首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface measurements of aerosol physical properties were made at Anantapur(14.62°N,77.65 °E,331 m a.s.l),a semiarid rural site in India,during August 2008-July 2009.Measurements included the segregated sizes of aerosolsas as well as total mass concentration and size distributions of aerosols measured at low relative humidity(RH<75%) using a Quartz Crystal Microbalance(QCM) in the 25-0.05 μm aerodynamic diameter range.The hourly average total surface aerosol mass concentration in a day varied from 15 to 70 μg m-3,with a mean value of 34.02±9.05μgm-3 for the entire study period.A clear diurnal pattern appeared in coarse,accumulation and nucleation-mode particle concentrations,with two local maxima occurring in early morning and late evening hours.The concentration of coarse-mode particles was high during the summer season,with a maximum concentration of 11.81±0.98μgm-3 in the month of April,whereas accumulationmode concentration was observed to be high in the winter period contributed >68% to the total aerosol mass concentration.Accumulation aerosol mass fraction,A f(=Ma/Mt) was highest during winter(mean value of Af~0.80) and lowest(Af~0.64) during the monsoon season.The regression analysis shows that both R eff and R m are dependent on coarse-mode aerosols.The relationship between the simultaneous measurements of daily mean aerosol optical depth at 500 nm(AOD500) and PM 2.5 mass concentration([PM2.5]) shows that surface-level aerosol mass concentration increases with the increase in columnar aerosol optical depth over the observation period.  相似文献   

2.
北京雾、霾天细粒子质量浓度垂直梯度变化的观测   总被引:9,自引:3,他引:6  
近年来北京城市区域雾霾天气显著增加,不仅严重影响工农业生产和交通运输,还严重影响人体健康.2007年夏秋季节,北京325 m气象塔8、80和240m平台梯度观测结果表明,雾、霾、晴三种典型天气状况大气细粒子质量浓度垂直分布各有特点,雾天(11月5~6日)低层浓度明显偏高,6日从低到高3层PM2.5(空气动力学直径小于等于2.5μ的大气气溶胶)浓度日均值分别为352.6±79.3、224.7±69.0、214.8±32.8 μg·m~(-3);霾天(8月19~20日)细粒子上下混合均匀,19日从低到高3层PM2.5浓度分别为89.8±29.3、88.9±29.8、90.0±31.7 μg·m~(-3);晴天(8月22~23日)细粒子昼夜变化明显,夜间在80 m高度出现明显分层,23日80 m以下平均值为32.6±13.1μg·m~(-3),240 m平均值为27.4±13.5μg·m~(-3).雾天细粒子主要来源于局地,霾天细粒子污染表现为时空分布十分均匀的城市群区域污染特征且污染物积累;连续晴天细粒子明显被清除.  相似文献   

3.
广州地区旱季一次典型灰霾过程的特征及成因分析   总被引:18,自引:1,他引:17  
通过研究2009年11月广州市气溶胶颗粒物质量浓度(PM10、PM2.5、PM1)、黑碳浓度、散射系数(Scatter)等大气成分要素,以及微波辐射计、激光雷达及风廓线雷达所探测的风、温、湿等边界层结构,统计分析广州旱季一次典型灰霾过程(2009年11月23—29日)中气溶胶颗粒物及其光学特性的时空变化特征,并配合天气形势背景、边界层结构对其形成原因进行详细分析。在典型灰霾过程中,黑碳浓度高达58.7μg/m3,散射系数高达1 902.7 Mm-1,PM10浓度高达423.5μg/m3,PM2.5浓度高达355.7μg/m3,PM1浓度高达286.5μg/m3。通过对同期的气象条件分析表明在广州地区旱季,区域性污染过程,特别是灰霾天气的形成具有以下三种气象条件:大气边界层高度较低;高压变性出海的天气形势与之密切相关;在偏东和偏南气流带来的高湿度环境下,气溶胶吸湿增长效应显著,导致出现严重灰霾天气。  相似文献   

4.
天津夏季大气消光性质的研究   总被引:2,自引:0,他引:2  
利用2010年夏季天津城市边界层观测站颗粒物、黑碳气溶胶、氮氧化物(NOX)浓度、地面能见度和气象梯度观测资料,分析了天津夏季大气消光特性及低能见度事件产生的原因。结果表明,天津夏季主要污染物为PM10和PM2.5,大气气溶胶消光系数为529.06M.m-1,其中,吸收系数为50.17M.m-1,散射系数为478.89M.m-1,气体吸收系数为7.74M.m-1,气溶胶单次散射反射率为0.87。天津夏季边界层大气状态有近一半的时间为中性或偏稳定层结,当出现中性或偏稳定层结大气时则有接近一半的情况出现低能见度事件(能见度<5km),影响人们的日常生活。  相似文献   

5.
In this study, a regional air quality model system (RAQMS) was applied to investigate the spatial distributions and seasonal variations of atmospheric aerosols in 2006 over East Asia. Model validations demonstrated that RAQMS was able to reproduce the evolution processes of aerosol components reasonably well. Ground-level PM10 (particles with aerodynamic diameter ≤10 μm) concentrations were highest in spring and lowest in summer and were characterized by three maximum centers: the Taklimakan Desert (~1000 μg m-3), the Gobi Desert (~400 μg m-3), and the Huabei Plain (~300 μm-3) of China. Vertically, high PM10 concentrations ranging from 100 μg m-3 to 250 μg m-3 occurred from the surface to an altitude of 6000 m at 30o--45oN in spring. In winter, the vertical gradient was so large that most aerosols were restricted in the boundary layer. Both sulfate and ammonium reached their highest concentrations in autumn, while nitrate reached its maximum level in winter. Black carbon and organic carbon aerosol concentrations reached maximums in winter. Soil dust were strongest in spring, whereas sea salt exerted the strongest influence on the coastal regions of eastern China in summer. The estimated burden of anthropogenic aerosols was largest in winter (1621 Gg) and smallest in summer (1040 Gg). The sulfate burden accounted for ~42% of the total anthropogenic aerosol burden. The dust burden was about twice the anthropogenic aerosol burden, implying the potentially important impacts of the natural aerosols on air quality and climate over East Asia.  相似文献   

6.
华北平原大气污染与低能见度状况一直是人们关切的问题.本文通过分析2014-2017年PM2.5化学成分的浓度和消光效果,研究了华北平原典型城市保定市的大气污染特征.结果表明,PM2.5组分的年均浓度显示下降趋势,水溶性无机离子,碳质气溶胶和金属元素分别减少了11 μg m-3,23μgm-3和1796 ng m-3.NH4+,NO3-和SO42-是PM2.5污染的主要污染物,三者之和占总离子浓度的82.9%.基于IMPROVE方程对细颗粒物进行重构,在观测期间PM2.5质量浓度平均为93±69μgm-3,春季,夏季,秋季和冬季的消光系数分别为373.8±233.6 M m-1,405.3±300.1 M m-1,554.3±378.2 M m-1和1005.2±750.3 M m-1.硫酸铵,硝酸铵和有机物对消光的贡献最大,不同季节下占比达55%~77%.通过PM2.5组分进行重构,利用IMPROVE算法计算得到Rbsca,用能见度测量值转换得到Vbsca,二者具有较高的相关性(r2=0.84);但存在Vbsca的高值被低估,Vbsca的低值被高估的现象;特别是当Rbsca>1123 M m-1(对应能见度约小于2.0 km)时,Vbsca的值被低估了17.6%.高浓度PM2.5和高湿度对IMPROVE算法结果有显著的影响.  相似文献   

7.
Precipitation scavenging of aerosol particles is an important removal process in the atmosphere that can change aerosol physical and optical properties. This paper analyzes the changes in aerosol physical and optical properties before and after four rain events using in situ observations of mass concentration, number concentration, particle size distribution, scattering and absorption coefficients of aerosols in June and July 2013 at the Xianghe comprehensive atmospheric observation station in China. The results show the effect of rain scavenging is related to the rain intensity and duration, the wind speed and direction. During the rain events, the temporal variation of aerosol number concentration was consistent with the variation in mass concentration, but their size-resolved scavenging ratios were different. After the rain events, the increase in aerosol mass concentration began with an increase in particles with diameter 0.8 μm [measured using an aerodynamic particle sizer(APS)], and fine particles with diameter 0.1 μm [measured using a scanning mobility particle sizer(SMPS)]. Rainfall was most efficient at removing particles with diameter ~0.6 μm and greater than 3.5 μm. The changes in peak values of the particle number distribution(measured using the SMPS) before and after the rain events reflect the strong scavenging effect on particles within the 100–120 nm size range. The variation patterns of aerosol scattering and absorption coefficients before and after the rain events were similar, but their scavenging ratios differed, which may have been related to the aerosol particle size distribution and chemical composition.  相似文献   

8.
Radiative aerosols are known to influence the surface energy budget and hence the evolution of the planetary boundary layer. In this study, we develop a method to estimate the aerosol-induced reduction in the planetary boundary layer height(PBLH) based on two years of ground-based measurements at a site, the Station for Observing Regional Processes of the Earth System(SORPES), at Nanjing University, China, and radiosonde data from the meteorological station of Nanjing. The observations show that increased aerosol loads lead to a mean decrease of 67.1 W m-2for downward shortwave radiation(DSR) and a mean increase of 19.2 W m-2for downward longwave radiation(DLR), as well as a mean decrease of 9.6W m-2for the surface sensible heat flux(SHF) in the daytime. The relative variations of DSR, DLR and SHF are shown as a function of the increment of column mass concentration of particulate matter(PM2.5). High aerosol loading can significantly increase the atmospheric stability in the planetary boundary layer during both daytime and nighttime. Based on the statistical relationship between SHF and PM2.5column mass concentrations, the SHF under clean atmospheric conditions(same as the background days) is derived. In this case, the derived SHF, together with observed SHF, are then used to estimate changes in the PBLH related to aerosols. Our results suggest that the PBLH decreases more rapidly with increasing aerosol loading at high aerosol loading. When the daytime mean column mass concentration of PM2.5reaches 200 mg m-2, the decrease in the PBLH at 1600 LST(local standard time) is about 450 m.  相似文献   

9.
利用地面细颗粒物(PM2.5)浓度和气象常规观测资料、地基 AERONET观测资料、GFED生物质燃烧排放清单和大气化学—天气耦合模式WRF-Chem,模拟研究了华北地区2014年10月气象要素和大气污染物的时空演变,重点关注北京10月7~11日的一次重霾事件及其天气形势、边界层气象特征、输送路径、PM2.5及其化学成分浓度变化等特征,以及秸秆燃烧对华北和北京地区细颗粒物浓度和地面短波辐射的影响。与观测资料的对比结果显示,模式可以很好地模拟北京地区地面气象要素和PM2.5质量浓度,考虑秸秆燃烧排放源可以明显改进北京PM2.5浓度模拟的准确性,但在重度污染情况下,模式总体上低估气溶胶光学厚度和高估地面短波辐射。10月7~11日北京地区重霾事件主要是不利气象条件下人为污染物累积和区域输送造成,也受到华北地区南部秸秆燃烧的影响。河南北部、河北南部和山东西部大面积秸秆燃烧释放的气态污染物和颗粒物在南风的作用下输送至北京,秸秆燃烧对北京地区地面PM2.5、有机碳(OC)、硝酸盐、铵盐、硫酸盐和黑碳(BC)的平均贡献率分别为24.6%、36.8%、23.2%、22.6%、7.1%和19.8%,秸秆燃烧产生的气溶胶可以导致北京地面平均短波辐射最大减小超过20 W m-2,约占总气溶胶导致地表短波辐射变化的24%。  相似文献   

10.
The environmental impact of aerosols is currently a hot issue that has received worldwide attention. Lacking simultaneous observations of aerosols and carbon flux, the understanding of the aerosol radiative effect of urban agglomeration on the net ecosystem carbon exchange(NEE) is restricted. In 2009-2010, an observation of the aerosol optical property and CO_2 flux was carried out at the Dongguan Meteorological Bureau Station(DMBS) using a sun photometer and eddy covariance systems. The different components of photosynthetically active radiation(PAR),including global PAR(GPAR), direct PAR(DPAR), and scattered PAR(FPAR), were calculated using the Santa Barbara DISORT Atmospheric Radiative Transfer(SBDART) model. The effects of PAR on the NEE between land-atmosphere systems were investigated. The results demonstrated that during the study period the aerosol optical depth(AOD)reduced the DPAR by 519.28±232.89 μmol photons · m~(-2)s~(-1);, but increased the FPAR by 324.93±169.85μmol photons ·m~(-2)s~(-1);, ultimately leading to 194.34±92.62 μmol photons · m~(-2)s~(-1); decrease in the GPAR. All the PARs(including GPAR,DPAR, and FPAR) resulted in increases in the NEE(improved carbon absorption), but the FPAR has the strongest effect with the light use efficiency(LUE) being 1.12 times the values for the DPAR. The absorption of DPAR by the vegetation exhibited photo-inhibition in the radiation intensity 600 photons · m~(-2)s~(-1); in contrast, the absorptions of FPAR did not exhibit apparent photo-inhibition. Compared with the FPAR caused by aerosols, the DPAR was not the primary factor affecting the NEE. On the contrary, the increase in AOD significantly increased the FPAR, enhancing the LUE of vegetation ecosystems and finally promoting the photosynthetic CO_2 absorption.  相似文献   

11.
To investigate aerosol optical properties in the Beijing metropolitan area,aerosol absorption coefficient(Ab) ,scattering coefficient(Sc) ,and fine particulate matter(PM2.5) were measured in the Beijing urban area from 20 May to 30 August 2009.The average Ab,Sc,single scattering albedo(SSA) ,and PM2.5 concentration were 58.0±39.5 M m-1,343.5±353.7 M m-1,0.80±0.10 and 63.6±50.0-g m-3,respectively,during the observation period.Ab,Sc,and SSA all showed single peak diurnal variations,with their maximum values being measured at 0500,1000,and 1300 local time,respectively.Ab and Sc had a strong positive correlation with PM2.5,and Ab,Sc,and PM2.5 all had positive correlations with relative humidity and negative correlations with wind speed.  相似文献   

12.
The North China Plain(NCP) is a region that experiences serious aerosol pollution. A number of studies have focused on aerosol pollution in urban areas in the NCP region; however, research on characterizing aerosols in rural NCP areas is comparatively limited. In this study, we deployed a TD-HR-AMS(thermodenuder high-resolution aerosol mass spectrometer) system at a rural site in the NCP region in summer 2013 to characterize the chemical compositions and volatility of submicron aerosols(PM_1). The average PM_1 mass concentration was 51.2 ± 48.0 μg m~(-3) and organic aerosol(OA) contributed most(35.4%) to PM_1. Positive matrix factorization(PMF) analysis of OA measurements identified four OA factors, including hydrocarbon-like OA(HOA, accounting for 18.4%), biomass burning OA(BBOA, 29.4%), lessoxidized oxygenated OA(LO-OOA, 30.8%) and more-oxidized oxygenated OA(MO-OOA, 21.4%). The volatility sequence of the OA factors was HOA BBOA LO-OOA MO-OOA, consistent with their oxygen-to-carbon(O:C)ratios. Additionally, the mean concentration of organonitrates(ON) was 1.48-3.39 μg m~(-3), contributing 8.1%–19% of OA based on cross validation of two estimation methods with the high-resolution time-of-flight aerosol mass spectrometer(HRToF-AMS) measurement. Correlation analysis shows that ON were more correlated with BBOA and black carbon emitted from biomass burning but poorly correlated with LO-OOA. Also, volatility analysis for ON further confirmed that particulate ON formation might be closely associated with primary emissions in rural NCP areas.  相似文献   

13.
北京PM1中的化学组成及其控制对策思考   总被引:5,自引:0,他引:5       下载免费PDF全文
通过分析北京城区2007年夏季和秋季、2008年冬季和春季4个季节PM1中硫酸盐、硝酸盐、铵盐、有机物和黑碳等气溶胶化学组成,结合对我国及全球主要区域PM10中上述气溶胶组分及矿物气溶胶组成的评估,发现因受干旱区产生的沙尘和城市逸散性粉尘的共同影响,整个亚洲大陆,尤其是我国的矿物气溶胶浓度与欧美国家城市区域气溶胶总和的平均值相当或更高。我国在重视控制PM2.5等细粒子污染的同时,不应忽视对PM2.5~PM10之间粗粒子的控制力度;北京城区春、夏、秋、冬的PM1平均质量浓度分别约为94,74,66 μg·m-3和91 μg·m-3,全年平均约为81 μg·m-3,其中有机物气溶胶约占41%,硫酸盐占16%,硝酸盐占13%,铵盐占8%,黑碳和氯化物分别占11%和3%,细矿物气溶胶约贡献7%。对于PM2.5污染的控制,关键是消减PM1中主要气溶胶粒子的排放与转化,其中对有机物的控制更为重要,尽管对于北京而言进一步污染控制的难度已经很大。从科学上来说,即使我国的控制措施能百分之百实现,也很难稳定地达到欧美国家的空气质量水平,因为我国本底矿物气溶胶的浓度较高。应进一步评估各项控制措施的适用性,并制定考虑我国人群健康状况的PM2.5空气质量标准。  相似文献   

14.
利用2006年3~5月天空辐射计观测数据反演得到北京地区春季大气气溶胶光学性质参数,包括大气气溶胶光学厚度(0.5μm)、Angstrm指数、单次散射反射比和粒子谱分布特征。结果表明:北京地区春季气溶胶平均光学厚度0.67,Angstrm指数0.54,单次散射比0.88,粒子吸收性质较弱,粒子谱呈双峰形,以粗粒子为主,粗、细模态粒子粒径分别集中在0.17μm和7.7μm左右。相比2004年此次观测期间气溶胶粒径较大,粒子体积浓度较高,散射作用在其消光特性中的比重略有下降。光学厚度日变化呈单峰型,日间单次散射比随时间逐渐递减,Angstrm指数在上午递减趋势明显,午后变得稳定。对同时观测的天空辐射计与CE-318不同波长光学厚度结果进行比较,结果显示两者得到的光学厚度相关性很好,各波长小时平均结果的相对误差小于7%。  相似文献   

15.
应用WRF—Chem(Weather Research and Forecasting Model with Chemistry)模式模拟研究了2007年8月京津冀地区近地面O3、NO2、PM2.5浓度的时空变化特征,将模拟结果与观测数据进行详细对比,结果表明,模式可以较好地模拟O3、PM2.5,浓度的空间分布和时间变化特征,成功再现了8月33和PM2.5的几次积累增加过程,其中O,的模拟值与观测值的相关系数为0.69~0.86,PM2.5的相关系数为0.44~0.49,但模式对NO2的模拟相对较差,相关系数为0.27~0.43。北京、天津地区为O3月均低值区,月均体积浓度约30×10^-9,渤海及京津冀以西地区O3月平均体积浓度可达60×10^-9;PM2,呈现南高北低的分布特征,变化范围为120~240μg/m3。14时月平均03体积浓度在北京、天津地区低于周边地区,约为60×10^-9;而PM2.5质量浓度在环渤海地区和河北南部较高,为100~120μg/m^3。8月17日北京出现一次典型的高浓度O,污染事件,14时北京地区温度达到33℃,O3体积浓度为80×10^-9~110×10^-9。在局地排放、化学反应和外来输送的共同作用下,渤海西岸和北岸PM2.5的质量浓度超过120μg/m3,其中二次气溶胶质量浓度为50~100μg/m3,一次排放人为气溶胶质量浓度为10~20μg/m3,海盐质量浓度为1~7μg/m3,二次气溶胶是该地区PM2.5的主要贡献者。  相似文献   

16.
The air quality model system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) coupled with an aerosol optical/radiative module was applied to investigate the impact of different aerosol mixing states (i.e., externally mixed, half externally and half internally mixed, and internally mixed) on radiative forcing in East Asia. The simulation results show that the aerosol optical depth (AOD) generally increased when the aerosol mixing state changed from externally mixed to internally mixed, while the single scattering albedo (SSA) decreased. Therefore, the scattering and absorption properties of aerosols can be significantly affected by the change of aerosol mixing states. Comparison of simulated and observed SSAs at five AERONET (Aerosol Robotic Network) sites suggests that SSA could be better estimated by considering aerosol particles to be internally mixed. Model analysis indicates that the impact of aerosol mixing state upon aerosol direct radiative forcing (DRF) is complex. Generally, the cooling effect of aerosols over East Asia are enhanced in the northern part of East Asia (Northern China, Korean peninsula, and the surrounding area of Japan) and are reduced in the southern part of East Asia (Sichuan Basin and Southeast China) by internal mixing process, and the variation range can reach 5 W m-2. The analysis shows that the internal mixing between inorganic salt and dust is likely the main reason that the cooling effect strengthens. Conversely, the internal mixture of anthropogenic aerosols, including sulfate, nitrate, ammonium, black carbon, and organic carbon, could obviously weaken the cooling effect.  相似文献   

17.
The data, measured by a three-wavelength Integrating Nephelometer over Lanzhou City during the winters of 2001/2002 and 2002/2003 respectively, have been analyzed for investigating the scattering properties of atmospheric aerosols and exploring their relationship and the status of air pollution. The aerosol particle volume distribution is inverted with the measured spectral scattering coefficients. The results show that the daily variation of the aerosol scattering coefficients is in a tri-peak shape. The average ratio of backscattering coefficient to total scattering coefficient at 550 nm is 0.158; there exists an excellent correlation between the scattering coefficients and the concentration of PM10. The average ratio of the concentration of PM10 to the scattering coefficients is 0.37g m^-2, which is contingent on the optical parameters of aerosol particles such as the size distribution, etc.; an algorithm is developed for inverting the volume distribution of aerosol particles by using the histogram and Monte-Carlo techniques, and the test results show that the inversion is reasonable.  相似文献   

18.
临安大气气溶胶理化特性季节变化   总被引:4,自引:2,他引:4       下载免费PDF全文
分别利用碳成分分析仪、离子色谱仪和原子吸收光谱仪等获取浙江省临安地区大气气溶胶在春、夏、秋、冬四季的质量浓度、离子与碳成分特性,并对不同粒径气溶胶成分分布特点作了较详细分析。结果表明:气溶胶质量浓度、可溶性离子浓度以及碳成分浓度具有明显的季节变化趋势。整个尺度范围内,气溶胶质量浓度季节变化特点为春季浓度最高,达到534 μg/m3;冬季次之,质量浓度为117.21 μg/m3;夏季浓度最低,平均为65.7 μg/m3;秋季质量浓度98.6 μg/m3。可溶性离子成分在气溶胶中所占比例具有明显的季节性,其中夏季最高为49.4%,春季最低为11.3%。硫酸根离子SO42-和氨根离子NH4+和硝酸根离子NO3- 3种离子浓度之和约占离子总量的75%~83%。受温度影响,硝酸根离子NO3-浓度随季节变化幅度较大,夏季平均浓度为1.7 μg/m3, 冬季平均浓度为11.5 μg/m3,是夏季浓度的6.8倍。碳浓度分布特点显示,气溶胶中元素碳浓度春季最高,夏季最低。有机碳浓度春季最高,冬季最低。气溶胶粒度分布特点也非常明显。四季中粒径小于11 μm(PM11)的气溶胶均占气溶胶总量的90%以上,粒径小于2.1 μm(PM2.1)的气溶胶占到气溶胶总量的53%以上。可溶性离子在粒径小于2.1 μm气溶胶颗粒中,以硫酸根离子、氨根离子和硝酸根离子为主。碳成分尺度分布特征为颗粒越小,有机碳及元素碳浓度越高。  相似文献   

19.
Industrial pollution has a significant effect on aerosol properties in Changsha City, a typical city of central China. Therefore, year-round measurements of aerosol optical, radiative and chemical properties from 2012 to 2014 at an urban site in Changsha were analyzed. During the observation period, the energy structure was continuously optimized, which was characterized by the reduction of coal combustion. The aerosol properties have obvious seasonal variations. The seasonal average aerosol optical depth (AOD) at 500 nm ranged from 0.49 to 1.00, single scattering albedo (SSA) ranged from 0.93 to 0.97, and aerosol radiative forcing at the top of the atmosphere (TOA) ranged from ?24.0 to 3.8 W m?2. The chemical components also showed seasonal variations. Meanwhile, the scattering aerosol, such as organic carbon, SO42?, NO3?, and NH4+ showed a decrease, and elemental carbon increased. Compared with observation in winter 2012, AOD and TOA decreased by 0.14 and ?1.49 W m?2 in winter 2014. The scattering components, SO42?, NO3? and NH4+, decreased by 12.8 μg m?3 (56.8%), 9.2 μg m?3 (48.8%) and 6.4 μg m?3 (45.2%), respectively. The atmospheric visibility and pollution diffusion conditions improved. The extinction and radiative forcing of aerosol were significantly controlled by the scattering aerosol. The results indicate that Changsha is an industrial city with strong scattering aerosol. The energy structure optimization had a marked effect on controlling pollution, especially in winter (strong scattering aerosol).  相似文献   

20.
兰州市大气气溶胶的特征及其对呼吸道疾病的影响   总被引:7,自引:1,他引:6  
根据2000年6月至2001年5月兰州市大气气溶胶的监测资料,分析了兰州市大气气溶胶的浓度、尺度谱分布及其年、月、日变化规律,进而探讨了大气气溶胶对人体舒适度的影响,分析了大气气溶胶浓度与呼吸道疾病发病人数之间的关系。结果表明:PM10月均浓度与同期呼吸道疾病月发病人数的变化趋势基本一致,两者呈显著性正相关;当PM10日均浓度明显升高后1~2 d,呼吸道疾病发病人数也随之增多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号