首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 506 毫秒
1.
The Soya Warm Current (SWC), which is the coastal current along the northeastern part of Hokkaido, Japan, has a notable baroclinic jet structure during summer. This study addresses the formation mechanism of the baroclinic jet by analyzing a realistic numerical model and conducting its sensitivity experiment. The key process is the interaction between the seasonal thermocline and the bottom Ekman layer on the slope off the northeastern coast of Hokkaido; the bottom Ekman transport causes subduction of the warm seasonal thermocline water below the cold lower-layer water, so the bottom mixed layer develops with a remarkable cross-isobath density gradient. Consequently, the buoyancy transport vanishes as a result of the thermal wind balance in the mixed layer. The SWC area is divided into two regions during summer: upstream, the adjustment toward the buoyancy shutdown is in progress; downstream, the buoyancy shutdown occurs. The buoyancy shutdown theory assesses the bottom-mixed-layer thickness to be 50 m, consistent with observations and our numerical results. The seasonal thermocline from June to September is strong enough to establish the dominance of the buoyancy shutdown process over the frictional spindown.  相似文献   

2.
A mooring observation of current velocity, temperature and bottom pressure was carried out approximately 30 km off the coast of Monbetsu, between August 7 and September 2, 2005, to investigate the characteristics of bottom boundary layer (BBL) off the Soya Warm Current (SWC). We succeeded in measuring the Ekman veering and bottom Ekman transport in the BBL. On comparing the observed current velocity with that represented by the classical theoretical equation, the observed alongshore current velocity in BBL disagreed with that represented by the classical theoretical equation, but the cross-shore one agreed well. However after applying a linear extrapolation for the alongshore current velocity to estimate the alongshore geostrophic current velocity above the bottom, we could explain the alongshore current velocity by that represented in the classical theoretical equation. Consequently, our observations strongly support one of the proposed formation mechanisms of the cold-water belt observed off the SWC, that is, the convergence of bottom Ekman transport. The volume transport of vertical pumping velocity was estimated to be (0.12–0.25) Sv. In addition, the vertical profile of average temperature in all observation periods shows that slightly warmer water lies beneath the homogenous temperature layer, in the BBL. The result is considered to imply that the down-slope advection due to bottom Ekman transport supplies the SWC water in BBL and the eddy diffusivity of order of 10−3 m2s−1 maintains the oceanic structure in the bottom mixed layer.  相似文献   

3.
横穿黑潮锋断面的流场结构   总被引:2,自引:0,他引:2  
基于一组简化了的运动方程组,在充分考虑底Ekman层作用的情况下,提出一种横穿锋面的断面上流场结构的计算方法。应用该方法对东海横穿黑潮锋的不同断面上的流场(1989-1990年资料)进行计算。结果表明,黑潮锋左侧(向岸侧)存在较强的上升流,而锋区右侧(离岸侧)表现为海水的下降运动。垂直流速为(1-20)×10-3cm/s的量级,而横穿锋面方向的水平流速为1-3cm/s,其中以夏、秋季跃层附近最强。在陆架坡折处,上升流转向陆架。同时,还分析了正压场和斜压场对这种流场的不同贡献,认为在黑潮区,正压场起主要作用;而在内陆架区,斜压场则变得重要。将计算的流场与硝酸盐的分布比较表明,两者有较好的对应关系。  相似文献   

4.
纪艳菊  刘淑波  齐震 《海洋科学》2014,38(12):120-127
本文通过假定底边界层湍黏性的三次多项式参数化形式,基于简化的Navier–Stokes方程,并利用超几何方程的性质,推导出了湍流粗糙底边界层的速度解析解。同时,得到了底边界层内其他的动力参数,如底剪应力、Ekman传输、Ekman抽吸及近底部速度分布场,从理论上讨论了均匀混合底边界层特征量分布特征。通过数值结果分析,进一步得出底边界层的总速度、亏损速度及其剪应力受平均流的角频率和地球自转影响比较大;而底边界层的动力结构对于底边界层顶部粗糙度不敏感。该涡黏性模式从理论上丰富了底边界层涡黏性的形式,为底边界层的动力系统研究提供了借鉴和理论参考。  相似文献   

5.
《Ocean Modelling》2011,36(4):277-303
We investigate the influence of bottom topography on the formation and trapping of long upwelling filaments using a 2-layer shallow water model on the f-plane. A wind forced along-shore current, associated with coastal upwelling along a vertical wall, encounters a promontory of finite width and length, perpendicular to the coast.In the lower layer, topographic eddies form, which are shown to drive the formation of a filament on the front. Indeed, as the upwelling current and front develop along the coast, the along shore flow crosses the promontory, re-arranging the potential vorticity structure and generating intense vortical structures: water columns with high potential vorticity initially localized upon the promontory are advected into the deep ocean, forming cyclonic eddies, while water columns from the deep ocean with low potential vorticity climb on the topography forming a trapped anticyclonic circulation. These topographic eddies interact with the upper layer upwelling front and form an elongated, trapped and narrow filament.Sensitivity tests are then carried out and it is shown that:
  • •baroclinic instability of the front does not play a major role on the formation of long trapped filaments;
  • •increasing the duration of the wind forcing increases the upwelling current and limits the offshore growth of the filament;
  • •modifying the promontory characteristics (width, length, height and slopes) has strong impact on the filament evolution, sometimes leading to a multipolarisation of the potential vorticity anomaly structure which results in much more complicated patterns in the upper layer (numerous shorter and less coherent filaments). This shows that only specific promontory shapes can lead to the formation of well defined filaments;
  • •adding bottom friction introduces a slight generation of potential vorticity in the bottom layer over the promontory, but does not significantly alter significantly the formation of the filament along the outcropped front in the present configuration;
  • •modifying the stratification characteristics, in particular the density jump between the layers, has only a weak influence on the dynamics of topographic eddies and on filament formation;
  • •the influence of capes is also modest in our simulations, showing that topography plays the major role in the formation of long and trapped upwelling filaments.
  相似文献   

6.
A mathematical model is suggested for calculating current, density, and pressure fields in the area of a solitary bottom rise (seamount). The model is based on a set of non-linear differential equations governing the motion of an inviscid continuously stratified fluid. The algorithm for solving the equations is based on the splitting technique. The model has been used to compute non-linear baroclinic waves generated by a barotropic tide in the seamount area. Translated by Vladimir A. Puchkin.  相似文献   

7.
Numerical experiments with a two-dimensional nonhydrostatic ocean model have been carried out to investigate the dynamical process of descending density current on a continental slope. The associated deep water formation has been also examined by tracking labeled particles. The descending flow along the continental slope occurs in the bottom Ekman layer. The net pressure gradient determining the volume transport consists of not only the pressure gradient due to density deviation but also the surface pressure gradient due to the depth-mean alongshore flow. Since these constituents have the opposite signs and strengthen each other, the oscillation with an alternation of intense up- and downslope flows appears around the shelf break. This temporal variation of the flow field causes the effective mixing on the slope between descending shelf and interior waters and forms the deep water as a mixture of them at a ratio of about 1:3. The present result is applied to the slope current around Antarctica, using velocity and density fields calculated by an ocean general circulation model. The Ekman volume transport is estimated at 0.97 Sv (1 Sv = 106 m3s–1) in the Weddell Sea, 0.35 Sv in the Ross Sea, and 1.8 Sv in total. About 70% of them is attributed to the depth-mean alongshore flow, such as the East Wind Drift and the Weddell Gyre driven by the wind. This suggests that the pressure gradient due to other factors than density deviation may play an important role in the deep and bottom water formation in the actual oceans.  相似文献   

8.
Recently, bivalves have been massively killed by anoxia or hypoxia in summer at the northern part of Isahaya Bay, Japan, which constituted a major problem for fisheries. However, the mechanism behind the occurrence of hypoxic water masses is unclear. It is known that the bottom water dissolved oxygen (DO) in this area is affected by the inflow of seawater into the northern mouth of Isahaya Bay. To understand the mechanism of hypoxia, it is necessary to determine the physical processes that cause changes in the bottom DO concentrations in this area. This study shows that there is a neap-spring tidal variation in bottom DO due to a change in vertical tidal mixing, and it also suggests that the decrease in bottom DO was generated by a baroclinic flow, which is due to the internal tide, and a shear flow, which is induced by the external tide in the bottom boundary layer. In addition, our study suggests that the source of cold and hypoxic water that appears in the bottom layer at low tide is the inner area of the Ariake Sea.  相似文献   

9.
The North Atlantic Deep Western Boundary Current (DWBC) was surveyed at the Blake Outer Ridge over 14 days in July and August 1992 to determine its volume transport and to investigate its bottom boundary layer (BBL). This site was chosen because previous investigations showed the DWBC to be strong and bottom-intensified on the ridge’s flanks and to have a thick BBL. The primary instrument used was the Absolute Velocity Profiler, a free-falling velocity and conductivity–temperature–depth device. In two sections across the width of the DWBC, volume transports of 17±1 Sv and 18±1 Sv were measured for all water flowing equatorward below a potential temperature of 6°C (1 Sv=1×106 m3 s-1). Transport values were derived using both absolute velocities and AVP-referenced geostrophic velocities and were the same within experimental uncertainty. Good agreement was found between our results and historical ones when both were similarly bounded and referenced. Although this was a short-term survey, the mean of a 9-day time series of absolute velocity profiles was the same as the means of year-long current-meter records at three depths in the same location. A turbulent planetary BBL was found everywhere under the current. The thickness of the bottom mixed layer (BML), where concentrations of density, nutrients, and suspended sediments were vertically uniform, was asymmetrical across the current and up to 5 times thicker than the BBL. There was no velocity shear above the BBL within the thicker BMLs, and the across-slope density gradient was very small. The extra-thick BML is perhaps maintained by a combination of processes, including turbulence, downwelling Ekman transport, a weak up-slope return flow above the BBL, and buoyant convection from the BBL into the BML. The frictional bottom stress was mostly balanced by a down-stream change in the current’s external potential energy evidenced by a drop in the velocity core of the current.  相似文献   

10.
The beam attenuation coefficient, organic carbon (POC) and organic nitrogen (PON) contents of suspended materials in Etauchi Bay, which has little inflow of river water as well as very weak tidal current (maximum speed: 6.5cm·sec−1), were measured as a function of depth for all seasons to understand a seasonal variation of bottom turbidity layer. In spring and summer, the beam attenuation coefficient in bottom layer and POC and PON contents of suspended materials in the surface water layer increased with time, which brought the occurrence of the bottom turbidity layer. From autumn to winter, however, their concentrations became low and constant over the whole depth almost independent of time. As a result, the bottom turbidity layer disappeared in winter and beam attenuation coefficient became constant over the whole depth. From these results, it may be considered that the bottom turbidity layer was produced by phytodetritus brought from surface water layer, rather than by resuspension of bottom sediment in Etauchi Bay.  相似文献   

11.
Current meter data from various depths near the sea bottom collected for 31 days at time intervals of 10 minutes using a subsurface buoy system at a depth at 38 m on the continental shelf off Akita, Japan have been analyzed. The results show the existence of a stationary Ekman layer. The typical range of the characteristic parameters are estimated as follows; friction velocity: 0.38 cm s–1; Ekman layer thickness: 16 m; logarithmic layer thickness: 4 m–6 m; constant flux layer thickness: 0.4–0.6 m; Ekman veering: 28.7°; drag coefficient: 0.24×10–2–0.53×10–2. Veering was also observed in the logarithmic layer.  相似文献   

12.
The representation of baroclinic instability in numerical models depends strongly upon the model physics and significant differences may be found depending on the vertical discretization of the governing dynamical equations. This dependency is explored in the context of the restratification of an idealized convective basin with no external forcing. A comparison is made between an isopycnic model including a mixed layer (the Miami Isopycnic Coordinate Ocean Model, MICOM), its adiabatic version (MICOM-ADIAB) in which the mixed layer physics are removed and the convective layer is described by a deep adiabatic layer outcropping at the surface instead of a thick dense mixed layer, and a z-coordinate model (OPA model).In the absence of a buoyancy source at the surface, the mixed layer geometry in MICOM prevents almost any retreat of this layer. As a result, lateral heat exchanges in the upper layers are limited while mass transfers across the outer boundary of the deep convective mixed layer result in an unrealistic outward spreading of this layer. Such a widespread deep mixed layer maintains a low level of baroclinic instability, and therefore limits lateral heat exchanges in the upper layers over most of the model domain. The behavior of the adiabatic isopycnic model and z-coordinate model is by far more satisfactory although contrasted features can be observed between the two simulations. In MICOM-ADIAB, the more baroclinic dynamics introduce a stronger contrast between the surface and the dense waters in the eddy kinetic energy and heat flux distributions. Better preservation of the density contrasts around the dense water patch maintains more persistent baroclinic instability, essentially associated with the process of dense water spreading. The OPA simulation shows a faster growth of the eddy kinetic energy in the early stages of the restratification which is attributed to more efficient baroclinic instability and leads to the most rapid buoyancy restoring in the convective area among the three simulations. Dense water spreading and warm surface capping occur on fairly similar time scales in MICOM-ADIAB although the former is more persistent that the latter. In this model, heat is mainly transported by anticyclonic eddies in the dense layer while both cyclonic and anticyclonic eddies are involved in the upper layers. In OPA, heat is mainly brought into the convective zone through the export of cold water trapped in cyclonic eddies with a strong barotropic structure. Probably the most interesting difference between the z-coordinate and the adiabatic isopycnic model is found in the temperature distribution ultimately produced by the restratification process. OPA generates a spurious volume of intermediate water which is not seen in MICOM-ADIAB where the volume of the dense water is preserved.  相似文献   

13.
Surface waves generated by a moving ship in water of finite depth are affected by the rheological properties of the movable bottom. The aim of this work is to evaluate the wave resistance exerted on a hovercraft modeled as a two-dimensional pressure distribution moving on the free surface of water with nonrigid bottom. Analysis of three-dimensional flows in two-fluid layers of finite depths is performed by assuming an inviscid upper layer (water) and a viscous lower layer (nonrigid bottom). Numerical calculations show that the maximum wave resistance occurs in the vicinity of the critical Froude number F=1. This maximum value decreases as the muddy bottom becomes less rigid.  相似文献   

14.
对长江口2002年和2003年共4个潮周期的数据进行了分析,通过流速对数剖面公式计算边界层参数,并对各个潮周期内的边界层参数的变化规律进行了分析,同时也对悬沙输送可能对垂向水流结构以及边界层参数造成的影响进行了探讨。结果表明,悬沙的时间分布特征对温度、盐度、水体密度的分布格局有重要影响,主要表现在水体的Rf值普遍较高,分层稳定。此外,悬沙也可影响边界层参数,从而对水流结构产生影响。由于水体的层化作用,使层间的摩擦阻力增大,相当于在垂向上产生不同内边界层,因而影响了流速在垂向上的变化。  相似文献   

15.
In the Boussinesq approximation, we study baroclinic topographic waves trapped by the flat meridional slope. The existence of these waves is explained by stratification, inclined bottom, and Earth's rotation. We deduce the evolutionary equation for the square of the envelope of a narrow-band wave packet of trapped waves. In the second order of smallness relative to the wave amplitude, we find the mean fields of velocity and density induced by the packet. It is shown that, in the limiting case of weakly nonlinear plane waves, the induced current is zonal. In the Northern hemisphere, depending on the slope of the bottom γ1, the sign of the phase velocity σ/k (k is the zonal wave number) is either always positive (for γ11cr) or always negative (for γ11cr). If we neglect the vertical component of the Coriolis acceleration, then γ1cr=0. Translated by Peter V. Malyshev and Dmitry V. Malyshev  相似文献   

16.
径流量和海平面变化对河口最大浑浊带的影响   总被引:2,自引:0,他引:2  
应用改进的ECOM模式,耦合泥沙输运方程,研究径流量和海平面变化对河口最大浑浊带的影响.河口最大浑浊带位于滞流点处,底层上下游余流均向该处输运泥沙,造成该处泥沙汇合,而由流场辐合产生的上升流又使该处的泥沙不易落淤.由于盐水入侵带来的高盐水位于北岸的底层,其斜压效应使底层的横向环流由北向南流动,把底层高浓度的泥沙向南岸平流,使得最大浑浊带位于南岸.研究河口最大浑浊带现象必须使用三维泥沙输运模式.在径流量增大的情况下,与控制试验相比底层向陆的密度流减弱,滞流点下移,导致最大浑浊带也下移;因上游来沙量增加,在最大浑浊带中心和河口拦门沙处悬浮泥沙浓度趋于增加.在径流量减少的情况下,最大浑浊带的变化趋势与径流量增大情况的结果相反.在海平面上升的情况下,拦门沙区域底层向陆的密度流趋于增强,滞流点上移,最大浑浊带也相应向上游移动;最大浑浊带中心处泥沙浓度趋于增大,但口门拦门沙处泥沙浓度趋于减小.径流量和海平面变化对最大浑浊带影响明显.  相似文献   

17.
本文构造了一个考虑潮汐、中尺度涡和地形影响下的南海底部环流诊断模型。在该模型中,潮汐混合和涡致混合引起的垂直速率用一个类似的改进参数化方案来表示。该模型结果显示在南海深层吕宋海峡"深水瀑布"和斜压影响最大,潮汐作用和中尺度涡影响次之,风场的影响最小。斜压影响的整体效应与其他因素相反。潮汐混合与涡致混合具有明显的地形依赖性。潮汐混合主要集中在南海北部海盆地形较为陡峭的陆坡区和南海中部海山区,而涡致混合主要集中在海盆西边界区以及中部海山区。在不考虑吕宋海峡"深水瀑布"、潮汐和中尺度涡的情况下(对应吕宋海峡关闭),南海底部环流为反气旋式环流。考虑吕宋海峡"深水瀑布"后,南海底层环流为气旋式环流,而潮汐混合和涡致混合起到加强整个气旋式环流强度的作用。此外,该模型还给出了南海底部环流量级大小与地形坡度之间的密切关系,即地形坡度较大的地方,其流速也大。这对于现场观测有着一定的参考意义。最后,本文用尺度分析的方法从理论上分析了该模型的适用性,证实了该模型具有一定的可靠性。  相似文献   

18.
夏季北黄海南部定点高分辨率实测海流分析   总被引:10,自引:2,他引:8       下载免费PDF全文
对夏季北黄海南部一定点高分辨率连续ADCP(Acoustic Doppler Current Profiler)海流实测资料,使用调和分析方法分解成3部分:不随时间变化的定常余流,周期性潮流和剩余流,再将潮流分解为正压潮流和斜压潮流。通过对实测海流中各组分的分析,结合同时期卫星反演海面风场资料,温度、盐度断面调查资料,得到以下结论:夏季该站点上层定常余流的主导动力控制因素是风应力,上层表现出明显的Ekman风海流特征,中、下层流速方向与表层流向基本成反向,体现出"上进下出"的垂向空间结构,定常流速最大位于近表层,可以达到5cm/s以上;各层的潮流类型均为正规半日潮流,主要半日潮潮流椭圆长轴的方向基本上呈东南-西北方向,其椭率在近底层达到最大值,中、上层较小;从能量角度分析该站点各海流组分,潮流与剩余流所占能量较大,平均起来看,潮流能量占测量海流能量的77%,而定常余流仅占0.6%,该点的斜压潮流较弱,平均斜压潮流能量仅占正压潮流能量的5%。  相似文献   

19.
基于ROMS(Regional Ocean Modeling System)模式,对西北太平洋海域进行了水平分辨率高达4km的水动力环境数值模拟,该分辨率可以很好地分辨我国东海陆架环流以及中尺度涡旋等过程,此外模式考虑了8个分潮,模式结果很好地再现了黄、东海陆架环流等。基于模式结果,对"桑吉"号泄漏物质可能的扩散和迁移轨迹进行了数值模拟分析。在"桑吉"号沉船位置的表、底Ekman层内,释放拉格朗日粒子和示踪物来示踪"桑吉"号泄漏物质的可能影响范围。拉格朗日粒子和示踪物模拟结果表明:在未来3个月,"桑吉"号泄漏物质对我国黄海的影响较小,其主要随着对马暖流进入日本海和随着黑潮进入日本九州以南的太平洋海域。随着冬、春的季节转换,三个月后,北风会减弱,减弱风场的试验表明,风场减弱会减少泄漏物质向黄海的输送。5月份后黄海冷水团逐渐形成,由于斜压效应,在黄海深层水中会逐渐建立起气旋式环流,从而进一步阻碍了"桑吉"号泄漏物质向黄海的输送,该气旋式环流有利于"桑吉"号泄漏物质通过对马海峡向日本海的输送,而会抑制底层泄漏物质向我国黄海西侧的输送。  相似文献   

20.
Physical regularities of water exchange between the North Atlantic (NA) and Arctic Ocean (AO) in 1958–2009 are analyzed on the basis of numerical experiments with an eddy-permitting model of ocean circulation. Variations in the heat and salt fluxes in the Greenland Sea near the Fram Strait caused by atmospheric forcing generate baroclinic modes of ocean currents in the 0–300 m layer, which stabilize the response of the ocean to atmospheric forcing. This facilitates the conservation of water exchange between the NA and AO at a specific climatic level. A quick response of dense water outflow into the deep layers of the NA through the Denmark Strait to the variations in the North Atlantic Oscillation (NAO) index was revealed on the monthly scale. A response on a time scale of 39 months was also revealed. The quick response on the NAO index variation was interrupted in 1969–1978, which was related to the Great Salinity Anomaly. It was shown that transverse oscillations of the Norwegian Atlantic Current significantly influence the formation of intermediate dense waters in the Greenland and Norwegian seas (GNS). The dense water outflow by bottom current (BC) to the deep layers of the NA through the Faroe Channels with a time lag of 1 year correlates with the transversal oscillations of the Norwegian Current front. The mass transport of the BC outflow from the Faroe Channels to the NA can serve as an integral indicator of the formation and sink of new portions of dense waters formed as a result of mixing of warm saline Atlantic waters and cold freshened Arctic waters in the GNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号