首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tertiary and Quaternary sediments, overlying diapiric older Tertiary shales and Louann Salt on the continental slope in the western Gulf of Mexico, show cyclicity based on seismic-reflection patterns. A set of indistinct parallel reflections or an acoustically semi-transparent zone, normally onlapping onto diapir flanks, alternates with a set of distinct parallel reflections that drape the sea bottom. The indistinct reflections represent deposits employed by bottom transport during a lowering of sea level. Sea level rise and hight stand are characterized by hemipelagic sediments that form blanket-type deposits. Differential sediment loading causes diapiric activity that may reach maximum upward velocities when sea level rises.  相似文献   

2.
O. N. Zezina 《Oceanology》2008,48(6):832-836
Of particular interest in the vertical biological zoning of the continental slope in seas and oceans are the substantial differences in the composition, diversity, and abundance (biomass and production) of benthic faunal communities populating the upper and lower subzones of the bathyal zone. The upper bathyal subzone (down to depths of 1500 ± 500 m) resembles the neritic (shelf) one, while its lower subzone is characterized by both reduced diversity and biomass, being similar in its biological parameters to the near-slope abyssal zone (>3000 m). The study of the bottom contour currents and related sediments (contourites) made the geological prerequisites for such differences understandable. Based on a comparative analysis of the bionomical boundaries and core depths of the contour currents in the North Atlantic and Gulf of Alaska, a changing of trophic zones, as well as quantitative and production characteristics of benthic communities, are established. It is shown that the differences between the biological parameters of the upper and lower bathyal subzones (the benthic biomass, the feeding mode of invertebrates, the growth rate, and the maximal sizes of adult specimens) are related to geological agents such as roiling and redeposition of the sediments.  相似文献   

3.
Automated ichnofabric analysis was performed on X-ray radiographs from five gravity cores retrieved from Late Quaternary sediments from the SW Portuguese continental slope. The image analysis program DIAna was used to detect and quantify the part of the ichnofabric consisting of pyritized microburrows, presumably Trichichnus and “Mycellia”. Abundance and orientation of the burrows were determined at 5-cm intervals. The results agree with manual counts of burrows in the coarse fraction of the sediment, and they indicate that the abundance of the pyritized burrows depends on enhanced organic carbon content, fine grain size, and low bottom water oxygenation. In contrast, no clear correlation between burrow orientation and environmental conditions was observed.  相似文献   

4.
To improve resolution of seismic-reflection profiles in continental slope water depths of 900 to 1500 m, a single hydrophone was towed about 150 m off the bottom to receive reflected signals from a surface-towed sparker sound source. That deep-towed hydrophone data show that valleys which appear V-shaped in records from a surface-towed hydrophone are flat-bottomed, and that subbottom reflections from an erosional unconformity can be much better resolved. The data produced by this technique are very hepful when used in conjunction with records from conventional surface-towed seismic-profiling equipment.  相似文献   

5.
Abstract

The continental slope off the coast of Israel is riddled with numerous large slump scars at depths greater than 400 m. Recent scar slumps are situated in the steepest central portions of the continental slope (400–450 m depth, α = 6°), frequently disfiguring older slump scars in its lower portions. The slumping materials were probably largely transported downslope in the form of density currents, and occasionally by sliding of large sediment chunks. Upslope retrogressive slumping phases progressively disfigure the shape of the slump scars until they totally disappear, causing net reduction of the thickness of the sedimentary column. To provide a basis for the quantitative analysis of slumping, laboratory vane tests, triaxial consolidated, undrained compression tests with pore‐pressure measurements, drained direct shear tests, and consolidation tests were performed oh undisturbed samples. Because the sediments consist of normally consolidated silty clays, the geotechnical properties measured on the core samples can be readily extrapolated for greater depths, assuming the sediments are homogeneous. Angles of internal friction measured by direct shearing under drained conditions are ?d =24°‐25°, designating the maximum possible angle of a stable infinite slope. These angles are appreciably higher than the steepest slopes in the investigated area, and a drained slumping mechanism is therefore considered unlikely. The slopes of the slump scar walls are about 20°; therefore, in the absence of active erosional, sedimentological, or tectonic agents, these walls have long‐term stability (drained shear). Undrained shear failure resulting in slope instability may be attributable to rapid changes in slope geometry (undercutting or oversteepening of the slope), fluctuations in pore pressure, or accelerations associated with earthquakes. Undrained shear‐strength parameters were determined by both laboratory consolidated‐un‐ drained triaxial tests and by miniature vane shear tests. The angles of internal friction that were measured are ?cu =15°‐17°, and the cu/p o values range between 0.22 and 0.75. An analysis of the force equilibrium within the sediments leads to the conclusion that horizontal earthquake‐induced accelerations, as little as 5–6% of gravity, are sufficient to cause slope failure in the steepest slope zone (400–450 m depth, α=6°, cu/p o=0.25). Collapse resulting from liquefaction is unlikely, as the sediments are normally consolidated silty clays with intermediate sensitivity, St =2–4.

The existence of slump scars in the lower portion of the continental slope, characterized by gentle slopes (α=1°‐3°) and sediments with high shear strength (cu/p o=0.30–0.50) is attributed to large horizontal accelerations (k= 12–16% of gravity). Owing to the wide range of geotechnical properties of the sediments (cu/p o= 0.20–0.75) and the inclination of the continental slope (α=1°‐6°), the same earthquake may generate a wide range of horizontal accelerations in different portions of the continental slope, and slumping may occur wherever the stability equilibrium is disrupted.  相似文献   

6.
Abstract

The continental slope off the coast of Israel is riddled with numerous large slump scars at depths greater than 400 m. Recent scar slumps are situated in the steepest central portions of the continental slope (400–450 m depth, α=6°), frequently disfiguring older slump scars in its lower portions. The slumping materials were probably largely transported downslope in the form of density currents, and occasionally by sliding of large sediment chunks. Upslope retrogressive slumping phases progressively disfigure the shape of the slump scars until they totally disappear, causing net reduction of the thickness of the sedimentary column. To provide a basis for the quantitative analysis of slumping, laboratory vane tests, triaxial consolidated, undrained compression tests with pore‐pressure measurements, drained direct shear tests, and consolidation tests were performed oh undisturbed samples. Because the sediments consist of normally consolidated silty clays, the geotechnical properties measured on the core samples can be readily extrapolated for greater depths, assuming the sediments are homogeneous. Angles of internal friction measured by direct shearing under drained conditions are ?d =24°‐25°, designating the maximum possible angle of a stable infinite slope. These angles are appreciably higher than the steepest slopes in the investigated area, and a drained slumping mechanism is therefore considered unlikely. The slopes of the slump scar walls are about 20°; therefore, in the absence of active erosional, sedimentological, or tectonic agents, these walls have long‐term stability (drained shear). Undrained shear failure resulting in slope instability may be attributable to rapid changes in slope geometry (undercutting or oversteepening of the slope), fluctuations in pore pressure, or accelerations associated with earthquakes. Undrained shear‐strength parameters were determined by both laboratory consolidated‐un‐drained triaxial tests and by miniature vane shear tests. The angles of internal friction that were measured are ?cu =15°‐17°, and the cu/po values range between 0.22 and 0.75. An analysis of the force equilibrium within the sediments leads to the conclusion that horizontal earthquake‐induced accelerations, as little as 5–6% of gravity, are sufficient to cause slope failure in the steepest slope zone (400–450 m depth, α = 6°, cu /po =0.25). Collapse resulting from liquefaction is unlikely, as the sediments are normally consolidated silty clays with intermediate sensitivity, St =2–4.

The existence of slump scars in the lower portion of the continental slope, characterized by gentle slopes (α=1°‐3°) and sediments with high shear strength (c u /p o=0.30–0.50) is attributed to large horizontal accelerations(k=12–16% of gravity). Owing to the wide range of geotechnical properties of the sediments (cu /po = 0.20–0.75) and the inclination of the continental slope (α=1°‐6°), the same earthquake may generate a wide range of horizontal accelerations in different portions of the continental slope, and slumping may occur wherever the stability equilibrium is disrupted.  相似文献   

7.
Late Cenozoic sedimentation from four varied sites on the continental slopes off southeastern Canada has been analysed using high-resolution airgun multichannel seismic profiles, supplemented with some single channel data. Biostratigraphic ties are available to exploratory wells at three of the sites. Uniform, slow accumulation of hemipelagic sediments was locally terminated by the late Miocene sea-level lowering, which is also reflected in changes in foraminiferan faunas on the continental shelf. Data are very limited for the early Pliocene but suggest a return to slow hemipelagic sedimentation. At the beginning of the late Pliocene, there was a change in sedimentation style marked by a several-fold increase in accumulation rates and cutting of slope valleys. This late Pliocene cutting of slope valleys corresponds to the onset of late Cenozoic growth of the Laurentian Fan and the initiation of turbidite sedimentation on the Sohm Abyssal Plain. Although it corresponds to a time of sea-level lowering, the contrast with the late Miocene lowstand indicates that there must also have been a change in sediment delivery to the coastline, perhaps as a result of increased rainfall or development of valley glaciers. High sedimentation rates continued into the early Pleistocene, but the extent of slope dissection by gullies increased. Gully-cutting episodes alternated with sediment-draping episodes. Throughout the southeastern Canadian continental margin, there was a change in sedimentation style in the middle Pleistocene that resulted from extensive ice sheets crossing the continental shelf and delivering coarse sediment directly to the continental slope.  相似文献   

8.
Ooid turbidites from the central western continental margin of India   总被引:1,自引:0,他引:1  
Gravity displaced debris flows/turbidites have been observed in five box cores collected between water depths of 649 and 3,627 m from the central western continental margin of India. Studies on grain size, carbonate content, and coarse fraction revealed that the turbidites are mainly composed of ooids, shell fragments, and shallow water benthic foraminifera. Bioclastic sediments of the outer shelf and upper slope regions are considered the source of the debris flows/turbidity deposits. It appears that the flows were initiated by failure on the outer shelf and upper slope during late Pleistocene low stands of sea level.  相似文献   

9.
A factor analysis of 180 bottom sediment samples from the east-central Bering Sea continental shelf identifies five factors that account for 95% of the variation in the 17 whole ø size classes that were used as variables. Factor I represents coarse sediments that have been bypassed in areas of active water circulation. Factors II and III represent fine and very fine sands that have been hydraulically sorted, reworked, and mixed. Factor IV represents coarse to medium silt that has been segregated from areas of relatively high energy. Factor V represents both the production of sediments finer than medium silt and deposition within the lowest-energy environment in this area.Modern and palimpsest sediments are areally prevalent over this section of the shelf. Relict sediments occur in only a few small areas. The dispersal of sediments is affected by surface and tidal currents as well as wave action. Ice rafting is not an important geological agent. Data from the eastcentral Bering Sea shelf indicate that sediments on subarctic continental shelves are not necessarily characterized by an abundance of rocky sediments or gravel.  相似文献   

10.
The continental slope off Texas and Louisiana is the most structurally and sedimentologically complex area in the Gulf of Mexico. This 120,000 km2 area is dominated by diapiric tectonics, resulting in numerous faults, oil and gas seeps, and other geological phenomena that affect near-surface sediments. Bottom gradients range from 0 to 20°. High-resolution seismic surveys, foundation borings, and drop cores reveal several mass-movement features, acoustic wipeout zones, sea floor erosion, faults, hardgrounds, bioherms, reefs, and outcrops. Recent data indicate that most geological activity takes place during relative sea level lowering and low stands.  相似文献   

11.
Multichannel seismic reflection profiles from the continental rise west of the Antarctic Peninsula between 63° and 69°S show the growth of eight very large mound-shaped sedimentary bodies. MCS profiles and long-range side-scan sonar (GLORIA) images show the sea floor between mounds is traversed by channels originating in a dendritic pattern near the base of the continental slope. The mounds are interpreted as sediment drifts, constructed mainly from the fine-grained components of turbidity currents originating on the continental slope, entrained in a nepheloid layer within the ambient southwesterly bottom currents and redeposited downcurrent.  相似文献   

12.
Abstract

A giant submarine slump, encompassing a 91‐km by 26‐km block, occurring on the continental slope offshore Iquique, Chile, was identified during a SeaMARC II survey. Utilizing SeaMARC II side‐scan imagery, bathymetry, and seismic reflection data, five morphostructural zones of the slump were identified: the fissured zone, scar zone, tensional depression, central block, and front zone. The fissured zone was developed on the crown of the slump; the scar zone is characterized by scars with the crescent‐shaped slip surfaces and throws ranging from 200 m to 50 m. The tensional depression zone is marked by an area voided by mass slumping, while the central block morphology was formed by uplift. The front zone is comprised of both compressional and tensional subzones. The compressional subzone is characterized by a relative topographic low, on the middle slope, whereas the extensional subzone is characterized by a convex pattern of alternated ridges and hollows, which may represent the debris of the slump on the lower slope. The formation of the slump was strongly influenced by the subduction of the Nazca plate beneath the Chile continental margin, which resulted in the subsidence of the continental slope with a resultant increase in the slope gradient and pore‐water pressure in the sedimentary layers. Slump formation was further facilitated by the development of a complex fault system associated with the subduction and by the triggering effect of earthquakes in the area.  相似文献   

13.
Continuous seismic reflection profiling and new bathymetry data in the southern Straits of Florida over an area dominated by the Tortugas and Agassiz Valley systems have allowed a more detailed analysis of the morphology and sedimentary processes active in this region. Four dives in the submersible DSV “Alvin” supplement the seismic and bathymetric data.The continental slope in the study area can be divided into two physiographic provinces: (I) an irregular topography controlled by the Florida Escarpment west of Tortugas Valley; and (II) the remainder of the continental slope which contains the majority of features under investigation. Seismic data indicate that the valleys are being filled shoreward of 290 fathoms (530 m) by a wedge of prograding sediments derived from the Florida shelf.The morphology of the two valley systems reflects probable differences of origin. Tortugas Valley appears to have originated coincident with the eastern terminus of the Florida Escarpment and province-I-type topography. The Agassiz valleys may have an origin associated with jointing patterns observed by divers aboard DSV “Alvin”. Current meter readings and bottom photographs from “Alvin” indicate that currents are relatively sluggish and not very effective in the transport of sediment within the valleys. An area of undulations west of Pourtales Terrace was investigated and concluded to be erosional in origin.Slumping appears to have played a large part in shaping many features in the study area. The bottom morphology and sediment distribution on the continental slope and in the axis of the Straits of Florida suggest that bottom currents are active in shaping the entire area.  相似文献   

14.
15.
Benthic foraminiferal analysis of 29 samples in surface sediments from the southern Okinawa Trough is carried out. The results indicate that benthic foraminiferal abundance decreases rapidly with increasing water depth. Percentage frequencies of agglutinated foraminifera further confirm the modern shallow carbonate lysocline in the southern Okinawa Trough. From continental shelf edge to the bottom of Okinawa Trough, benthic foraminiferal fauna in the surface sediments can be divided into 5 assemblages: (1) Continental shelf break assemblage, dominated by Cibicides pseudoungerianus, corresponds to subsurface water mass of the Kuroshio Current; (2) upper continental slope assemblage, dominated by Cassidulina carinata , Globocassidulina subglobosa, corresponds to intermediate water mass of the Kuroshio Current; (3) intermediate continental slope assemblage, dominated by Uvigerina hispi-da, corresponds to the Okinawa Trough deep water mass above the carbonate lysocline; (4) lower continental slope- trough b  相似文献   

16.
Cyclic sequences occur worldwide in nearly every stratigraphic sequence; they are particularly well-developed in fluvial and deltaic sediments that have been influenced by high-frequency eustatic sea-level fluctuations. The large data base for this study (including 471 deep foundation borings, thousands of line kilometers of high-resolution seismic, and sedimentological and dating analyses) represents the most complete information on high-resolution chronostratigraphy and lithostratigraphy that is available on any modern continental shelf/upper slope. These data are used to document sedimentological characteristics and high-resolution seismic responses during three complete sea-level cycles over the entire continental shelf/upper slope of offshore Louisiana. Examination of high-resolution seismic records indicates that well-defined, high-amplitude, laterally continuous reflectors correlate with rising and high stand condensed sedimentary sequences and that the deposits laid down during falling and low-stand periods (expanded sections) are characterized by a wide range of acoustic responses. Discontinuous reflectors with high-amplitude variability, continuous parallel reflectors, and chaotic and amorphous zones are common acoustic responses. The association between a particular lithofacies and a specific acoustic response on 3.5-kHz records was found to be very poor.  相似文献   

17.
对从南海东沙群岛近海陆坡(水深约500-3100m)采集到的二维地震剖面提取地形数据后进行统计学分析,结合地震相研究,发现研究区陆坡形态的变化与火成岩体,以及与火成岩体相关联的沉积过程存在着紧密地联系。共识别出了3种陆坡类型:(a)发育多个火成岩体的粗糙、陡的陆坡(类型1);(b)发育单个火成岩体的较为光滑、平缓的陆坡(类型2);(c)无火成岩体发育的光滑并且平缓的陆坡(类型3)。这些火成岩体形成于南海海底扩张之后,具有较为复杂的形态,在地震剖面上多表现为强振幅的杂乱反射。在类型1中,多个火成岩体将陆坡分为上部的两个或者多个次凹和下部的一个主凹,这些凹陷可以同时被沿坡流带来的沉积物充填。然而在类型2中,单个火成岩体将陆坡为一个上部的次凹和一个下部的主凹,只有当上部的次凹被沉积物填满后,沉积物才可以开始充填主凹。类型3为发育斜坡沉积的正常陆坡。研究区现今的陆坡形态是由于火成岩体的侵入和与火成岩体相关的沉积过程所共同导致的陆坡形态调整的结果。三种陆坡类型现今陆坡形态间的差异指示不同的沉积条件和陆坡形态调整。  相似文献   

18.
The primary focus of this paper is to better understand carbon burial on the Louisiana continental margin using spatial scales that covered various shelf depositional areas far-field and near-field (sediment and organic carbon inputs relative to river mouth proximity) and covering a variety of sedimentation rates. Box-cores samples were collected in July 2003; cores were collected along two depositional transects extending westward and southward from the Southwest Pass (SW Pass). A key difference between the two transects sampled in this study was the greater occurrence of mobile muds derived from spillover from shallower regions along the westward 50 m isobaths. The dominant mechanism for mixing in the surface active zone (SAZ) on the inner Louisiana shelf was due to physical, not biological, forces. Burial efficiencies for organic carbon (57.2–91.5%) and total nitrogen (44.2–86.9%) ranged widely across all shelf stations. Lower burial efficiencies for bulk organic carbon, total nitrogen, and pigment biomarkers were associated with mobile muds west of Southwest Pass. Chlorophyll a concentrations were significantly higher than pheopigments at depth at the Mississippi River and Southwest Pass stations, making up 40.4 and 77.4% of total pigment concentrations in the (SAZ) and 46.2 and 63.2% in the accumulation zone (AZ), respectively. These results are in agreement with earlier plant pigment studies which showed that a large fraction of the phytodetritus delivered to the inner shelf was derived from coastal and river diatoms. The amount of lignin preserved with depth decreased with increasing residence time in the SAZ and diagenetic zone (DZ) along the canyon transect but not along the western transect. Trends for lignin concentration followed previously identified surface sediment trends indicating overall lower burial of refractory terrestrial material at depth with greater distance offshore.  相似文献   

19.
The seafloor morphology and the subsurface of the continental slope of the Olbia intraslope basin located along the eastern, passive Sardinian margin (Tyrrhenian Sea) has been mapped through the interpretation of high-resolution multibeam bathymetric data, coupled with air-gun and sparker seismic profiles. Two areas, corresponding to different physiographic domains, have been recognized along the Olbia continental slope. The upper slope domain, extending from 500 to 850 m water depth, exhibits a series of conical depressions, interpreted as pockmarks that are particularly frequent in seafloor sectors coincident with buried slope channels. In one case, they are aligned along a linear gully most likely reflecting the course of one of the abandoned channels. The location of the pockmarks thus highlights the importance of the distribution of lithologies within different sedimentary bodies in the subsurface in controlling fluid migration plumbing systems. A linear train of pockmarks is, however, present also away from the buried channels being related to a basement step, linked to a blind fault. Two bathymetric highs, interpreted as possible carbonate mounds, are found in connection with some of the pockmark fields. Although the genetic linkage of the carbonate mounds with seafloor fluid venting cannot be definitively substantiated by the lack of in situ measurements, the possibility of a close relationship is here proposed. The lower slope domain, from 850 m down to the base of the slope at 1,200 m water depth is characterized by a sudden gradient increase (from 2° to 6°) that is driven by the presence of the basin master fault that separates the continental slope from the basin plain. Here, a series of km-wide headwall scars due to mass wasting processes are evident. The landslides are characterized by rotated, relatively undeformed seismic strata, which sometimes evolve upslope into shallow-seated (less than 10 m), smaller scale failures and into headless chutes. Slope gradient may act as a major controlling factor on the seafloor instability along the Olbia continental slope; however, the association of landslides with pockmarks has been recognized in several continental slopes worldwide, thus the role of over-pressured fluids in triggering sediment failure in the Olbia slope can not be discarded. In the absence of direct ground truthing, the geological processes linked to subsurface structures and their seafloor expressions have been inferred through the comparison with similar settings where the interpretation of seafloor features from multibeam data has been substantiated with seafloor sampling and geochemical data.  相似文献   

20.
Abstract

Numerous large sediment slides and slumps have been discovered and surveyed on the continental margins of Northwest Africa, Southwest Africa, Brazil (Amazon Cone), the Mediterranean, the Gulf of Mexico, and North America over the past 10 years. The mass movements are of two primary types: (1) translational slides, and (2) rotational slumps. Translational slides are characterized by a slide scar and a downslope zone of debris flows, after traveling in some areas for several hundreds of kilometers on slopes of less than 0.5°. Rotational slumps are bounded by steep scarps, but they do not involve large‐scale translation of sediments, although seismic records indicate disturbance in the down‐dropped block. Many of the slides and slumps have occurred in water depths greater than 2000 m on initial slopes of less than 1.5°. The largest slide so far discovered is off Spanish Sahara; in this case, the slide scar is 18,000 km2 in area, at least 600 km3 in volume of translated sediments. No apparent consistent relationship has yet been observed between the presence of the slides and the sedimentary environment in which they occurred. The slides off Southwest Africa and Spanish Sahara occurred in pelagic sediments rich in planktonic organic matter. In contrast, the slides off North America, Senegal‐Mauritania, and Brazil (Amazon Cone) occurred in sediments containing a high percentage of terrigenous material from nearby landmasses. Large sediment slides have also occurred in pelagic sediments on isolated oceanic rises such as the Madeira Rise (East‐Central Atlantic) and the Ontong‐Java Plateau (Pacific), where sedimentation rates are less than 2 cm/1000 years. The failure mechanism of the slides initiated near the shelf edge can probably be explained by sediment overloading during low glacio‐eustatic sea level, which allowed rivers to debouch sediments directly onto the outer shelf or upper slope. Possible mechanisms of failure of the deepwater slides and slumps include earthquakes, undercutting of the slope by bottom currents, and changes in porewater pressures induced as a direct or indirect result of glacio‐eustatic changes in sea level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号