首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
在当前中国城市化进程愈演愈烈的情形下,城市热岛冷却效应的研究对于确立城市生态环境可持续化发展的正确途径等有重要意义。采用离线城市冠层模型分析了城市冠层中街区形态和屋顶材料的变化对辐射热量、表面温度及冠层内气温的影响。研究发现:建筑物高度、宽度以及街道宽度等参数的改变对冠层各表面温度的影响较大,当街道宽度增加3 m时,地面温度升高约3.5 K。但是街道宽度增加,多重反射导致的辐射截陷效应减弱,墙面上更多的热量释放出去,各墙面温度降低约1.5 K;冠层气温先增加,日出后降低约0.4 K。屋顶材料的改变对辐射及热通量和表面温度也有较大影响,与灰色水泥屋顶相比,采用高反照率白色涂料冷却屋顶后,屋顶净辐射热量损失约380 W m-2,屋顶表面温度降低约10 K。冠层内街区形态和屋顶材料对城市辐射热环境产生直接的影响。  相似文献   

2.
太阳能光伏屋顶的安装在一定程度上能缓解城市化带来的能源危机和城市热环境的破坏。将太阳能板的传热模型引入WRF模式的多层城市冠层方案中,选取了2017年7月21—27日一次典型的高温热浪天气过程,在线模拟太阳能屋顶两种安装形式(贴覆式和支架式)对城市热环境及能量平衡的影响。结果表明:(1)贴覆式太阳能屋顶可使白天2 m气温最多降低0.29°C,降温效果优于支架式屋顶,但夜间温度下降较小。支架式屋顶白天最大降温0.23°C,夜间降温效果明显,与普通屋顶相比,温度最多降低了0.60°C。(2)太阳能屋顶白天确实可以起到降温效果,抑制白天边界层的发展高度,降低边界层的厚度。(3)太阳能屋顶除了对城市气象的影响外,最重要的是它对能源的贡献。从结果来看,太阳能电池板产生的电能可以满足商业区54.5%的空调消耗。   相似文献   

3.
利用耦合单层城市冠层模型的中尺度数值模式WRF/UCM,选取8组不同反照率和绿化比例的屋顶冷却方案进行敏感性试验,模拟研究不同冷却屋顶方案对长三角城市群2013年夏季城市热环境的影响,并分析其影响机制。结果表明:不同冷却屋顶方案对城市群热环境的缓解效果与屋顶参数之间呈很强的线性关系。高温热浪天气下,HR4(反照率为1.0)和GR4(屋顶绿化率为100%)方案的制冷度日数分别降低了14.7%和10.9%,节约的能源比普通夏日更多。同时,高温热浪天气会增强热岛强度,高反照率屋顶方案在白天对热岛起到更有效的缓解,热浪天气下日平均热岛强度最大可降低1.36℃。相同方案下,在高温热浪天气下的缓解效果均胜于普通夏日,平均而言,高反照率屋顶和屋顶绿化的降温效果分别增大38.5%和34.9%,增湿效果分别增大29.5%和21.9%,这主要是由于在高温热浪天气下,高反照率屋顶方案能够减少更多的净辐射通量,屋顶绿化方案能够释放更多的潜热通量。此外,城市格点密集区域的降温效果优于分散的城市区域,处于城市群中的常州区域较单独的杭州区域的降温幅度平均高32%。  相似文献   

4.
An urban canopy-layer climate model   总被引:1,自引:0,他引:1  
Summary This paper outlines a computer simulation model designed to assess the thermal characteristics of the urban canopy layer (UCL). In contrast to other UCL models, the layer simulated here includes both closed volumes (buildings) and open volumes (canyons). The purpose of the model is to allow the comparison of the climate impacts of different building group configurations. Traditional boundary-layer theory is applied to the surface urban boundary layer (UBL) which lies above the UCL and the derived relations are used to parameterize exchanges of momentum and heat across the UBL/UCL interface. The exterior energy budgets of the roof, walls and floor of the canopy are solved using an equilibrium surface temperature method. The open canopy and interior building air temperatures are found which are in agreement with the surface exchanges. Using measured data for Los Angeles in June, the output of the model is examined. The results show some agreement with measurement studies and suggest that the density of structures can have a substantial impact on UCL/UBL interaction.With 6 Figures  相似文献   

5.
The longwave upward radiation was calculated for an urban canopy by using a Monte Carlo model. The effects of the urban geometry were examined in terms of the fractional roof area, the height of the buildings and the emissivity. The urban canopy consists of identically sized buildings and the ground surfaces. The model allows for the temperature differences between the buildings and the ground surface and for multiple reflections in the canyon.The Monte Carlo results show that neglect of the geometric effects causes significant errors in calculated upward radiation: calculations with area-weighting of the radiation emitted from flat homogeneous surfaces are not appropriate. The upward flux is a nonlinear function of the fractional roof area, which may be approximated by a function of the square or cube of the fractional roof area. Neglect of the reflections by non-black surfaces (emissivity<1) underestimates the upward flux by a few percent for a canopy of emissivity=0.9. Radiation effects due to multiple reflections in the canyon are parameterized by use of the view factor and the fractional roof area. The parameterization scheme yields accurate results.  相似文献   

6.
Urban surface modeling and the meso-scale impact of cities   总被引:4,自引:0,他引:4  
Summary New developments of the international community in modeling the urban canopy surface energy balance are presented and classified into five main categories: (i) models statistically fit to observations, (ii) and (iii) modified vegetation schemes with or without drag terms in the canopy, and (iv) and (v), new urban canopy schemes, that present both horizontal and vertical surfaces, again with or without a drag approach. The advantages and disadvantages of each type of model are explained. In general, the more the physics are correctly simulated, the more complex are the urban phenomenon that can be addressed, on the other hand however, the more consuming of computer-time and difficult to couple with atmospheric models the scheme becomes. Present use of these new models in meso-scale atmospheric models show their ability to reproduce the phenomenon of the urban heat island (UHI) and some of its consequences – urban breezes, storm initiation, interaction with sea-breeze. Their use opens up new perspectives, for example in the mitigation of the UHI, or assessment of the role of air-conditioning systems or the impact of urban dynamics on air pollution. However, there is need to validate further the different urban models available. In particular it is necessary to compare model output with urban surface energy balance measurements. An intercomparison exercise involving these urban schemes is suggested as an efficient way to assess and improve these models.  相似文献   

7.
MM5模式中城市冠层参数化方案的设计及其数值试验   总被引:15,自引:5,他引:15  
文中在综合国外一些较先进的中尺度模式城市作用参数化方案的基础上 ,从城市下垫面结构对城市边界层大气作用的物理机制及实际应用两方面出发 ,对城市下垫面结构和人为活动等因素对边界层结构的影响及中尺度模式中城市化作用的合理体现等问题进行了较全面的考虑 ,改进和设计出能够较全面、细致地描述城市结构对大气边界层动力、热力结构的影响 ,且适合中尺度模式结构特点的城市冠层参数化方案 (UCP) ,并实现了其与MM5模式的耦合。进行了耦合后的UCP方案及采用原城市作用方案的MM5模式对BECAPEX试验期间北京地区气象条件多重嵌套细尺度进行了模拟试验 ,并与观测结果对比 ,结果表明 :相比于MM 5模式中原有表示城市作用的参数化方案来讲 ,设计的UCP方案在很大程度上提高了MM 5模式对城市边界层热力和动力结构的模拟能力。  相似文献   

8.
应用城市冠层模式研究建筑物形态对城市边界层的影响   总被引:5,自引:1,他引:4  
文中将城市冠层模式耦合到南京大学城市尺度边界层模式中,通过模拟对比发现,耦合模式对城市地区气温模拟结果更接近于观测值,尤其是对城市地区夜间气温模拟的改进.运用改进耦合模式通过多个敏感性试验的模拟,从城市面积扩张、建筑物高度增加、建筑物分布密度变化等角度研究城市建筑物三维几何形态变化对城市边界层及城市气象环境的影响,试验结果表明:(1)城市面积扩张使得城市下垫面的热通量增大,热力湍流活动增强,动量通量输送增强,城市湍能增大,湍流扩散系数变大,城市气温升高,且对不同时刻城市区域大气层结稳定度均有不同程度的影响.(2)建筑物高度增加增大了城市下垫面的粗糙度和零平面位移.同时也增大了城市街渠高宽比.城市建筑物越高,白天城市地区地表热通量越小,城市上空大气温度越低,平均风速减小,湍能减小;夜间由于高大建筑物释放储热比低矮建筑物要多,其热力湍流相对活跃,地表热通量增大,使得城市区域气温较高.(3)建筑物密度增大,会减小城市下垫面的粗糙度同时增强街渠对辐射的影响.建筑物密度增大在白天会减小地表热通量和动量通量,使城市气温降低,平均风速增大,城市湍流活动能力减弱;夜间城市释放较多储热使得气温较高.  相似文献   

9.
周晶  刘蕾  霍飞  鲍婷婷 《气象科学》2018,38(3):342-350
利用中尺度数值模式WRF,分别选用新旧两种下垫面资料和不同城市冠层模型设计试验,以江苏一次秋末高温天气个例(2014年11月20—21日)为背景,研究城市化进程对气温的影响和可能机制。将模式结果与江苏国家气象观测站和地面加密区域自动站观测资料进行对比,并分析3组试验结果发现:(1)采用BEP城市方案对2 m气温、2 m相对湿度和10 m风速等物理量的日变化模拟最优。(2)相比USGS数据,MODIS较新地表覆盖变化数据能更真实反映研究区域当前地表类型分布情况,且能提高近地面风温湿要素空间分布的模拟。(3)分析不同试验模拟的地表能量平衡过程差异,发现相比UCM单层城市冠层方案,BEP多层城市冠层方案在白天能更好模拟出城市地区的温度升高以及相对应的地表感热通量和地面热通量的增加。  相似文献   

10.
A Double-Canyon Radiation Scheme for Multi-Layer Urban Canopy Models   总被引:1,自引:0,他引:1  
We develop a double-canyon radiation scheme (DCEP) for urban canopy models embedded in mesoscale numerical models based on the Building Effect Parametrization (BEP). The new scheme calculates the incoming and outgoing longwave and shortwave radiation for roof, wall and ground surfaces for an urban street canyon characterized by its street and building width, canyon length, and the building height distribution. The scheme introduces the radiative interaction of two neighbouring urban canyons allowing the full inclusion of roofs into the radiation exchange both inside the canyon and with the sky. In contrast to BEP, we also treat direct and diffuse shortwave radiation from the sky independently, thus allowing calculation of the effective parameters representing the urban diffuse and direct shortwave radiation budget inside the mesoscale model. Furthermore, we close the energy balance of incoming longwave and diffuse shortwave radiation from the sky, so that the new scheme is physically more consistent than the BEP scheme. Sensitivity tests show that these modifications are important for urban regions with a large variety of building heights. The evaluation against data from the Basel Urban Boundary Layer Experiment indicates a good performance of the DCEP when coupled with the regional weather and climate model COSMO-CLM.  相似文献   

11.
An urban canopy model is developed for use in mesoscale meteorological and environmental modelling. The urban geometry is composed of simple homogeneous buildings characterized by the canyon aspect ratio (h/w) as well as the canyon vegetation characterized by the leaf aspect ratio (σ l ) and leaf area density profile. Five energy exchanging surfaces (roof, wall, road, leaf, soil) are considered in the model, and energy conservation relations are applied to each component. In addition, the temperature and specific humidity of canopy air are predicted without the assumption of thermal equilibrium. For radiative transfer within the canyon, multiple reflections for shortwave radiation and one reflection for longwave radiation are considered, while the shadowing and absorption of radiation due to the canyon vegetation are computed by using the transmissivity and the leaf area density profile function. The model is evaluated using field measurements in Vancouver, British Columbia and Marseille, France. Results show that the model quite well simulates the observations of surface temperatures, canopy air temperature and specific humidity, momentum flux, net radiation, and energy partitioning into turbulent fluxes and storage heat flux. Sensitivity tests show that the canyon vegetation has a large influence not only on surface temperatures but also on the partitioning of sensible and latent heat fluxes. In addition, the surface energy balance can be affected by soil moisture content and leaf area index as well as the fraction of vegetation. These results suggest that a proper parameterization of the canyon vegetation is prerequisite for urban modelling.  相似文献   

12.
Based on some advanced urban parameterization schemes for mesoscale model,a new urban canopy parameterization (UCP) for MM5 is developed.The UCP takes into account the impacts of urban infrastructure and anthropogenic activity on the dynamic,thermal structures of urban surface layer and the urban surface energy budget in a more rational way according to conformation of MMS.The UCP is implemented in MM5 and validated by IOP data in 2001 winter BECAPEX and automatic meteorological station data in Beijing area.The results illustrate that UCP versus traditional urban parameterization in MM5,it can make MM5 reproduce main characteristics of winter UBL in Beijing,which include urban heat island and its diurnal evolvement,nocturnal elavated inversion in downtown area,and some dynamic stuctures such as TKE peak at the top of urban canopy,lower wind speed in urban surface layer and so on.  相似文献   

13.
Two simple models are presented for describing the surface energy budget above vegetated surfaces. One is the traditional single-source model that includes only one energy budget equation for the entire canopy-soil system, and the other is the double-source model that includes separate energy budget equations for the vegetation canopy and the underlying soil surface. In both models, the bulk transfer coefficients needed to solve the energy budget equations are parameterized as functions of leaf area index, leaf transfer coefficients, and soil surface roughnesses to obtain the best fit to values calculated by a standard multilayer-canopy model. The validity of these models was tested by comparing their performance with that of the multilayer-canopy model for simulation of the surface energy balance and nocturnal drainage flow above vegetation. Results show that the double-source model gives reliable estimations for all cases ranging from sparse to dense vegetation covers; the single-source model is only applicable to dense, fully-covered vegetation. It is also shown that sparse vegetation weakens nocturnal drainage flow, since it isolates the cool underlying soil surface from the atmosphere above the canopy. This phenomenon cannot be described by a traditional single-source model incorporated commonly in many atmospheric models; however, the double-source model adequately describes this process.  相似文献   

14.
人为热源对城市热岛效应影响的数值模拟试验   总被引:3,自引:0,他引:3  
利用耦合了单层城市冠层模型UCM的中尺度模式WRF,研究了人为热源对上海区域城市气候的影响。冬季地表温度的模拟结果表明,使用新陆面资料的试验效果要好于使用旧的陆面资料,加入人为热源的试验效果要优于没有加入人为热源的试验,这些反映了热岛效应是不断增加的城市面积和人为热源共同决定的。不同试验模拟的2 m高度上气温的模拟情况时,使用新陆面资料并且加入合理人为热源的试验模拟值明显大于其他试验的模拟值。  相似文献   

15.
An urban canopy model is incorporated into the Nanjing University Regional Boundary Layer Model. Temperature simulated by the urban canopy model is in better agreement with the observation, especially in the night time, than that simulated by the traditional slab model. The coupled model is used to study the effects of building morphology on urban boundary layer and meteorological environment by changing urban area, building height, and building density.It is found that when the urban area is expanded, the urban boundary layer heat flux, thermal turbulence, and the turbulent momentum flux and kinetic energy all increase or enhance, causing the surface air temperature to rise up. The stability of urban atmospheric stratification is affected to different extent at different times of the day.When the building height goes up, the aerodynamic roughness height, zero plane displacement height of urban area, and ratio of building height to street width all increase. Therefore, the increase in building height results in the decrease of the surface heat flux, urban surface temperature, mean wind speed, and turbulent kinetic energy in daytime. While at night, as more heat storage is released by higher buildings, thermal turbulence is more active and surface heat flux increases, leading to a higher urban temperature.As the building density increases, the aerodynamic roughness height of urban area decreases, and the effect of urban canopy on radiation strengthens. The increase of building density results in the decrease in urban surface heat flux, momentum flux, and air temperature, the increase in mean wind speed, and the weakening of turbulence in the daytime. While at night, the urban temperature increases due to the release of more heat storage.  相似文献   

16.
A Physically-Based Scheme For The Urban Energy Budget In Atmospheric Models   总被引:28,自引:1,他引:27  
An urban surface scheme for atmospheric mesoscale models ispresented. A generalization of local canyon geometry isdefined instead of the usual bare soil formulation currently usedto represent cities in atmospheric models. This allows refinement ofthe radiative budgets as well as momentum, turbulent heat and ground fluxes.The scheme is aimed to be as general as possible, in order to representany city in the world, for any time or weather condition(heat island cooling by night, urban wake, water evaporation after rainfalland snow effects).Two main parts of the scheme are validated against published data.Firstly, it is shown that the evolution of the model-predictedfluxes during a night with calm winds is satisfactory, considering both the longwave budget and the surface temperatures. Secondly, the original shortwave scheme is tested off-line and compared to the effective albedoof a canyon scale model. These two validations show that the radiative energy input to the urban surface model is realistic.Sensitivity tests of the model are performed for one-yearsimulation periods, for both oceanic and continental climates. The scheme has the ability to retrieve, without ad hoc assumptions, the diurnal hysteresis between the turbulent heat flux and ground heat flux. It reproduces the damping of the daytime turbulent heat flux by the heat storage flux observed in city centres. The latent heat flux is negligible on average,but can be large when short time scales are considered (especially afterrainfall). It also suggests that in densely built areas, domesticheating can overwhelm the net radiation, and supply a continuous turbulentheat flux towards the atmosphere. This becomes very important inwinter for continental climates. Finally, a comparison with a vegetation scheme shows that the suburban environment can be represented with a bare soil formulation for large temporal or spatial averages (typical of globalclimatic studies), but that a surface scheme dedicated to the urban surface is necessary when smaller scales are considered: town meteorological forecasts, mesoscale or local studies.  相似文献   

17.
The generation of heat in buildings, and the way this heat is exchanged with the exterior, plays an important role in urban climate. To analyze the impact on urban climate of a change in the urban structure, it is necessary to build and use a model capable of accounting for all the urban heat fluxes. In this contribution, a new building energy model (BEM) is developed and implemented in an urban canopy parameterization (UCP) for mesoscale models. The new model accounts for: the diffusion of heat through walls, roofs, and floors; natural ventilation; the radiation exchanged between indoor surfaces; the generation of heat due to occupants and equipments; and the consumption of energy due to air conditioning systems. The behavior of BEM is compared to other models used in the thermal analysis of buildings (CBS-MASS, BLAST, and TARP) and with another box-building model. Eventually, a sensitivity analysis of different parameters, as well as a study of the impact of BEM on the UCP is carried out. The validations indicate that BEM provides good estimates of the physical behavior of buildings and it is a step towards a modeling tool that can be an important support to urban planners.  相似文献   

18.
Intercomparison of three urban climate models   总被引:1,自引:0,他引:1  
An intercomparison of the surface energy budgets from three urban climate models was made to assess the comparability of results, and to evaluate the surface energy fluxes from each model. The three models selected spanned the continuum of approaches currently employed in the treatment of the effects of urban geometry. The first model was an urban canopy-layer model which explicitly examined urban canyon geometry. The second model treated the city as a warm, rough, moist plate but included greatly simplified parameterizations of urban geometry. Neither model included a dynamic link to the urban boundary-layer. The third model was a one-dimensional urban boundary-layer model which utilized a simple warm, rough, moist plate approach but included a dynamic coupling of the urban surface layer to the urban boundary-layer.Results showed considerable disagreement between the three models in regards to the individual energy fluxes. Average rankings of the energy fluxes in terms of comparability from high-to-low similarity were: (1) solar radiation, (2) sensible heat flux, (3) conduction, (4) latent heat flux, (5) longwave re-radiation, and (6) longwave radiation input. In general, the urban canopy-layer model provided more realistic results, although each model demonstrated strong and weak points. Results indicate that current urban boundary-layer models may produce surface energy budgets with lower sensible heat fluxes and substantially higher latent heat fluxes than is supported by field evidence from the literature.  相似文献   

19.
This paper compares the predictions by two radiative transfer models-the two-stream approximation model and the generalized layered model (developed by the authors) in land surface processes-for different canopies under direct or diffuse radiation conditions. The comparison indicates that there are significant differences between the two models, especially in the near infrared (NIR) band. Results of canopy reflectance from the two-stream model are larger than those from the generalized model. However, results of canopy absorptance from the two-stream model are larger in some cases and smaller in others compared to those from the generalized model, depending on the cases involved. In the visible (VIS) band, canopy reflectance is smaller and canopy absorptance larger from the two-stream model compared to the generalized model when the Leaf Area Index (LAI) is low and soil reflectance is high. In cases of canopies with vertical leaf angles, the differences of reflectance and absorptance in the VIS and NIR bands between the two models are especially large.Two commonly occurring cases, with which the two-stream model cannot deal accurately, are also investigated. One is for a canopy with different adaxial and abaxial leaf optical properties; and the other is for incident sky diffuse radiation with a non-uniform distribution. Comparison of the generalized model within the same canopy for both uniform and non-uniform incident diffuse radiation inputs shows smaller differences in general. However, there is a measurable difference between these radiation inputs for a canopy with high leaf angle. This indicates that the application of the two-stream model to a canopy with different adaxial and abaxial leaf optical properties will introduce non-negligible errors.  相似文献   

20.
应用基于多层城市冠层方案BEP(Building Environment Parameterization)增加室内空调系统影响的建筑物能量模式BEM(Building Energy Model)方案的WRF模式,模拟研究重庆热岛的特征、成因以及局地环流对热岛形成的影响。文中共有两个算例,一为重庆真实下垫面算例,称之为URBAN算例,二为将城市下垫面替换为耕地下垫面的对比算例,称之为NOURBAN算例。结果表明:1)WRF方案模拟结果与观测2 m气温的对比吻合较好,误差主要出现在正午温度峰值和凌晨温度谷值处,由城市下垫面特性及城市内建筑分布误差引起。2)BEP+BEM方案较好地模拟出了重庆地区的热岛分布的空间和时间特征。重庆市温度的分布受地形和城市下垫面的双重影响,越靠近城区,温度的分布受城市化影响就越大,在海拔低处,温度就越高。3)城区立体三维表面对辐射的陷阱作用导致城市表面总体反射率小,向上短波辐射小于郊区约20 W/m~2。城市表面以感热排放为主,而郊区则表现为潜热的作用占主导。夜间城市地表储热以及空调废热向大气释放,是城市热岛形成的重要原因。4)模拟区域背景风场主要为东南风,局地环流呈现出越靠近山区风速越大、城市区域风速较小的特性,体现了城市密集的建筑群对低层大气流场的空气动力学效应,以及复杂山谷地形的山谷风环流特性。在市区的西侧和东南侧均有高大山脉阻挡,山脉对城市出流的阻碍作用、气流越山与绕流运动对城市热岛的形成有一定影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号