首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
An indirect tension measurement method of a towing cable in midwater or a buoy cable is proposed using underwater acoustic positioning systems, etc., to give the in-water cable tension. The most simple and traditional cable tension measurement method is to apply a mechanical tension meter at the one end of the cable, but the method has limits in the aspects of continuous monitoring and manual operation. However, the technique in this study is to apply the Pode's analysis of the equilibrium configuration and tension of a flexible twine, in which the cable tension is given as a function of the geometric positions of both ends of the cable. A set of nonlinear integral equations is formulated and solved numerically by the Newton-Raphson method. Then the inclination angles and the tensions at the lower and the upper ends of the cable could be obtained. The derived method enables us to track a towed object, to measure the tension of a towing cable or a buoy cable and is also applicable to the remotely operated vehicle (ROV) tethered to a mother ship.  相似文献   

2.
A numerical approach for predicting motion and tension of extensible marine cables during laying operations in a rough sea is presented here. The solution methodology consists of dividing the cable into straight elements, which must satisfy an equilibrium equation and compatibility relations. The system of nonlinear differential equations is solved by the Runge–Kutta method, taking the effect of regular and/or irregular waves into account explicitly.

Illustrative applications of the method are given for a typical cable laying ship. The results are presented as rms values of the cable dynamic tension and corresponding dynamic factor for two different types of cable and several values of cable stiffness. The effect of axial deformation on the maximum tension at the shipboard pulley location is highlighted.  相似文献   


3.
In order to design submarine optical-fiber cable, it is very important to clarify the cable tension and fiber elongation during laying because the fiber elongation allowance is very small. When submarine cable is being laid from a cable ship, cable weight in water plus such additional tension as bottom tension caused by the negative slack and tension due to ship motion work upon the cable [1]. Cable tension changes during laying were theoretically studied. This paper quantitatively clarifies bottom tension dependence at the touchdown point caused by the negative slack upon both water depth and ship velocity. It is shown that the shallower the water depth is and the faster the ship velocity is, the larger the bottom tension is. The theoretical bottom tension showed good agreement with the experimental value measured during sea trials on laying submarine optical-fiber cable [2], [3]. This paper also describes the correlation between cable, ship motion, and cable tension vibration by examining experimental results. It quantitatively clarifies the tension vibration magnitude.  相似文献   

4.
The maximum bending moment or curvature in the neighborhood of the touch down point (TDP) and the maximum tension at the top are two key parameters to be controlled during deepwater J-lay installation in order to ensure the safety of the pipe-laying operation and the normal operation of the pipelines. In this paper, the non-linear governing differential equation for getting the two parameters during J-lay installation is proposed and solved by use of singular perturbation technique, from which the asymptotic expression of stiffened catenary is obtained and the theoretical expression of its static geometric configuration as well as axial tension and bending moment is derived. Finite element results are applied to verify this method. Parametric investigation is conducted to analyze the influences of the seabed slope, unit weight, flexural stiffness, water depth, and the pipe-laying tower angle on the maximum tension and moment of pipeline by this method, and the results show how to control the installation process by changing individual parameters.  相似文献   

5.
This paper presents a model formulation that can be used for analyzing the three-dimensional vibration behaviours of an inclined extensible marine cable. The virtual work-energy functional, which involves strain energy due to axial stretching of the cable and virtual work done by external hydrostatic forces is formulated. The coupled equations of motion in the Cartesian coordinates of global systems are obtained by taking into account the difference between Euler’s equations and equilibrium equations. The method of Galerkin finite element is used to obtain the mass and stiffness matrices which are transformed into the local coordinate systems. Then the eigenvalue problem is solved to determine its natural frequencies and corresponding mode shapes. The model formulation developed herein is conveniently applied for the cases of specified top tension. The numerical investigations are carried out to demonstrate the validity of the model and to explore in details the influence of various parameters on the behaviours of marine cables. Results for the frequency avoidance phenomenon, maximum dynamic tension and coupled transverse mode shapes are presented and discussed.  相似文献   

6.
采用集中质量法研究了绷紧式系泊系统中系缆由于松弛-张紧过程产生的冲击张力。建立系泊缆绳离散的集中质量模型,对其独立单元进行受力分析并建立了单元的运动方程。给定缆绳上端点简谐激励,通过Ansys中的Aqwa模块,分析了缆绳的运动响应;针对缆绳运动响应过程中的三种状态进行了模拟计算,探讨了冲击张力产生的条件;研究了缆绳初始预张力、上端点激励幅值和频率、拖曳力系数、弹性模量以及单位长度质量对动态张力的影响。研究结果表明:这些影响因素不仅会影响缆绳动态张力的大小,也会对缆绳中的冲击张力产生一定的影响。  相似文献   

7.
The results of dynamic and steady-state cable simulations are used to show that a towed system can behave in either of two different ways on entering a turn. In a large radius turn the system maintains its straight-tow equilibrium configuration but in a slightly perturbed form. In a turn of small radius the system effectively collapses resulting in a large increase of fish depth and cable tension. A formula is included by which the approximate minimum radius of turn that does not precipitate collapse can be quickly calculated.Non-dimensional tables are presented giving details of the equilibrium configuration adopted by the cable when the ship maintains a circular course.Graphs are presented from which the time constants for the decay of lateral and longitudinal disturbances of 2-D cable profiles can be easily calculated. These can be used to estimate the time taken for a towed system to return to equilibrium following a manoeuvre.The derivation of the equations for the steady-state configurations and the time constants are included in appendices.  相似文献   

8.
A general set of 3-D dynamic field equations for a cable segment is derived based on the classical Euler-Kirchhoff theory of an elastica. The model includes flexural stiffness to remove the potential singularity when cable tension vanishes and can be reduced to the equations for a perfectly flexible cable. A hybrid model and a solution scheme by direct integration are then proposed to solve the oceanic cable/body system with a localized low-tension region. Numerical examples demonstrate the capability and validity of the formulation and the numerical algorithm.  相似文献   

9.
针对1 000 m水深作业的新型圆筒型浮式生产储卸油系统(FPSO),选择多点系泊FPSO和穿梭油轮串靠外输方案,分析串靠方案在中国南海的可行性。FPSO和穿梭油轮作业时两者之间相互影响的研究较为重要,通过ANSYS-AQWA建立水动力耦合分析模型,基于多浮体水动力学方法进行时域耦合仿真模拟。在FPSO作业海况下,分析了串靠外输时系泊锚链及系泊大缆的张力特性和两浮体的运动响应,对大缆的长度和刚度参数变化进行了分析。结果表明:串靠外输方案满足新型圆筒型FPSO的作业环境。随着系泊大缆长度增加,其张力最值逐渐减小,FPSO和穿梭油轮的最小间距逐渐增大。两浮体最小距离稳定在83 m左右。随着系泊大缆刚度增加,其张力最值增大,相比于大缆长度,大缆刚度对耦合系统的影响较弱。  相似文献   

10.
An improved algorithm is developed for predicting the transient response of a system of serially connected cables and bodies during unsteady deployment from a surface vessel. The governing equations of a cable-body system are derived with dependent variables of cable velocities, direction cosines and tension magnitude to form a nonlinear combined initial-value and boundary-value problem. The problem is then solved by introducing a stable Newmark-like implicit integration scheme in time and by a direct integration method with suppression of extraneous erroneous solutions. Special boundary conditions simulating actively controlled payout and slack-cable/ocean-bottom contact boundary conditions are included in the present model.  相似文献   

11.
According to the characteristics of submerged floating tunnel anchored by tension legs,simplifying the tube as point mass and assuming that the tension leg is a nonlinear beam model hinged at both ends,the nonlinear vibration equation of the tension leg is derived.The equation is solved by the Galerkin method and Runge Kutta method.Subsequently,numerical analysis of typical submerged floating tunnel tension leg is carried out.It is shown that,the parametric vibration response of the submerged floating tunnel tension leg is related to the amplitude and frequency of the end excitation.Without considering axial resonance and transverse resonance,it is reasonable that higher order modes are abandoned and only the first three modes are considered.The axial resonance amplitude of the second or third order mode is equivalent to the first order mode axial resonance amplitude,which should not be ignored.  相似文献   

12.
钢管脐带缆包含多种螺旋缠绕的功能单元,其在外力载荷下会发生相对运动,而且钢管的刚度较大对扭转平衡有重要影响,因此,相对于普通电缆,钢管脐带缆在扭转平衡设计时更加困难。根据扭转平衡理论公式,采用控制变量法,以第二层铠装钢丝的绞合角度为变量进行扭转平衡设计。首先建立脐带缆缆芯有限元模型,对其施加拉伸载荷,结果显示缆芯出现了扭转,这证明不能将脐带缆缆芯视为一实心圆柱。其次建立不同绞合角度的脐带缆有限元模型,设置各功能单元的材料属性和摩擦系数,分析模型在拉伸载荷下的扭转角度,并将相同拉伸载荷下的扭转角度拟合为直线,从而得到钢管脐带缆在扭转平衡状态时的最优绞合角度。最后,采用试验方法对实物钢管脐带缆进行扭转平衡测试,测试结果显示在拉伸载荷下脐带缆单位长度扭转角度十分微小,这表明缆是扭转平衡的。因此验证了使用的有限元方法在钢管脐带缆扭转平衡设计中的有效性。  相似文献   

13.
A numerical method for the dynamic simulation of towed cables is presented. The cable is loaded by fluid drag, tension, gravity and buoyancy, including the effects of weights and floats. The development of a cable can be simulated as well as the separation of a cable under excessive load and the subsequent behavior of the broken parts. The system is constructed from a set of generic elements representing such items as cable or rope strands, knots (reference points on rope sections), kinks (sliding reference points on cable sections that change length), cable ends and winches. A mathematical graph organizes these elements in a general and flexible fashion: it allows construction of complex systems and permits structural redefinition during the simulation. The nodes of the graph coincide with the various reference points of the problem, at which physical parameters are lumped and to which sets of ordinary differential equations are associated that define the motions of the points. The links of the graph describe the physical connections between the nodes. Application of new methods for solving stiff, sparse systems of coupled ordinary differential equations enables efficient simulation of snap-loads and other severe events. Results are presented that compare quantitatively with laboratory measurements. A further example shows the behavior of a breaking cable that is qualitatively reasonable.  相似文献   

14.
A semi-analytical quasi-static formulation based on the catenary approach capable of solving three-dimensional partially grounded and fully suspended multi-leg mooring-system problems is presented in this paper. The advantage of the present formulation is that only a compact governing vector equation, derived in terms of grounded cable length and anchor tension vector, need to be solved for each mooring cable to determine its grounded and suspended body response, and only a small number of discrete segments are needed to predict its behaviour accurately due to its inherent slope continuity. In addition, it is capable of handling arbitrarily inclined seabed interaction effects, varying cross-sectional and material properties as well as external attachment objects. The generality of the present formulation allows quick parametric analysis of different forms of multi-leg mooring system configurations as well as different types of flexible riser systems to be carried out.  相似文献   

15.
Umbilical cable is a kind of integrated subsea cable widely used in the exploration and exploitation of oil and gas field. The severe ocean environment makes great challenges to umbilical maintenance and repair work. Damaged umbilical is usually recovered for the regular operation of the offshore production system. Analysis on cables in essence is a two-point boundary problem. The tension load at the mudline must be known first, and then the recovery load and recovery angle on the vessel can be solved by use of catenary equation. The recovery analysis also involves umbilical-soil interaction and becomes more complicated. Calculation methods for recovery load of the exposed and buried umbilical are established and the relationship between the position of touch down point and the recovery load as well as the recovery angle and recovery load are analyzed. The analysis results provide a theoretical reference for offshore on-deck operation.  相似文献   

16.
17.
遥控水下机器人脐带缆收放绞车设计及牵引力分析   总被引:1,自引:0,他引:1  
脐带缆收放技术是有缆遥控水下机器人的一项关键技术,该技术直接影响水下机器人载体的收放及作业过程中脐带缆的安全。针对目前水下机器人收放系统中脐带缆收放技术的特点,给出了一种具有自动排缆、低张力缠绕、能够提供大牵引力和安全制动功能的紧凑新式脐带缆绞车方案,并对牵引绞车与储藏绞车之间脐带缆张力与牵引绞车的牵引力进行了理论分析,给出了二者之间的关系函数。  相似文献   

18.
The hydrodynamic forces and moments that act on a towed fish are described and related to fundamental static and dynamic towing characteristics. It is shown that, when the fin height is reduced almost to the point giving neutral stability in pitch, the fish maintains almost constant pitch attitude while it is forced to heave or surge by ship motion transmitted down the cable.Wind tunnel tests provide the necessary hydrodynamic data for a computer simulation in two dimensions of the Bath Mk 3 sonar fish towed on faired cable. The results show that the magnitude of the pitch attitude variations of the fish can be greatly reduced by decreasing the fin size, with further reduction being possible by correctly locating the pointwhere the cable is attached to the fish. It is also shown that decreasing the fin size reduces the magnitude of the tension variations in the cable, thereby lowering the probability that the cable will go slack.These results generalise to a large class of towed systems using either or bare cable, and a formula is included by which the magnitude of the ship-inducing pitching motion of a fish can be estimated, given the necessary hydrodynamic data.Possible difficulties associated with towing a low stability fish are considered and a method is included for assessing the minimum stability likely to be necessary to achieved satisfactory towing behaviour.  相似文献   

19.
波浪作用下刚性框架浮体及其锚绳运动数值模拟精度分析   总被引:2,自引:1,他引:1  
由小尺度刚性杆件构成的复杂结构近年来多用于海洋平台建设和海洋监测浮标制作以及海洋增养殖人工浮鱼礁的设计。采用有限单元法和集中质量点法建立波浪作用下刚性框架浮体及其锚绳运动数值模型,探讨空间单元划分、时间离散步长、数据保存格式对刚性框架浮体和柔性锚绳运动模拟精度的影响,分别给出此三者之间的匹配关系。研究结果表明:框架浮体的单元划分可依据是否出水给定,单元的划分比建议取0.05;锚绳的单元划分与其上端连接的浮体浮力有关,当锚绳的拉力主要由上端浮体浮力产生时锚绳单元的划分影响较小,当锚绳的拉力主要由波浪力产生时锚绳单元的划分比建议取0.02;空间单元划分与时间离散步长存在匹配关系,通过减小时间步长来追求数值模拟精度时必须同时考虑保存运动物理量截断误差的影响。  相似文献   

20.
具有链—缆—链结构的复合系泊链缆因其相对于全钢链质量和成本上的优势而在深水系泊中得以广泛应用。基于细长杆理论采用有限差分法建立了可以考虑链—缆—链结构的复合系泊缆数值模型,将其应用于不同工况下全钢链和复合链缆运动的数值模拟中,并开展了验证。首先,将单根钢链顶张力数值模拟结果与不同工况下的模型试验结果进行了对比,验证了数值预报程序应用于全钢链的准确性。然后,对于复合系泊链缆开展了静刚度和动刚度迭代数值模拟,并将模拟结果同已发表文章中的算例结果进行比较,验证了该数值模型在复合链缆模拟上的准确性。发现对于单根钢锚链的验证,激励半径越大,激励周期越小,一个周期内顶张力幅值及其极差越大,钢链运动就越剧烈。对于链—缆—链式复合系泊链缆的验证,发现静刚度迭代中数值模拟结果与算例结果差异较小;对于动刚度迭代,除个别大幅慢漂工况外,两者有较高的吻合;且激励周期越小,激励半径越大,复合系泊链缆顶张力越大,弹性模量越小,运动越剧烈。对于聚酯缆刚度的敏感性分析,发现改变动刚度经验公式参数的情况下,杨氏模量的静刚度迭代和动刚度迭代结果误差分别最大达到了60.81%和68.21%,因此合成纤维材料特性对复合系泊链...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号