首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Assessment of the radiative forcing of aerosols in models still lacks sufficient input data for aerosol hygroscopicity. The light scattering enhancement factor [ f(RH, λ)] is a crucial parameter for describing aerosol hygroscopic growth properties.In this paper, we provide a survey of f(RH, λ) studies in China for the past seven years, including instrument developments of humidified nephelometers, ambient f(RH, λ) measurements in China, f(RH, λ) parameterization schemes, and f(RH, λ)applications in aerosol measurements. Comparisons of different f(RH, λ) parameterizations are carried out to check their performance in China using field measurement datasets. We also summary the parameterization schemes for predicting f(RH, λ)with aerosol chemical compositions. The recently developed methods to observe other aerosol properties using f(RH, λ)measurements, such as calculating the aerosol hygroscopicity parameter, cloud condensation nuclei number concentration,aerosol liquid water content, and aerosol asymmetry factor, are introduced. Suggestions for further research on f(RH, λ) in China are given.  相似文献   

2.
A humidification system was deployed to measure aerosol hygroscopicity at a rural site of the North China Plain during the haze red-alert period 17–22 December 2016. The aerosol scattering coefficients under dry [relative humidity (RH) < 30%] and wet (RH in the range of 40%–85%) conditions were simultaneously measured at wavelengths of 450, 550, and 700 nm. It is found that the aerosol scattering coefficient and backscattering coefficient increased by only 29% and 10%, respectively when RH went up from 40% to 80%, while the hemispheric backscatter fraction went down by 14%, implying that the aerosol hygroscopicity represented by the aerosol scattering enhancement factor f(RH) is relatively low and RH exerted little effects on the aerosol light scattering in this case. The scattering enhancement factors do not show significant differences at the three wavelengths, only with an approximate 2% variation, suggesting that the aerosol hygroscopicity is independent of the wavelength. Aerosol hygroscopicity is highly dependent on the aerosol chemical composition. When there is a large mass fraction of inorganics and a small mass fraction of organic matter, f(RH) reaches a high value. The fraction of NO3 was strongly correlated with the aerosol scattering coefficient at RH = 80%, which suggests that NO3 played an important role in aerosol hygroscopic growth during the heavy pollution period.  相似文献   

3.
Aerosols in the atmosphere not only degrade visibility, but are also detrimental to human health and transportation. In order to develop a method to estimate PM_(2.5) mass concentration from the widely measured visibility, a field campaign was conducted in Southwest China in January 2019. Visibility, ambient relative humidity(RH), PM_(2.5) mass concentrations and scattering coefficients of dry particles were measured. During the campaign, two pollution episodes, i.e., from 4-9 January and from 10-16 January, were encountered. Each of the two episodes could be divided into two periods. High aerosol hygroscopicity was found during the first period, when RH was higher than 80% at most of the time, and sometimes even approached 100%. The second period experienced a relatively dry but more polluted condition and aerosol hygroscopicity was lower than that during the first period. An empirical relationship between PM_(2.5) mass concentration and visibility(ambient aerosol extinction) under different RH conditions could thus be established. Based on the empirical relationship,PM_(2.5) mass concentration could be well estimated from visibility and RH. This method will be useful for remote sensing of PM_(2.5) mass concentration.  相似文献   

4.
基于2016年冬季和2017年夏季在北京、2016年夏季在邢台的三次气溶胶外场观测实验,选取三次观测期间典型的新粒子生成事件,分析其对气溶胶吸湿和云凝结核(CCN)活化特性的影响。两地分别位于华北平原北部超大城市区域和中南部工业化区域,两地不同季节新粒子形成机制不同,对应的凝结汇、生长速率以及气溶胶化学组分也不同。北京站点新粒子生成事件的发生以有机物的生成主导,而邢台站点新粒子生成事件的发生则以硫酸盐和有机物的生成共同主导。邢台站点新粒子生成过程中气溶胶吸湿性及云凝结核活化能力明显强于北京站点,此特点在核模态尺度粒子中表现尤为明显。以上结果表明,在估算新粒子生成对CCN数浓度的影响时,应充分考虑气溶胶吸湿和活化特性的差异。  相似文献   

5.
An Aerodyne quadruple aerosol mass spectrometer (Q-AMS) has been used to provide on-line measurements of size dependent chemical composition of fine aerosol particles (PM1) at the Air Pollution Research Station in Preila, Lithuania, representing the east Baltic region. The size dependent chemical composition measurements by AMS have revealed that in marine air masses 118?nm mode organics-containing particles were fresher compared to sulfate-containing particles (295?nm), likely originated as secondary aerosol from forest emissions or produced by primary sea spray over the Baltic Sea. In polluted continental air masses sulfate and organics were highly internally mixed and aged. The mass spectral results indicated that the major components of organic compounds were oxygenated organic species with strong signals at m/z 18, 43, 44 with several specific features. Positive matrix factorization (PMF) of AMS organic mass spectral data has identified three factors: aged oxygenated low-volatility organic aerosol (LV-OOA), less oxygenated semi-volatile organic aerosol (SV-OOA), and biogenic organic aerosol (BGOA) of either terrestrial or marine origin. The measurements were compared with a real-time particulate matter Beta Absorption Monitor (Thermo ESM Andersen) and Micro Orifice Uniform Deposit Impactor (MOUDI) data. The intercomparison showed a good correlation and a stable ratio between PM1 and PM2.5 concentrations. A comparison of the on-line Q-AMS data and the off-line MOUDI fine particle (<1???m) data yielded a reasonable agreement in size distributions but not the absolute mass concentrations due to sampling conditions, evaporation of acidic species from sampling substrates and bounce of the particles in the MOUDI.  相似文献   

6.
A modelling platform for studying photochemical gaseous and aerosol phase processes from localized (e.g., point) sources has been presented. The current approach employs a reactive plume model which extends the regulatory model RPM‐IV by incorporating aerosol processes and heterogeneous chemistry. The physics and chemistry of elemental carbon, organic carbon, sulfate, nitrate, ammonium material of aerosols are treated and attributed to the PM size distribution. A modified version of the carbon bond IV chemical mechanism is included to model the formation of organic aerosol. Aerosol dynamics modeled include mechanisms of nucleation, condensation, dry deposition and gas/particle partitioning of organic matter. The model is first applied to a number of case studies involving emissions from point sources and sulfate particle formation in plumes. Model calculations show that homogeneous nucleation is an efficient process for new particle formation in plumes, in agreement with previous field studies and theoretical predictions. In addition, the model is compared with field data from power plant plumes with satisfactory predictions against gaseous species and total sulphate mass measurements. Finally, the plume model is applied to study secondary organic matter formation due to various emission categories such as vehicles and the oil production sector.  相似文献   

7.
Aerosol particles are of particular importance because of their impacts on cloud development and precipitation processes over land and ocean. Aerosol properties as well as meteorological observations from the Department of Energy Atmospheric Radiation Measurement(ARM) platform situated in the Southern Great Plains(SGP) are utilized in this study to illustrate the dependence of continental cloud condensation nuclei(CCN) number concentration(NCCN) on aerosol type and transport pathways. ARM-SGP observations from the 2011 Midlatitude Continental Convective Clouds Experiment field campaign are presented in this study and compared with our previous work during the 2009–10 Clouds, Aerosol, and Precipitation in the Marine Boundary Layer field campaign over the current ARM Eastern North Atlantic site. Northerly winds over the SGP reflect clean, continental conditions with aerosol scattering coefficient(σ_(sp)) values less than 20 Mm~(-1) and NCCNvalues less than 100 cm~(-3). However, southerly winds over the SGP are responsible for the observed moderate to high correlation(R)among aerosol loading(σ_(sp) 60 Mm~(-1)) and NCCN, carbonaceous chemical species(biomass burning smoke), and precipitable water vapor. This suggests a common transport mechanism for smoke aerosols and moisture via the Gulf of Mexico,indicating a strong dependence on air mass type. NASA MERRA~(-2) reanalysis aerosol and chemical data are moderately to highly correlated with surface ARM-SGP data, suggesting that this facility can represent surface aerosol conditions in the SGP, especially during strong aerosol loading events that transport via the Gulf of Mexico. Future long-term investigations will help to understand the seasonal influences of air masses on aerosol, CCN, and cloud properties over land in comparison to over ocean.  相似文献   

8.
9.
During March and April of 1995 a major international field project was conducted at the UMIST field station site on Great Dun Fell in Cumbria, Northern England. The hill cap cloud which frequently envelopes this site was used as a natural flow through reactor to examine the sensitivity of the cloud microphysics to the aerosol entering the cloud and also to investigate the effects of the cloud in changing the aerosol size distribution, chemical composition and associated optical properties. To investigate these processes, detailed measurements of the cloud water chemistry (including the chemistry of sulphur compounds, organic and inorganic oxidised nitrogen and ammonia), cloud microphysics and properties of the aerosol and trace gas concentrations upwind and downwind of the cap cloud were undertaken. It was found that the cloud droplet number was generally strongly correlated to aerosol number concentration, with up to 2000 activated droplets cm−3 being observed in the most polluted conditions. In such conditions it was inferred that hygroscopic organic compounds were important in the activation process. Often, the size distribution of the aerosol was substantially modified by the cloud processing, largely due to the aqueous phase oxidation of S(IV) to sulphate by hydrogen peroxide, but also through the uptake and fixing of gas phase nitric acid as nitrate, increasing the calculated optical scattering of the aerosol substantially (by up to 24%). New particle formation was also observed in the ultrafine aerosol mode (at about 5 nm) downwind of the cap cloud, particularly in conditions of low total aerosol surface area and in the presence of ammonia and HCl gases. This was seen to occur at night as well as during the day via a mechanism which is not yet understood. The implications of these results for parameterising aerosol growth in Global Climate Models are explored.  相似文献   

10.
为了对黄山地区云凝结核(Cloud Condensation Nuclei,CCN)进行闭合研究,2014年6月30日至7月28日在黄山光明顶对大气气溶胶理化性质和CCN数浓度进行观测,分析了气溶胶化学组分、谱分布以及CCN数浓度随时间变化的特征,通过κ-Köhler理论并使用离子配对法计算得到CCN数浓度与观测得到的CCN数浓度进行对比。结果表明:计算与观测的CCN闭合结果较好,低过饱和度CCN闭合结果好于高过饱和度,过饱和度较低时低估了CCN数浓度,而过饱和度较高时则高估了CCN数浓度,由此说明气溶胶的化学组分数据对预测CCN数浓度至关重要,同时说明该方法可以实现CCN的闭合。考虑到40%水溶性有机碳(Water Soluble Organic Carbon,WSOC)对气溶胶粒子吸湿性影响,在较低过饱和度CCN闭合结果较好,但影响效果并不显著,尤其是在拟合结果相对较差的高过饱和度下基本没有影响。因此,气溶胶粒子中水溶性无机组分对CCN活化有重要影响,而含量较多、化学组分复杂并且吸湿性不确定的WSOC对CCN活化影响较为有限,这与一些研究得出无机组分对于气溶胶吸湿性的影响比具有复杂特征的有机组分更重要的结论相符合。  相似文献   

11.
Organic compounds in the atmosphere can influence the activation, growth and lifetimes of haze, fog and cloud droplets by changing the condensation and evaporation rates of liquid water by these aqueous aerosol particles. Depending on the nature and properties of the organic compounds, the change can be to enhance or reduce these rates. In this paper we used a tandem differential mobility analyzer (TDMA) to examine the effect of tetracosane, octanoic acid, and lauric acid on the hygroscopic properties of NaCl aerosol particles at relative humidities (RH) between 30 and 95%. These organic compounds have been identified in ambient aerosol particle samples. A slight lowering of the deliquescence relative humidity (DRH) and suppression of hygroscopic growth for the NaCl-organic compound mixtures were observed when compared to pure NaCl particles. The growth of pure NaCl particles was 2.25 in diameter at 85% RH while the growth of the mixed particles was 1.3 to 1.7 in particle diameter at 85% RH with organic mass fraction of 30–50%. This shows that these organic compounds have to be present in rather large mass fractions to effect the hygroscopic behavior to a similar degree observed for ambient aerosol during field measurements. Despite the mixing of the organic material with NaCl, hysteresis was observed for decreasing RH histories, suggesting the formation of metastable droplets. These laboratory results are strikingly similar to ambient field results. For example, if the total organic mass fraction of the particles is between 0.30 and 0.50, the particle growth at 85% RH is about a factor of 1.4 for the laboratory and field measurements. Such reduction in growth compared to the pure inorganic salt is in contradiction to speculations concerning significant effects by organic compounds on cloud condensation nuclei and thus formation on clouds.  相似文献   

12.
广州市大气能见度影响因子的贡献研究   总被引:25,自引:4,他引:21  
通过对广州市2004年10月1日~11月5日污染性气体NO2、气溶胶散射系数和吸收系数以及粒子化学成分组成等观测资料的分析,得到了影响广州市大气能见度因子的贡献比例:大气气溶胶散射bsa为75.26%、大气气溶胶吸收baa为12.89%、水汽bsw为5.78%、气体吸收bag为3.68%、大气分子散射bsg为2.38%;给出了不同粒径段气溶胶对散射的贡献比例;然后采用逐步多元线性回归得到了大气干气溶胶散射系数与PM2.5、PM10及化学成分的经验关系式;并给出了广州市区气溶胶的质量散射系数。  相似文献   

13.
The Model of Multiphase Cloud Chemistry M2C2 has recently been extended to account for nucleation scavenging of aerosol particles in the cloud water chemical composition. This extended version has been applied to multiphase measurements available at the Puy de Dôme station for typical wintertime anthropogenic air masses. The simulated ion concentrations in cloud water are in reasonable agreement with the experimental data. The analysis of the sources of the chemical species in cloud water shows an important contribution from nucleation scavenging of particles which prevails for nitrate, sulphate and ammonium. Moreover, the simulation shows that iron, which comes only from the dissolution of aerosol particles in cloud water, has a significant contribution in the hydroxyl radical production. Finally, the simulated phase partitioning of chemical species in cloud are compared with measurements. Numerical results show an underestimation of interstitial particulate phase fraction with respect to the measurements, which could be due to an overestimation of activated mass by the model. However, the simulated number scavenging efficiency of particles agrees well with the measured value of 40% of total number of aerosol particles activated in cloud droplets. Concerning the origin of chemical species in cloud water, the model reproduces quite well the contribution of gas and aerosol scavenging estimated from measurements. In addition, the simulation provides the contribution of in-cloud chemical reactivity to cloud water concentrations.  相似文献   

14.
The organic matter in tropospheric aerosol plays animportant, yet undetermined role in atmosphericprocesses. The bulk of organic carbon representing asignificant part of the fine aerosol mass is bound toa polymeric matter whose structure and properties areto date largely unknown. Here we use thefingerprinting technique of derivatization pyrolysis-gas chromatography-massspectrometry tosubstantiate that in terms of chemical structure partof this polymer in rural aerosol in summer can beregarded as natural humic matter. We suggest thatthese compounds are likely to be directly emitted bybiogenic sources.  相似文献   

15.
Within the German Tropospheric Research Program (TFS) a series of projects were performed focussing on aspects of radiation transfer and the effects of UV-radiation on air chemistry. The individual projects covered laboratory investigations, instrument development for photolysis processes as well as field studies of actinic radiation and comparison to model calculations. One and three-dimensional models were tested against field campaign data. The results confirm the improvement of measurement technology achieved through deployment of new techniques like spectroradiometry that offer a wider range of investigations than was previously attainable using chemical actinometry or fixed wavelength filter radiometry. Reasonable agreement was also found between measurements and models for a few selected and well defined cloudy conditions. On the other hand, using simple stratiform geometry models yielded significant deviations between measurement and model in both directions particularly in the case of high zenith angles and with high aerosol load. Further tools both for experimental investigations and for model calculations were developed within the framework of the Troposphere Research Program (TFS) and deficiencies were identified demanding further investigations when broken clouds and more complex cloud layers prevail.  相似文献   

16.
Urban aerosols have a large effect on the deterioration of air quality and the degradation of atmospheric visibility.Characterization of the chemical composition of PM 2.5 and in situ measurements of the optical properties of aerosols were conducted in July 2008 at an urban site in Guangzhou,Southern China.The mean PM 2.5 concentration for the entire period was 53.7±23.2 μg m 3.The mean PM 2.5 concentration (82.7±25.4 μg m 3) on hazy days was roughly two times higher than that on clear days (38.8±8.7 μg m 3).The total water-soluble ion species and the total average carbon accounted for 47.9%±4.3% and 35.2%±4.5%,respectively,of the major components of PM 2.5.The increase of secondary and carbonaceous aerosols,in particular ammonium sulfate,played an important role in the formation of haze pollution.The mean absorption and scattering coefficients and the single scattering albedo over the whole period were 53±20 M m 1,226±111 M m 1,and 0.80±0.04,respectively.PM 2.5 had a high linear correlation with the aerosol extinction coefficient,elemental carbon (EC) was correlated with aerosol absorption,and organic carbon (OC) and SO 4 2 were tightly linked to aerosol scattering.  相似文献   

17.
青海瓦里关大气气溶胶元素富集特征及其来源   总被引:15,自引:3,他引:15       下载免费PDF全文
利用中子活化及PIXE和可见光灰度仪, 对青海瓦里关大气本底基准监测站的大气气溶胶样品进行了测量。通过元素相对浓度、富集因子和主因子分析等数据统计分析, 并结合同期的气团后退轨迹分布资料, 讨论了瓦里关大气气溶胶元素的组成及来源。结果表明, 位于青藏高原偏远地区的瓦里关大气气溶胶以土壤及地壳等自然来源为主, 因子分析的方差百分数给出瓦里关气溶胶中自然源的贡献率平均在70%以上。燃煤、交通及冶炼等人为源也占有一定比例。大气黑碳气溶胶的观测也表明人类活动影响的存在。人为源的影响多与来自东部及河西走廊等经济发达地区的气流有关。  相似文献   

18.
Direct physical measurements of particle mass and number concentration indicate an increase in overall aerosol mass resulting from cloud processing, most likely through aqueous-phase chemistry (e.g., SO2 oxidation). Measurements conducted in the Pennines of Northern England reveal an average increase of 14 to 20% in dry aerosol mass (0.003<particle diameter<0.9 μm) after aerosol passage through an orographic cloud. The rate of in-cloud mass production is most sensitive to changes in upwind particle size distributions, SO2 concentration, and cloud water acidity. Newly-formed mass appears in size range between 200 and 600 nm and enhances the bimodality of the particle number distribution after cloud processing. Furthermore, the cloud-produced mass is estimated to increase total light scattering, bsp, by 18 to 24%. The scattering efficiency of the dry, cloud-generated aerosol is 5.0±0.3 m2 g−1 and increases to 7.4±0.7 m2 g−1 when adjusted to 90% relative humidity by incorporating particle hygroscopicity data.  相似文献   

19.
Measurements of aerosol physical, chemical and optical parameters were carried out in Guangzhou, China from 1 July to 31 July 2006 during the Pearl River Delta Campaign. The dry aerosol scattering coefficient was measured using an integrating nephelometer and the aerosol scattering coefficient for wet conditions was determined by subtracting the sum of the aerosol absorption coefficient, gas scattering coefficient and gas absorption coefficient from the atmospheric extinction coefficient. Following this, the aerosol hygroscopic growth factor, f(RH), was calculated as the ratio of wet and dry aerosol scattering coefficients. Measurements of size-resolved chemical composition, relative humidity (RH), and published functional relationships between particle chemical composition and water uptake were likewise used to find the aerosol scattering coefficients in wet and dry conditions using Mie theory for internally- or externally-mixed particle species [(NH4)2SO4, NH4NO3, NaCl, POM, EC and residue]. Closure was obtained by comparing the measured f(RH) values from the nephelometer and other in situ optical instruments with those computed from chemical composition and thermodynamics. Results show that the model can represent the observed f(RH) and is appropriate for use as a component in other higher-order models.  相似文献   

20.
The aerosol optical depth of the atmospheric boundary layer was determined both from direct solar irradiance measurements and from vertical extrapolation of ground-based nephelometry, during a period with cloudless skies and high aerosol mass loadings in the Netherlands. The vertical profile of the aerosol was obtained from lidar measurements. From humidity controlled nephelometry at the ground and humidity profiles from soundings, the scattering aerosol extinction as a function of height was assessed. Integration of the extinction over the aerosol layer gave the aerosol optical depth of the atmospheric boundary layer. This optical depth at the narrow band of the nephelometer was translated to a spectrally integrated value, assuming an Angstrom wavelength exponent of 1.5, a typical value for The Netherlands.It was found that scattering by the boundary layer aerosol contributed on average 80% to the total atmospheric aerosol optical depth. The uncertainty in this value is estimated to be of the order of 13%. Ammonium nitrate dominated the light scattering. This is an anthropogenic aerosol component.The radiative forcing caused by the light scattering of the anthropogenic aerosol was calculated assuming an upward scattered fraction of 0.3. An average value of − 12 W m −2 was found (with an estimated uncertainty of 20%). This corresponds to an absolute increase in the planetary albedo of 0.03, which is equivalent to a 15% increase in the local planetary albedo of 0.2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号