首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
ABSTRACT

The behavior of loose anisotropically consolidated calcareous sand obtained from an island in the South China Sea was investigated under undrained monotonic and cyclic loading in a hollow cylinder torsional apparatus. The tests were conducted on specimens which consolidated under various initial effective confining pressures and consolidation stress ratios. The monotonic test results show that the failure and phase transformation line are essentially independent of the consolidation conditions, while the initial contractive tendency of the specimens decreases with an increasing consolidation stress ratio. During monotonic loading of the anisotropically consolidated specimens, a same major principal stress direction is observed at the constant stress ratio lines up to the phase transformation line, irrespective of initial effective confining pressure. The cyclic strength of the sand increases with an increasing consolidation stress ratio. Moreover, a pronounced stress dependence is observed in the sand with higher consolidation stress ratio. During cyclic loading, the generated excess pore water pressure presents considerable fluctuations. The normalized terminal excess pore water pressure is described as a function of consolidation stress ratio. The tests show that the particle shape, rather than particle crushing, plays an important role in the monotonic and cyclic behaviors of the calcareous sand.  相似文献   

2.
Conventional drainage consolidation methods cause significant energy consumption and environmental issues. In this paper, a method combining siphon drainage and surcharge loading is proposed to drain water from soft soil with vertically installed prefabricated vertical drains (PVDs) and a siphon tube. To investigate the availability and effectiveness of this method, a laboratory physical modeling test was conducted to investigate the drainage and consolidation behavior. The laboratory modeling test results of this method were compared with the calculated results of the ideal sand-drained ground consolidation method to clarify the advantages and mechanism of this method. Comparison results show that the pore pressure and settlement in the proposed method developed faster than the calculation results of ideal sand-drained consolidation theory. About 10?m thickness of unsaturated zone can be formed by siphon drainage which produce a surcharge loading effect on the soil below the flow profile. Drainage is a very slow process in soft soil, and siphon drainage can work continually. Siphon drainage combined with surcharge loading is potentially a good alternative to drain water from soft clay economically and environmentally.  相似文献   

3.
Vacuum loading has been examined as a way of preparing uniformly consolidated soft claysamples.The facility and loading procedure are described in this paper.An analytical solution to the threedimensional consolidation equation is derived for estimating the degree of consolidation of the soil samplewith vacuum loading.The given example shows that the predicted degree of consolidation of a soft claybulk with vacuum loading is close to that measured in the consolidation process.  相似文献   

4.
Although the uplift behavior of offshore plate anchors under undrained conditions has been investigated well in the past, studies on the behavior of anchors under long-term sustained loading are in relatively few numbers. The time required for consolidation under sustained load is important because the shear strength of soil changes after dissipation of excess pore pressure. In this paper, small strain finite-element analyses have been performed to investigate the consolidation time history above and beneath strip anchors. The modified cam clay plasticity constitutive model is used for modeling coupled pore fluid stress analysis. The effects of magnitude of preloading with embedment level have been studied. As expected, the FE results have shown that excess pore pressure dissipation time for soil above the anchor increased with the increase in embedment depth and the magnitude of preload. Rapid dissipation of negative excess pore pressure beneath the anchor was observed with increasing embedment depth, if the preload magnitude is equal to or more than 60% of the undrained capacity. Observed consolidation responses are presented as nondimensional design charts and simplified equations for ease of practice.  相似文献   

5.
The large amount of wastes is generated in metropolitan area where population is heavily concentrated. As a result, treatment of wastes became a social problem and geotechnical problems related to landfill have emerged in Korea. Settlement behavior of waste landfill is similar to behavior of peat that possesses relatively small time-dependent secondary compression alongside large initial compression. A number of researchers published their own settlement computations. However, accurate computation method for waste-reclaimed landfill has yet to be determined as the settlement mechanism is very complicated. Hence, it is important to examine the accurate settlement behavior of reclaimed ground by comparing the material properties from laboratory test and field monitoring and comparing the results with the theoretical equation. This study determines the consolidation coefficients according to the change of organic contents through the total volume reduction in fresh waste layer and initial void ratio change and examines the feature of settlement in each load stage. Moreover, the article attempts to investigate the characteristics of consolidation of the relevant reclaimed landfill and to determine the suitability of the equation by comparing the variables in theoretical equations obtained from the laboratory test and field monitoring. Moreover, to verify the compression characteristics of the waste-reclaimed landfill upon loading, consolidation test results were analyzed to conduct index study on the consolidation characteristics of the waste-reclaimed landfill.  相似文献   

6.
Istanbul, the largest city in Turkey and one of the major metropolitan areas in the world, cleaned one of its environmentally polluted areas—Golden Horn—by dredging 5 million m3 of the bottom sediments and pumping the resulting sludge to a storage area behind a dam built at an abandoned rock quarry site in Alibey district. The reclamation of the land that formed over the storage area of Golden Horn dredged material is socially and economically very desirable. In this paper, results from experimental studies that are focused on determining the shear strength behavior of the dredge material and undisturbed soil are presented. Slurry consolidometer test, large model tests and small model tests are used to consolidate the dredged soil samples from Halic to simulate the natural consolidation behavior of these soils. Shear strength parameters are determined by laboratory vane tests; unconfined compression tests; undrained-unconsolidated (UU) and consolidated-undrained (CU) triaxial tests on samples that are obtained through in situ undisturbed samples and laboratory model tank and slurry consolidation. Moreover, the effects of fly ash and lime additives on the undrained shear strength were determined by mixing the materials with the dredged clay from Golden Horn during the model experiments conducted in the laboratory. Based on these findings, equations are proposed that govern the relationships between undrained shear strength and water content value.  相似文献   

7.
A series of model tests were conducted on Perspex-made suction caissons in saturated dense marine sand to study the sand plug formation during extraction. Suction caissons were extracted by pullout loading or by pumping air into the suction caisson. Effects of the pullout rates, aspect ratios and loading ways (monotonic or sustained) on the pullout capacity, and plug formation were investigated. It was found that the ultimate pullout capacity of the suction caisson increases with increasing the pullout rate. The sand plug formation under the pullout loading is significantly influenced by the pullout rate and the loading way. When the suction caisson is extracted at a relatively slow rate, the general sand boiling through the sand plug along the inner caisson wall occurs. On the contrary, the local sand boiling will occur at the bottom of the suction caisson subjected to a rapid monotonic loading or a sustained loading. Test results of the suction caisson extracted by pumping air into the caisson show that the pressure in the suction caisson almost follows a linear relationship with the upward displacement. The maximum pressures for suction caissons with aspect ratios of 1.0 and 2.0 during extraction by pumping air into the caisson are 1.70 and 2.27 times the maximum suction required to penetrate the suction caisson into sand. It was found that the sand plug moves downward during extraction by pumping air into the caisson and the variation in the sand plug height is mainly caused by the outflow of the sand particles from the inside of the suction caisson to the outside. When the suction caisson model is extracted under the pullout rate of 2?mm/s (0.28?mm/s for the prototype), the hydraulic gradient along the suction caisson wall increases to the maximum value with increasing the penetration depth and then reduces to zero. On the contrary, when extracted under the pullout rate of 10?mm/s (1.4?mm/s for the prototype), the hydraulic gradient along the suction caisson wall increases with increasing the pullout displacement. When extracted by pumping air into the caisson, the hydraulic gradient reaches the critical value, and at the same time, the seepage failure occurs around the suction caisson tip.  相似文献   

8.
Strengthening soft foundation by vacuum loading from lower position is a new method of ac-celerating the consolidation of dredger fill.This paper presents the mechanism of soft foundation strength-ening by vacuum loading from lower position and evaluates the effectiveness of this method under variousboundary conditions by means of finite element method(FEM)on the basis of Biot's consolidationtheory.  相似文献   

9.
This article studies the effect of dynamic cyclic loading and surcharge preloading method on the post-construction settlement of low embankments. Soil samples obtained from the soft ground under an embankment were consolidated by surcharge preloading followed by static and dynamic cyclic loading in the odometer. The results show that the consolidation deformation of the soil samples is independent of the frequency of the dynamic cyclic loading, which was simulated to follow the half-sine wave, and this is consistent with the energy concept. The post-construction settlement increases with increasing amplitude of cyclic load and the effectiveness of surcharge preloading depends on the difference between magnitude of surcharge and amplitude of the cyclic load. Based on the consolidation theory combined with the test results, a formula has been proposed to compute the post-construction settlement of a low embankment under cyclic loading.  相似文献   

10.
The bifurcation behavior of an articulated loading platform subjected to harmonic excitation is investigated by the incremental harmonic balance (IHB) method. The platform is modeled as a single-degree-of-freedom (SDOF) non-linear system with piecewise non-linear restoring force characteristics. The elements of the Jacobian matrix and the residue vector arising in the IHB formulations are derived in closed form. The path-following procedure using the arc length continuation method is used to trace the response curves and bifurcation diagrams. The periodic solutions and the subharmonic solutions obtained by the IHB method compare very well with the numerically integrated solutions. The bifurcation points also compare well with the numerically obtained results. The system exhibits chaotic motion through a sequence of period doubling bifurcations. Isolated period 3 solutions are also present. The Lyapunov exponents are computed and the initial condition map corresponding to coexistent attractors are obtained by the interpolated cell mapping (ICM) method.  相似文献   

11.
Abstract

Vacuum preloading with plastic vertical drains has been applied widely to accelerating consolidation of dredger fills. As a result of nonlinear variations in permeability and compression during the process of dredger fill consolidation, an axisymmetric consolidation method for dredger fill treatment using PVD with vacuum is proposed with varied Ru. The effects of Cc/Ck and the loading ratio on the proposed method are discussed. It is found that the difference between the traditional method and proposed method is obvious in the case of large loading ratio (such as dredger fill treated with vacuum preloading). The degree of consolidation in the early phase of consolidation obtained using the proposed method was less than that obtained using the traditional method and the degree of consolidation in the later phase of consolidation obtained using the modified expression was larger than that obtained using the traditional method, as Cc/Ck?<?1. However, opposite trends were observed when Cc/Ck?>?1, the proposed method was closer to the actual situation. The applicability of the proposed method was verified by laboratory and field tests. For the consolidation of dredger fill with high water content, we recommend the adoption of the proposed method for calculating the degree of consolidation.  相似文献   

12.
This paper presents an investigation of the long-term consolidation and strength behavior with fly ash as an additive in improving soft marine clay in Wando, Korea. 0%, 5%, 10%, 20% and 25% of the soil was replaced with fly ash. Consolidation tests were performed as incremental loaded tests. In addition, unconfined compressive strength were determined after 1, 14, 28 and 90 days. A series of forty-two long-term consolidation tests that lasted for 60 days under the constant loading were also conducted. Creep settlements of the blends decreased significantly with an increase in fly ash content. The shear strength properties increased with an increase in fly ash content. Statistical evaluation reveals an excellent correlation between the measured and predicted undrained shear strengths.  相似文献   

13.
Abstract

This article presents an experimental investigation on the dynamic consolidation (DC) drainage behavior of soft marine clays. A sinusoidal harmonic load with different frequencies was applied to simulate the DC method in which the conventional impact load was replaced by the cyclic load. Four geotextile-filter strips were used to form the side drainage channels simulating the wick drain method. A series of loading tests were conducted on soft soil specimens at different confining pressures (i.e., 20, 40, 70, and 100?kPa) and different vibration frequencies (i.e., 0, 0.5, 1, 1.5, 2, and 5?Hz). Test results showed that both confining pressure and frequency have significant influences on the drainage behavior of soft marine clay specimens. The magnitude of drainage volume consistently decreases linearly with increasing confining pressure. Compared to static loading condition, specimens under cyclic loading condition at different frequencies show a better drainage performance. Specimen at applied frequency of 1?Hz exhibits the maximum cumulative drainage volume due to the resonant effect.  相似文献   

14.
Polluted sea bottom sediments from Golden Horn in Istanbul have been dredged and stored on land at a disposal site. Reclamation of the disposal site was highly dependent on prediction of self-weight consolidation behavior of the dredged material, which is analyzed numerically using software which employs a nonlinear finite strain solution algorithm (Fox and Berles 1997). The material parameters needed for the numerical model are determined using a seepage-induced consolidation testing system and prediction of the numerical model is tested against experimental observations in a slurry consolidation model tank. The numerical modeling of the field behavior at the disposal site could be successfully accomplished using sediment property data from the seepage-induced consolidation test.  相似文献   

15.
A suction caisson can be extracted by applying reverse pumping water,which cannot be regarded as the reverse process of installation because of the dramatically different soil?structure interaction behavior.Model tests were first carried out in this study to investigate the extraction behavior of the modified suction caisson(MSC)and the regular suction caisson(RSC)in sand by reverse pumping water.The effects of the installation ways(suction-assisted or jacking installation)and the reverse pumping rate on the variations of the over-pressure resulting form reverse pumping water were investigated.It was found that neither the RSC nor the MSC can be fully extracted from sand.When the maximum extraction displacement is obtained,the hydraulic gradient of the sand in the suction caisson reaches the critical value,leading to seepage failure.In addition,the maximum extraction displacement decreases with the increasing reverse pumping rate.Under the same reverse pumping rate,the final extraction displacements for the RSC and MSC installed by suction are lower than those for the RSC and MSC installed by jacking.The final extraction displacement of MSC is almost equal to that of the RSC with the same internal compartment length.Based on the force equilibrium,a method of estimating the maximum extraction displacement is proposed.It has been proved that the proposed method can rationally predict the maximum extraction displacement and the corresponding over-pressure.  相似文献   

16.
The behavior of single piles subjected to negative skin friction in soft soil was conducted by analyzing the results from full-scale long-term field measurements and three-dimensional (3D) numerical analyses. A skin friction coefficient (α and β coefficients) of the instrumented piles is back-calculated at different degrees of consolidation (U) of soft marine clay. Back-calculated β-values ranged from 0.15 to 0.35 for clay, and from 0.30 to 0.55 for sand, respectively. In addition, back-calculated α-values ranged from 0.1 to 0.3 for coated pile, and from 0.2 to 0.8 for uncoated pile when undrained shear strength of the soft clay was about 30–60 kPa, respectively. Moreover, this study describes behavior of a pile based on full-coupled 3D finite element (FE) analysis. The appropriate parametric studies needed for verifying the pile-soil interaction with consolidation are presented in this paper. Compared to the results from the measurements, it is shown that the computed results are capable of predicting the pile-soil behavior under consolidation. The major parameters that influence the pile behavior are discussed for different soil-pile conditions.  相似文献   

17.
Estimation of Land Subsidence Based on Groundwater Flow Model   总被引:8,自引:0,他引:8  
This article presents an approach for estimating land subsidence due to withdrawal of groundwater. The proposed method calculates the groundwater seepage in 3-D-condition and calculates the land subsidence one-dimensionally. The governing equation on groundwater seepage is based on the three-dimensional mass conservation law and the principle of effective stress. The land subsidence calculation method is derived based on the following assumptions: (1) displacements occur only in the vertical direction, and (2) in vertical direction the total stresses do not change. The governing equation is solved by numerical method, i.e., finite element method (FEM) in spatial discretization and finite difference method (FDM) in time series discretization. In FEM Galerkin method is adopted and in FDM, lumped matrix method is employed. The proposed method is calibrated via analyzing 1-D consolidation problem and the results are compared with those from Terzaghi's one-dimensional consolidation theory and oedometer test. The proposed method is employed to analyze the consolidation of a soft layer due to withdrawal of groundwater from an aquifer under it. Moreover, this method is also applied to a field case of land subsidence due to groundwater pumping in a gas production field in Japan. The analytical results are compared with the field observed data. The results show that this approach simulates the field case well.  相似文献   

18.
This article presents an approach for estimating land subsidence due to withdrawal of groundwater. The proposed method calculates the groundwater seepage in 3-D-condition and calculates the land subsidence one-dimensionally. The governing equation on groundwater seepage is based on the three-dimensional mass conservation law and the principle of effective stress. The land subsidence calculation method is derived based on the following assumptions: (1) displacements occur only in the vertical direction, and (2) in vertical direction the total stresses do not change. The governing equation is solved by numerical method, i.e., finite element method (FEM) in spatial discretization and finite difference method (FDM) in time series discretization. In FEM Galerkin method is adopted and in FDM, lumped matrix method is employed. The proposed method is calibrated via analyzing 1-D consolidation problem and the results are compared with those from Terzaghi's one-dimensional consolidation theory and oedometer test. The proposed method is employed to analyze the consolidation of a soft layer due to withdrawal of groundwater from an aquifer under it. Moreover, this method is also applied to a field case of land subsidence due to groundwater pumping in a gas production field in Japan. The analytical results are compared with the field observed data. The results show that this approach simulates the field case well.  相似文献   

19.
Degradation in Cemented Marine Clay Subjected to Cyclic Compressive Loading   总被引:1,自引:0,他引:1  
The influence of cyclic loading on the strength and deformation behavior of cemented marine clay has been studied. This marine clay is of recent Pleistocene origin and deposited in a shallow water marine environment. Open pits were dug in sheeted enclosures and from these pits, undisturbed samples were taken for strength testing. A series of standard triaxial shear tests and stress controlled one-way cyclic load tests were conducted at consolidation stress ranges below and above the preconsolidation pressure. For the stress levels below the preconsolidation pressure, the cyclic loading has brought about the collapse of the cementation bond through an increase in strains, and at higher pressure ranges, the soil behaves like typical soft clay. This experiment studied the rate of development of strain and pore water pressure and shows that rate is a function of number of cycles, applied stress, and stress history. In addition, soil degradation during cyclic loading is studied in terms of Degradation Index. Attempt has been made to predict stain, pore water pressure, and degradation index through an empirical model.  相似文献   

20.
由于预载下土体固结,海底浅基础的承载力会随作业时间的增加而改变,其时变效应评估困难。基于修正剑桥模型,采用水土耦合有限元方法研究了预载作用下浅基础在正常固结黏土海床中承载力破坏包络面的时变规律。在验证数值模型准确性后,通过位移探针测试获取复合加载模式下浅基础的破坏包络面,揭示了预载和固结程度对基础承载力和破坏包络面的影响,给出了预载作用下浅基础承载力包络面计算方法。结果表明:随着预载比增加,固结单轴承载力呈现线性增长,固结承载力增幅在水平向最大;部分固结承载力相对增幅与预载比无关,而随固结度变化;破坏包络面形状由预载比控制,而包络面大小由预载比和固结度共同控制。研究结果可为海洋浅基础的时变承载力评估提供参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号