred in the various turbulence parameters, such as uw, and these error equations bear a close similarity to those normally used in applying a tilt correction.  相似文献   

10.
The effect of topographical slope angle and atmospheric stratification on turbulence intensities in the unstably stratified surface layer have been parameterized using observations obtained from a three-dimensional sonic anemometer installed at 8 m height above the ground at the Seoul National University (SNU) campus site in Korea for the years 1999–2001. Winds obtained from the sonic anemometer are analyzed according to the mean wind direction, since the topographical slope angle changes significantly along the azimuthal direction. The effects of the topographical slope angle and atmospheric stratification on surface-layer turbulence intensity are examined with these data. It is found that both the friction velocity and the variance for each component of wind normalized by the mean wind speed decrease with increase of the topographical slope angle, having a maximum decreasing rate at very unstable stratification. The decreasing rate of the normalized friction velocity (u * /U) is found to be much larger than that of the turbulence intensity of each wind component due to the reduction of wind shear with increase in slope angle under unstable stratification. The decreasing rate of the w component of turbulence intensity (σ w /U) is the smallest over the downslope surface whereas that of the u component (σ u /U) has a minimum over the upslope surface. Consequently, σ w /u * has a maximum increasing rate with increase in slope angle for the downslope wind, whereas σ u /u * has its maximum for the upslope wind. The sloping terrain is found to reduce both the friction velocity and turbulence intensity compared with those on a flat surface. However, the reduction of the friction velocity over the sloping terrain is larger than that of the turbulence intensity, thereby enhancing the turbulence intensity normalized by the friction velocity over sloping terrain compared with that over a flat surface.  相似文献   

11.
An anemometer based upon measurement of the tangential windspeed around a sphere with hot-film probes is described. The anemometer determined the windspeed with a root-mean-square (rms) error of 5%, and the direction with an rms error of 5.6 °. A comparison between omnidirectional and sonic anemometers in the field gave practically identical results for the vertical sensible heat flux using eddy correlation procedures. Other turbulence statistics are also reported. The new instrument should be useful for measurements in canopies, where turbulence intensities are often large.  相似文献   

12.
The Validity of Similarity Theory in the Roughness Sublayer Above Forests   总被引:1,自引:0,他引:1  
Flux-gradient relationships based upon similarity theory have been reported to severely underestimate scalar fluxes in the roughness sublayer above forests, as compared to independent flux estimates (for example, eddy covariance or energy balance measurements). This paper presents the results of a unique three-month investigation into the validity of similarity theory in the roughness sublayer above forests. Eddy covariance and flux-gradient measurements of carbon dioxide (CO2) exchange were compared above a mixed deciduous forest at Camp Borden, Ontario, both before and after leaf senescence. The eddy covariance measurements used a Li-Cor infrared gas analyzer, and the flux-gradient (similarity theory) measurements featured a tunable diode laser Trace Gas Analysis System (TGAS). The TGAS resolved the CO2 concentration difference to 300 parts per trillion by volume (ppt) based upon a half-hour sampling period. The measured enhancement factor (the ratio of independent flux estimates, in this case eddy covariance, to similarity theory fluxes) was smaller and occurred closer to the canopy than in most previous investigations of similarity theory. Very good agreement between the eddy covariance and similarity theory fluxes was found between 1.9 and 2.2 canopy heights (hc), and the mean enhancement factors measured before and after leaf senescence were 1.10 plusmn; 0.06 and 1.24 ± 0.07, respectively. Larger discrepancies were measured closer to the canopy (1.2 to 1.4 hc), and mean enhancement factors of 1.60 ± 0.10 and 1.82 ± 0.11 were measured before and after leaf senescence, respectively. Overall, the Borden results suggest that similarity theory can be used within the roughness sublayer with a greater confidence than previously has been believed.  相似文献   

13.
We present an analysis of data from a nearly 1-year measurement campaign performed at Høvsøre, Denmark, a coastal farmland area where the terrain is flat. Within the easterly sector upstream of the site, the terrain is nearly homogenous. This topography and conditions provide a good basis for the analysis of vertical wind-speed profiles under a wide range of atmospheric stability, turbulence, and forcing conditions. One of the objectives of the campaign was to serve as a benchmark for flow over flat terrain models. The observations consist of combined wind lidar and sonic anemometer measurements at a meteorological mast. The sonic measurements cover the first 100 m and the wind lidar measures above 100 m every 50 m in the vertical. Results of the analysis of observations of the horizontal wind-speed components in the range 10–1200 m and surface turbulence fluxes are illustrated in detail, combined with forcing conditions derived from mesoscale model simulations. Ten different cases are presented. The observed wind profiles approach well the simulated gradient and geostrophic winds close to the simulated boundary-layer height during both barotropic and baroclinic conditions, respectively, except for a low-level jet case, as expected. The simulated winds are also presented for completeness and show good agreement with the measurements, generally underpredicting the turning of the wind in both barotropic and baroclinic cases.  相似文献   

14.
A cospectral correction model for measurement of turbulent NO2 flux   总被引:1,自引:1,他引:0  
A correction model for eddy correlation flux measurements is developed and applied to nitrogen dioxide flux measurements obtained from a SOLENT sonic anemometer and a Scintrex Luminox LMA-3 analyser for NO2. Four field campaigns were carried out near the village of Merenschwand in Central Switzerland from which two were selected for further analysis in this paper. The need for the correction of measured eddy covariance fluxes arises due to the damping loss of the NO2 analyser at high frequencies. This damping loss is described by an analogy to inductance in an electronical alternating current circuit. The independent variables in the correction model are:z (measuring height above zero-plane displacement), (mean horizontal wind speed), (Monin-Obukhov stability parameter),f (natural frequency) and inductanceL. The value for inductanceL can be derived from spectral and cospectral analysis. The theoretical cospectrum of an ideal measurement is taken from Kaimalet al. (1972) and extended with a damping term in order to describe the real measurements of the cospectrum. The inductanceL of the LMA-3 with a 0.6 cm teflon aspiration tube of 5 m length lies in the order of 0.30 to 0.35 for the dataset from Merenschwand. With this inductance, a correction factor of 1.17 in August/September 1992 and of 1.18 in May 1993 was determined for the NO2 flux maxima during daytime. The range of the correction factor is 1.05 to 1.31 for the mean daily cycles of both datasets.  相似文献   

15.
A one-dimensional sonic anemometer system suitable for use in measuring near surface heat fluxes is described. It operates by transferring continuous sound waves in alternate directions between a matched pair of cheap ultrasonic transducers. The design and development of the anemometer is described, together with wind tunnel tests, and field experiments, in which the performances of several prototypes are compared with those of other anemometers over stubble and over forest. The results indicate that the device is suitable for measuring eddy correlation heat fluxes to an accuracy better than 5%.  相似文献   

16.
An infrared device designed to measure simultaneous fluctuations of atmospheric CO2 and water vapor concentrations is described. The measuring frequency is 30 Hz. The sensing path length is 20 cm. It is compatible with the path length of the standard type of a sonic anemometer. The noise level of the device is equivalent to fluctuations of about 0.8 ppm peak-to-peak for CO2 and 0.02 g kg-1 peak-to-peak for water vapor. Field tests have showed that the device is suitable for simultaneous measurement of turbulent fluxes of CO2 and water vapor in conjunction with a sonic anemometer.  相似文献   

17.
The most recent of a series of thrust anemometers, designed for measurement of wind turbulence and eddy fluxes and for long-term unattended operation, is evaluated. Calibration and data analysis procedures are outlined, and results of field trials are given, showing agreement with data from a sonic anemometer.  相似文献   

18.
Turbulent flux measurements at Qamdo site over the Tibetan Plateau during TIPEX from May 18 to June 30, 1998 are presented. Sensible heat dominated,accounting for about 66% of the available energy (the sum of net radiation and soil heat flux) prior to the monsoon(dry period), reducing to about 31%, with latent heat increased to about 56% of available energy,in the monsoon season (wet period). Surface energy budget closure on average was about 0.80 (0.85)prior to the monsoon and 0.89 (0.76) during the monsoon using eddy correlation (profile) methods. The sum of latent and sensible heat fluxes calculated from the flux-profilemethod was smaller by about 15% than that from eddy correlation. Martano's method is used toestimate the surface aerodynamic roughness length z0 and zero plane displacement d from singlelevel sonic anemometer data, giving d = 0.12 m and z0 = 0.08 m. The overall neutral dragcoefficient (CDN) and scalar coefficient (CHN) were found to be CDN = 0.0055and CHN = 0.0059 in the southeastern area of Tibet. Their variations with the mean wind speed at 10 m are discussed.  相似文献   

19.
Kochendorfer et al. (Boundary-Layer Meterol, 145:383–398, 2012) conducted an experiment to evaluate azimuth and angle-of-attack dependent errors of sonic anemometer measurements. Several questions are raised regarding the experimental design and the presented results. The finding that instruments with non-orthogonal sonic paths underestimate fluctuations of vertical wind speed and consequently also scalar fluxes by about 10 % is compared with the results of a hitherto unpublished side-by-side field comparison and other past intercomparison experiments. Scale considerations are presented that raise considerable doubts on the validity of the implicit assumption of Kochendorfer et al. (2012) that the turbulent wind vector is highly correlated across a distance of 1.2 m at a height of 2.5 m over flat grassland, which corresponds to the separation between the sonic anemometers tested in their experiment. Nevertheless, new developments in sonic anemometer design to minimize transducer-shadow effects are desirable.  相似文献   

20.
Summary Measuring turbulent fluxes with the eddy covariance method has become a widely accepted and powerful tool for the determination of long term data sets for the exchange of momentum, sensible and latent heat, and trace gases such as CO2 between the atmosphere and the underlying surface. Several flux networks developed continuous measurements above complex terrain, e.g. AmeriFlux and EUROFLUX, with a strong focus on the net exchange of CO2 between the atmosphere and the underlying surface. Under many conditions basic assumptions for the eddy covariance method in its simplified form, such as stationarity of the flow, homogeneity of the surface and fully developed turbulence of the flow field, are not fulfilled. To deal with non-ideal conditions which are common at many FLUXNET sites, quality tests have been developed to check if these basic theoretical assumptions are valid.In the framework of the CARBOEUROFLUX project, we combined quality tests described by Foken and Wichura (1996) with the analytical footprint model of Schmid (1997). The aim was to identify suitable wind sectors and meteorological conditions for flux measurements. These tools were used on data of 18 participating sites. Quality tests were applied on the fluxes of momentum, sensible and latent heat, and on the CO2-flux, respectively. The influence of the topography on the vertical wind component was also checked. At many sites the land use around the flux towers is not homogeneous or the fetch may not be large enough. So the relative contribution of the land use type intended to be measured was also investigated. Thus the developed tool allows comparative investigations of the measured turbulent fluxes at different sites if using the same technique and algorithms for the determination of the fluxes as well as analyses of potential problems caused by influences of the surrounding land use patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号