首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Study on abundance variation of pteropods in the East China Sea   总被引:5,自引:0,他引:5  
1 Introduction Pteropoda, an order of marine pelagic mollusks, belongstoClassGastropoda,SubclassOpisthobranchia. The speciesofthisorder can be found all over the world buttheyareusuallyabundantinthecontinentalshelfand continental slope area. As fish diets…  相似文献   

2.
东海浮游介形类生态适应分析   总被引:2,自引:0,他引:2  
徐兆礼 《海洋学报》2007,29(5):123-131
根据1997~2000年东海23°30'~33°N,118°30'~128°E海域4个季节海洋调查资料,用浮游介形类物种丰度和同步表层温、盐度数据进行曲线拟合,构造数学模型,计算介形类分布最适温度和盐度值,并参考其地理分布和生态适应特征分析,确定东海浮游介形类主要物种的生态类型.结果表明:在浮游介形类优势种中,后圆真浮萤(Euconchoecia maimai)、短棒真浮萤(E.Chierchiae)、针刺真浮萤(E.aculeata)、细长真浮萤(E.elongata)和齿形海萤(Cypridina dentata)等为亚热带外海种.这些种具有广泛的分布,如果冬、春季在较低水温出现,与东海北部外海暖流带入有密切的关系.腹突拟浮萤(Paraconchoecia decipiens)、猬刺拟浮萤(P.echinata)、棘刺拟浮莹(P.spinifera)、长拟浮萤(P.oblonga)、大浮萤(Conchoecia magna)和葱萤(Porroecia porrecta)等是热带大洋种,这些种主要分布在黑潮暖流、台湾暖流和台湾海峡水域.同心假浮萤(Pseudocon-choecia concentrica)和Paraconchoecia sp.最适温度较低,但地理分布特征显示前者是亚热带外海种,后者是暖温带外海种.所提到介形类其他物种最适盐度大多超过34,但最适温度在15~20℃之间.依据有关文献,这些种在我国从东海到南沙海域都有分布,分布虽广但数量稀少,难有证据表明这些种分布与暖流有密切的关系,是亚热带外海种.  相似文献   

3.
This article studied the diversity of Amphipoda''s environmental adaptation using statistic methodology based on the seasonal investigation data obtained from the East China Sea waters (23°30''-33°N, 118°30''-128°E) from 1997 to 2000. Fifty-four Amphipoda species were identified:among which eight species could stand a temperature difference over 10℃ and eight species could tolerate the temperature gap ranged from 5 to 10℃; while only six species could stand the salinity fluctuation more than 5. Based on above facts as well as calculated optimal temperature and salinity we divided all Amphipoda species into four groups:(1) eurythermic and euryhalinous species including Lestrigonus schizogeneios, L. macrophthalmus, Tetrathyrus forcipatus, L. bengalensis and Hyperioides sibaginis; (2) temperate-warm species containing Hyperoche medusarum, Parathemisto gaudichaudi, Themisto japonica and Hyperia galba; (3) oceanic tropical species consisted of Oxycephalus clausi, Lycaea pulex, Eupronoe minuta, Simorhychotus antennarius, O. poreelus, Platyscelus ovoides and Rhabdosoma ahitei; (4) subtropical species involving one nearshore subtropical water species (Corophium uenoi) and 37 offshore subtropical ones. Compared with other zooplankton such as Euphausia and Chaetognatha, Amphipoda was characterized by low dominance but wide distribution in the East China Sea, and this could be ascribed to its high adaptation diversity.  相似文献   

4.
5.
On the basis of the four-season investigation in 23°30′~33°N and 118°30′~128°E of the East China Sea from 1997 to 2000, the seasonal distribution of Calanus sinicus was studied with aggregation intensity, regression contribution and other statistical methods. It was inferred that C. sinicus’s predominance presented from winter to summer, especially in spring and summer, because its dominance amounted to 0.62 and 0.29 respectively. The percent of its abundance in copepod abundance was 76.71% in summer, greater than 66.60% in spring, greater than 19.02% in winter, greater than 4.02% in autumn. The occurrence frequency in winter and spring was 83.08% and 93.89%, higher than that in summer and autumn, 76.71% and 73.87%. Compared with other dominant species of copepods, C. sinicus’s contribution to the copepod abundance was obviously greater than that of the other species in winter, summer and spring, but smaller in autumn. C. sinicus tended to have an aggregated distribution. The clumping index peaked in summer (50.19), followed in spring (19.60), declined in autumn (13.18) and was the lowest in winter (3.04). The abundance changed in different seasons and areas, relating to temperature but not salinity in spring and autumn, to salinity but not temperature in summer; to neither temperature nor salinity in winter. In spring and summer, its high abundance area was often located in the mixed water mass formed by the Taiwan Warm Current, the Huanghai Sea Cold Water Mass, the coastal water masses and the Changjiang Dilute Water. In spring and autumn, its abundance was affected by the warm current, as well as the runoff from continental rivers affected it in summer. It can be inferred that C. sinicus was adapted to wide salinity and temperature, as a euryhalinous and eurythermous species in the East China Sea.  相似文献   

6.
On the basis of seasonal investigations at 23°30'~33°00'N,118°30'~128°00'E of the East China Sea during 1997~2000,dynamics on the density and diversity of Ostracoda was discussed.Results showed that totally 26 species were identified.The Ostracoda diversity was opposite to the change of its density in most seasons which reflected an uneven assignment of Ostracoda density among its different species.The Ostracoda density was 0.70 ind./m3 in spring,1.72 ind./m3 in summer,2.57 ind./m3 in autumn and 0.90 ind./m3 in winter.Euconchoecia chierchiae in spring and winter,Euconchoecia maimai in summer and Cypridina dentata in autumn were main dominant species in each season.The Ostracoda density did not show an obvious linear relationship with the hydrologic factors in summer and autumn,but was related to the surface salinity in spring and the surface temperature in winter.Its high density areas mainly distributed in the north offshore in all the seasons while in the south offshore in winter and in spring,and the south nearshore in summer and autumn,implied the zooplankton was a typical warm water animal,whose high density distribution in autumn were located in a similar position to Todarodes pacificus,Navodon Septentrionalis,Scomber japonicus and other fishes in the sea,so as to be an important indicator for fishing ground.The main species dominating in Ostracoda now are different from the species twenty years ago probably attributes to global warming.  相似文献   

7.
1 IntroductionAmphipoda, an order of marine pelagic shell-fish, belongs to class Crustacea, subclass Malacost-raca (Chen and Shi,2002). Species of this ordercan be found all over the world, especially in tropi-cal and subtropical oceans. As fish diets, th…  相似文献   

8.
东海浮游翼足类(Pteropods)数量分布的研究   总被引:10,自引:1,他引:10  
徐兆礼 《海洋学报》2005,27(4):148-154
根据1997~2000年东海海域23°30'~33°00'N,118°30'~128°00'E的4个季节海洋调查资料,运用定量、定性方法,探讨了东海浮游翼足类总丰度的平面分布、季节变化及变化的动力学机制.结果表明,东海翼足类总丰度和出现频率有明显的季节变化,均为秋季最高,夏季次之,春季最低;总丰度在各个季节基本上呈东海南部高于北部、外海高于近海的分布趋势;春季的尖笔帽螺(Creseis acicula)、夏季的锥笔帽螺(Creseis virgula)、秋季的蝴蝶螺(Desmopterus papilio)和冬季的马蹄螔螺(Limacina trochiformis)是导致总丰度季节变化的最主要的种类;冬、春和夏3个季节丰度变化及4季总丰度的变化同表层或10m层水温有非常显著的线性相关关系,与底层温度及盐度的相关关系不显著.夏季翼足类高丰度区位于台湾暖流与黑潮暖流的分支处;从夏季到秋季,翼足类随着台湾暖流向北扩展,并在与长江冲淡水,闽浙沿岸水团,黄海水团等交汇处形成高丰度(大于500×10-2个/m3)和较高丰度(250×10-2~500×10-2个/m3)分布区.水温和海流是影响东海翼足类总丰度分布的主要环境因素.  相似文献   

9.
春季东海不同水域的表层叶绿素含量   总被引:5,自引:0,他引:5  
利用1994年春季在东海及台湾海峡首次获得的表层水中绿素含量大面走航连续观测资料,结合温盐分布及以往的有关东海及台湾海峡的海流和上升流的结论,分析了春季东海表层叶绿素含量在不同水域的分布特征。结果表明,叶绿素含量分布与水文结构关系密切。叶绿素含量值随不同海流流域而变,但在各海流流域内基本不变,黑潮表层水的叶绿素含量最低,其次是台湾暖流表层水,长江冲淡水与江浙沿岸流域的叶绿素含量较高;黑潮西侧弱流剧  相似文献   

10.
A PRELIMINARY STUDY ON FAUNA OF PLANKTONIC COPEPODS IN THE CHINA SEAS   总被引:2,自引:0,他引:2  
A total of 345 species of planktonic copepods have hitherto been found from the China Seas. Among them, tropical and warm-water species are dominant. The similar pattern of geographical distribution of these species is ascribed to the common influence of the coastal currents, the Kuroshio, and the South China Sea warm current. The number of species of planktonic copepods along the coastal waters of China decreases with increasing latitude, and increases with increasing longitude. The composition of the copepod fauna in the China Seas shows that the Bohai Sea and the northern Huanghai Sea belong to the north temperate zone fauna, that the South China Sea, offshore areas of the East China Sea and the southeastern part of the Taiwan Strait belong to the tropical fauna, and the western part of the Taiwan Strait and the northwestern part of the East China Sea belong to the mixed distribution area of tropical and subtropical fauna.  相似文献   

11.
12.
The coastal ecosystems are highly sensitive to climate change and are usually influenced by variations in phytoplankton communities and water physiochemical factors. In the present study, the phytoplankton community, chlorophyll a(Chl a) and their relationships with environmental variables and dimethylsulfide(DMS) and dimethylsulfoniopropionate(DMSP) were investigated in spring 2017(March 24 to April 16) in the East China Sea(26.0°–33.0°N, 120.0°–128.0°E) and southern Yellow Sea(31.0°–36.0°N, 12...  相似文献   

13.
INTRODUCTIONEnvironmentalpollutionhasbecomeaveryseriousproblemwiththerapidindustrializa tion .Thepollutioncausedbypollutantssuchasnutrients ,heavymetalsandorganiccompounds(includingpesticides)etc .coulddamagethewell balancedcirculationofnaturalecosysteman…  相似文献   

14.
东海中南部鱼类群聚结构的空间特征   总被引:7,自引:0,他引:7  
依据1997~2000年东海中南部(25°30'~29°00'N,120°30'~127°00'E)四个季节的底拖网调查资料,运用聚类分析和非度量多维标度(NMDS)的方法分析了东海中南部鱼类群聚结构的空间特征,结果显示,东海中南部鱼类群聚大致可分为近海群聚和外海群聚.在不同季节两个群聚的种类组成保持了相对的稳定,并且具有一定的持续性.近海群聚的特征种类为带鱼、发光鲷等.外海群聚的特征种类主要为黄鳍马面鲀、短尾大眼鲷、黄鲷等.鱼类群聚与环境因子水深有较好的相关关系.  相似文献   

15.
本文根据2004~2006年闽东沿岸(26°30′00″~27°10′00″N,119°59′40″~120°33′00″E)暖水季节6个航次的浮游动物调查资料,比较分析研究了调查区暖水季节的浮游动物种类组成、数量分布和优势种变化.3年调查结果表明,该海域出现的浮游动物种类数分别为151、127和144种,种类组成变化不大,强额孔雀哲水蚤(Pavocalanus crassirostri)、小拟哲水蚤(Paracalanus parvus)等在各航次中都占据明显优势地位;调查期间该海域的浮游动物群落面貌以近岸暖水种和外海热带种为主,这两类生态类群的浮游动物构成本海区的主要优势类群;生物量分布不均匀,总体平面分布趋势是:北高南低,从沿岸到近海,浮游动物生物量随盐度上升而下降;优势种分布极不均匀,聚块现象明显.  相似文献   

16.
东海西部陆架海域水团的季节特征分析   总被引:3,自引:1,他引:2  
On the basis of the CTD data and the modeling results in the winter and summer of 2009, the seasonal characteristics of the water masses in the western East China Sea shelf area were analyzed using a cluster analysis method. The results show that the distributions and temperature-salinity characteristics of the water masses in the study area are of distinct seasonal difference. In the western East China Sea shelf area, there are three water masses during winter, i.e., continental coastal water(CCW), Taiwan Warm Current surface water(TWCSW) and Yellow Sea mixing water(YSMW), but four ones during summer, i.e., the CCW, the TWCSW, Taiwan Warm Current deep water(TWCDW) and the YSMW. Of all, the CCW, the TWCSW and the TWCDW are all dominant water masses. The CCW, primarily characterized by a low salinity, has lower temperature, higher salinity and smaller spatial extent in winter than in summer. The TWCSW is warmer, fresher and smaller in summer than in winter, and it originates mostly from the Kuroshio surface water(KSW) northeast of Taiwan, China and less from the Taiwan Strait water during winter, but it consists of the strait water and the KSW during summer. The TWCDW is characterized by a low temperature and a high salinity, and originates completely in the Kuroshio subsurface water northeast of Taiwan.  相似文献   

17.
On the basis of the data of oceanographic survey in the East China Sea in four seasons during 1997-2000 (23°30'~33°00'N, 118°30'-128°E), the variation of total biomass and diet biomass of zooplankton and their spatial-temporal distribution and relationship with the fishing ground of Engraulis japonicus are approached and analyzed. The results show that the average biomass is 65.32 mg/m3 in four seasons, autumn (86.18 mg/m3) being greater than summer (69.18 mg/m3) greater than spring (55.67 mg/m3) greater than winter (50.33 mg/m3). The average value of diet zooplankton biomass is 40.9 mg/m3. The trends of horizontal distribution both in the total biomass and the diet biomass of zooplankton are similar. The high biomass region (250-500 mg/m3) is very limited, only accounting for 1% of the investigation area. Seasonal variation of the biomass is very remarkable in the west and north parts of East China Sea coastal waters ( 29°30'N,125°E). The horizontal distribution of diet zooplankton depends on the  相似文献   

18.
On the basis of the data of oceanographic survey in the East China Sea in four seasons during 1997~2000 (23°30′~33°00′N,118°30′~ 128°E), the variation of total biomass and diet biomass of zooplankton and their spatial-temporal distribution and relationship with the fishing ground of Engraulis japonicus are approached and analyzed. The results show that the average biomass is 65.32 mg/m3 in four seasons, autumn (86.18 mg/m3) being greater than summer (69.18 mg/m3) greater than spring (55.67 mg/m3) greater than winter (50.33 mg/m3). The average value of diet zooplankton hiomass is 40.9 mg/m3.The trends of horizontal distribution both in the total biomass and the diet biomass of zooplankton are similar. The high biomass region (250~500 mg/m3) is very limited, only accounting for 1% of the investigation area. Seasonal variation of the biomass is very remarkable in the west and north parts of East China Sea coastal waters (29°30'N,125°E). The horizontal distribution of diet zooplankton depends on the abundance distribution of crustacean. The distribution of diet zooplankton is related to the fishing ground of Engraulis japonicus and the high-density area of young fish and larval. In spring, the central fishing ground of Engraulis japonicus (>100 kg/h) and the high-density area of young fish and larval (>100 individuals per net) are located at the same place of high-density (100~250 mg/m3)area of diet zooplankton in the middle-southern part of East China Sea or the edge of its waters.  相似文献   

19.
The macroalgal blooms of floating brown algae Sargassum horneri are increasing in the Yellow Sea and East China Sea during the past few years. However, the annual pattern of Sargassum bloom is not well characterized. To study the developing pattern and explore the impacts from hydro-meteorologic environment, high resolution satellite imageries were used to monitor the distribution, coverage and drifting of the pelagic Sargassum rafts in the Yellow Sea and East China Sea from September 2019 to Au...  相似文献   

20.
The distribution of ostracods and benthonic foraminifers in the China sea area is briefly reviewed from the paleobio-geographic viewpoint in this paper. Three regions can be distinguished in the area on the basis of modern distribution data: Region I (the Huanghai Sea and the Bohai Sea) with cool and temperate forms, Region I (the East China Sea and the northern part of the South China Sea) with subtropical warm-water forms and Region Ⅲ (central and southern parts of the South China Sea) with larger foraminifers and other tropical warm-water forms. The occurrence of Nummulites-Discocyclira fauna in the Eocene deposits of the East China Sea indicates a northward extension of tropical zoogeographical region at the time, whereas the distribution pattern of the Miocene Nephrolepidina-Miogypsiua-Austrotrillina fauna in the South China Sea resembles that of the present larger-foraminiferal fauna. In the South China Sea and Taiwan, a warm-water fauna with Asterorotalia and Pseudorotalia first appeared in late  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号