首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental Investigation of the Decay from A Ship’s Propeller   总被引:1,自引:0,他引:1  
In the present study,an experimental investigation of the decay of the maximum velocity and its turbulent characteristics behind a ship propeller,in "bollard pull" condition(zero speed of advance),is reported.Velocity measurements were performed in laboratory by use of a Laser Doppler Anemometry(LDA) measurement system.Earlier researchers described that the maximum axial velocity is constant at the initial stage of a ship’s propeller jet(Fuehrer and Rmisch,1977;Blaauw and van de Kaa,1978;Berger et al.,1981;Verhey,1983) as reported in a pure water jet(Albertson et al.,1950;Lee et al.,2002;Dai,2005),but a number of researchers disagreed with the constant velocity assumption.The present study found that the maximum axial velocity decays in the zone of flow establishment and the zone of established flow with different rates.The investigation provides an insight into the decays of both the maximum velocity and the maximum turbulent fluctuation in axial,tangential and radial components and the decay of the maximum turbulent kinetic energy.Empirical equations are proposed to allow coastal engineers to estimate the jet characteristics from a ship’s propeller.  相似文献   

2.
The present paper was aimed at presenting the time-averaged velocity and turbulence intensity at the initial plane from a ship's propeller. The flow characteristics of a ship's propeller jet are of particular interest for the researchers investigating the jet induced seabed damage as documented in the previous studies. Laser Doppler Anemometry (LDA) measurements show that the axial component of velocity is the main contributor to the velocity magnitude at the initial plane of a ship's propeller jet. The tangential component contributes to the rotation while the radial component which contributes to the diffusion, are the second and third largest contributors to the velocity magnitude. The maximum tangential and radial velocity components at the initial plane are approximately 82% and 14% of the maximum axial velocity component, respectively. The axial velocity distribution at the initial plane shows two peaked ridges with a low velocity core at the rotation axis. The turbulence intensity distribution shows a three-peaked profile at the initial plane.  相似文献   

3.
Accurate propeller shaft speed controllers can be designed by using nonlinear control theory and feedback from the axial water velocity in the propeller disc. In this paper, an output feedback controller is derived, reconstructing the axial flow velocity from vehicle speed measurements, using a three-state model of propeller shaft speed, forward (surge) speed of the vehicle, and the axial flow velocity. Lyapunov stability theory is used to prove that a nonlinear observer combined with an output feedback integral controller provide exponential stability. The output feedback controller compensates for variations in thrust due to time variations in advance speed. This is a major problem when applying conventional vehicle-propeller control systems. The proposed controller is simulated for an underwater vehicle equipped with a single propeller. The simulations demonstrate that the axial water velocity can be estimated with good accuracy. In addition, the output feedback integral controller shows superior performance and robustness compared to a conventional shaft speed controller  相似文献   

4.
The characteristics of the flow over the rudder’s pintle gap are investigated by using the particle image velocimetry (PIV) technique. The propeller and rudder models are scaled down to 1/28.5. Highly accelerated leakage outflows are separated at the discontinuities of the gap and generate strong cavitation at the suction side of the rudder. In the rudder and propeller configuration, the propeller wake sheet ahead of the gap entrance region starts to induce leakage flow over the lower pintle gaps of the suction side. The gap flow has a velocity magnitude as high as 0.4U0 in the high leakage flow condition, where the wake sheet locates over the gap entrance. The cross-flow of the propeller wake sheet interferes the gap entrance region and triggers gap cavitation. As the propeller wake sheet moves downstream and weakens, the gap flow velocity decreases over the gap entrance.  相似文献   

5.
In this paper, the flow-induced vibrations of marine propellers in cyclic inflows are investigated both experimentally and numerically. A Laser-Doppler velocimetry (LDV) system is used to measure the axial flow velocity distributions produced by the seven-cycle wake screen in the water tunnel. A customized underwater slip ring and a single axis accelerometer sealed by silicon sealant are employed to measure the acceleration responses of rotating propeller blade. Numerical simulations of pressure fluctuations on the blades are performed using large eddy simulation (LES), while the forced vibrations of the propeller blades are obtained by a combined finite element and boundary element method. Experimental and numerical results are presented for two model propellers with the same geometries and different flexible properties, which show that the propeller blade vibrates at a frequency which is seven times as large as the axial passing frequency (APF) in the seven-cycle inflow. Moreover, the propeller blades are observed to resonance when the 7 APF excitation frequency is equal to the fundamental frequency of the propellers. The results indicate that both the inflow feature and the modal characteristic of blades contribute to flow-induced vibrations of elastic propellers.  相似文献   

6.
A new model for the boundary layer development and associated skin friction coefficients and shear stress within the swash zone is presented. The model is developed within a Lagrangian reference frame, following fluid trajectories, and can be applied to both laminar flow and smooth turbulent flow. The model is based on the momentum integral approach for steady, flat-plate boundary layers, with appropriate modifications to account for the unsteady flow regime and flow history. The model results are consistent with previous measurements of bed shear stress and skin friction coefficients within the swash zone. These indicate strong temporal and spatial variation throughout the swash cycle, and a clear distinction between the uprush and backwash phase. This variation has been previously attributed the unsteady flow regime and flow history effects, both of which are accounted for in the new model. Fluid particle trajectories and velocity are computed using the non-linear shallow water wave equations and the boundary layer growth across the entire swash zone is estimated. Predictions of the bed shear stress and skin friction coefficients agree reasonably well with direct bed shear stress measurements reported by Barnes et al. (Barnes, M.P., O’Donaghue, T., Alsina, J.M., Baldock, T.E., 2009. Direct bed shear stress measurements in bore-driven swash. Coastal Engineering 56 (8), 853–867) and, for a given flow velocity, give stresses which are consistent with the bias toward uprush sediment transport which has consistently been observed in measurements. The data and modelling suggest that the backwash boundary layer is initially laminar, which results in the late development of significant bed shear during the backwash, with a transition to a turbulent boundary layer later in the backwash. A new conceptual model for the boundary layer structure at the leading edge of the swash is proposed, which accounts for both the no-slip condition at the bed and the moving wet–dry interface. However, further development of the Lagrangian Boundary Layer Model is required in order to include bore-generated turbulence and to account for variable roughness and mobile beds.  相似文献   

7.
The hydrodynamic characteristics of a marine propeller operating in oblique inflow are investigated by using CFD method. Two propellers with different geometries are selected as the study subjects. RANS simulation is carried out for the propellers working at a wide range of advance coefficients and incidence angles. The effects of axial inflow and lateral inflow are demonstrated with the hydrodynamic force on the propeller under different working conditions. Based on the obtained flow field details, the hydrodynamic mechanism of propeller operating in oblique inflow is analyzed further. The trailing vortex wake of propeller is highly affected by the lateral inflow, resulting in the deflected development path and the circumferentially non-uniform structure, as well as the enhanced axial velocity in slipstream. Different flow patterns are observed on the propeller blade with the variation of circumferential position. Combined with the computed hydrodynamic forces and pressure distribution on propeller, the mechanism resulting in the increase of propulsive loads and the generation of propeller side force is explored. Finally, a systematic analysis is carried out for the propulsive loads and propeller side force as a function of axial and lateral advance coefficients. The major terms that play a dominant role in the modeling of propulsive loads and propeller side force are determined through the sensitivity analysis. This study provides a deeper insight into the hydrodynamic characteristics of propeller operating in oblique inflow, which is useful to the investigation of propeller performance during ship maneuvers.  相似文献   

8.
In this study, we propose a fuzzy approach in order to evaluate the maritime risk assessment applied to safety at sea and more particularly, the pollution prevention on the open sea. The work is based on the decision-making system, named MARISA, presented in Balmat et al. (2009). This system allowed defining a risk factor for each ship according to ship’s characteristics and weather conditions. In this novel paper, the proposed system takes into account the ship speed evolution and the ship position with respect to maritime shipping lanes is developed. To validate the method, we present an example of results with real data.  相似文献   

9.
Ice ridges form a difficult obstacle for ice navigation. Despite this fact, the resistance of ships in ridges has been investigated very little.A trial was performed with the Finnish icebreaker APU (propulsion machinery power of 8·8 MW) in April 1974 in the Baltic, in order to measure its resistance in ridges.Most of the 11 ridges were so massive that the ship could not penetrate through them by a continuous mode, the ramming mode had to be used.When the ship was penetrating a ridge, its speed and the propeller revolutions were registered for determining the resistance. A doppler radar was used for measuring ship spped.In case the ship was stopped in the ridge it was extracted, reversed and accelerated for the next ram. The time history was registered for determining the ship's speed of advance.Before starting a test, the ridge profile above the water level was measured. This was simply done by using a levelling instrument.The main object of the test was to determine the ship's speed of advance. The results, i.e. ice resistance, ship speed and ridge characteristics were analysed on three levels: momentary values average values for rams and average values for a series of rams in one ridge.The test series presented in the article was the first one in full scale in which the speed of the advance of a ship moving by ramming was determined and the ridge profiles were mapped. The measuring system developed worked well. As results the tests gave data of the ship's resistance and of the ship's speed of advance in ridges.  相似文献   

10.
The thruster is the crucial factor of an underwater vehicle system, because it is the lowest layer in the control loop of the system. In this paper, we propose an accurate and practical thrust modeling for underwater vehicles which considers the effects of ambient flow velocity and angle. In this model, the axial flow velocity of the thruster, which is non-measurable, is represented by ambient flow velocity and propeller shaft velocity. Hence, contrary to previous models, the proposed model is practical since it uses only measurable states. Next, the whole thrust map is divided into three states according to the state of ambient flow and propeller shaft velocity, and one of the borders of the states is defined as critical advance ratio (CAR). This classification explains the physical phenomenon of conventional experimental thrust maps. In addition, the effect of the incoming angle of ambient flow is analyzed, and Critical Incoming Angle (CIA) is also defined to describe the thrust force states. The proposed model is evaluated by comparing experimental data with numerical model simulation data, and it accurately covers overall flow conditions within ±2 N force error. The comparison results show that the new model's matching performance is significantly better than conventional models'.  相似文献   

11.
A joint analysis of gravity anomaly and seismic travel-time data has been used to construct a three-dimensional velocity structure for the northeastern extension of the northern South China Sea’s high-magnetic belt in the Taiwan region. The earthquake data used in this study was collected by the Central Weather Bureau Seismological Network from 1991 to 2002, while the gravity data around Taiwan was compiled by Hsu et al. (1998), Terr. Atmos. Oceanic. Sci., 9, 509–532, and Wang et al. (2002), >Terr. Atmos. Oceanic. Sc., 13, 339–354. A modified velocity model obtained by local earthquake tomography was used to construct an initial three-dimensional gravity model, using a linear velocity–density relationship. To derive a crustal velocity–density model that accounts for both types of observations, this study performed a sequential inversion of travel-time and gravity data. The main features of our three-dimensional velocity model are:(1) an uplifted zone with velocity greater than 6.5 km/s being observed in the lower crust, (2) the width and the shape of the uplifted zone being found to be strongly correlated with the high-magnetic belt, (3) a trend by which the lower crustal high-velocity zone turns from northeast to north in central Taiwan, where the high-magnetic zone was truncated. A combination of seismic, gravity, and structural interpretations suggests that the crustal deformation relating to the magnetic truncation observed in northwestern Taiwan could be correlated closely with the collision between the Philippine Sea plate and the Asian continental margin.  相似文献   

12.
This paper replies to TE Baldock's discussion [Coastal Eng. 56 (2009) 380–381] of ‘Measurement of wave-by-wave bed-levels in the swash zone’ by Turner et al. [Coastal Eng. 55 (2008) 1237–1242]. We address and extend the comparison and discussion of ultrasonic bed-level sensors and buried pressure transducers to obtain estimates of the beach face elevation within the swash zone. We demonstrate the use of the former method to obtain many and continuous (every time the beach face is exposed) in-situ estimates of net sediment flux per swash.  相似文献   

13.
Ben Belgacem  I.  Cheikh  L.  Barhoumi  E. M.  Khan  W.  Ben Salem  W. 《中国海洋工程》2019,33(1):114-126
In this paper, we present a numerical simulation of a water jet impacting a new aeronautical material Ti555-03 plate.The Computational Fluid Dynamics(CFD) behavior of the jet is investigated using a FV(Finite Volume) method.The Fluid–Structure Interaction(FSI) is studied using a coupled SPH(Smoothed Particle Hydrodynamics)-FE(Finite Element) method. The jets hit the metal sheet with an initial velocity 500 m/s. Two configurations which differ from each other by the position(angle of inclination) of the plate relatively to the axis of revolution of the jet inlet are investigated in this study. The objective of this study is to predict the impact of the fluid produced at high pressure and high speed especially at the first moment of impact. Numerical simulations are carried out under ABAQUS. We have shown in this study that the inclination of the titanium alloy plate by 45° stimulates the phenomenon of recirculation of water. This affects the velocity profile, turbulence and boundary layers in the impact zone. The stagnation zone and the phenomenon of water recirculation are strongly influenced by the slope of the plate which gives a pressure gradient and displacement very important between the two configurations. Fluctuations of physical variables(displacement and pressure) prove the need for a noise and vibratory study. These predictions will subsequently be used for the modeling of the problem of an orthogonal cut in a high-speed machining process assisted by high-pressure water jet.  相似文献   

14.
In this study, the flow around the pod unit is analysed and the performance characteristics of the propeller on the pod are investigated. The main objective of the present work is to further improve the original numerical method developed before for the prediction of performance of podded propellers and to further validate the earlier developed numerical model with a specific emphasis on the hydrodynamic interaction amongst the propulsor components. While in the earlier numerical method, the axial induced velocities by pod and strut parts were included into the calculations on the propeller disc plane, in the present method the tangential induced velocities on the propeller disc plane are included in the calculations as well. The flow domain around the podded propeller is mainly divided into three parts; the axisymmetric pod part, the strut part and the propeller part. While the pod and strut parts are modelled by a low-order boundary element method (BEM), the propeller is represented by a vortex lattice method (VLM). Coupling of the BEM and the VLM is carried out in an iterative manner to incorporate the effect of the pod on the propeller, and vice versa. The present numerical method is applied to two different podded propellers with zero yaw angles in order to compare the results with those of experimental measurements. The present numerical method is also validated in the case of 15° of yaw angle for a podded propulsor. The effect of pod and strut on the propeller and vice versa are discussed.  相似文献   

15.
CTD and ADCP measurements together with a sequence of satellite images indicate pronounced current meandering and eddy activity in the western Black Sea during April 1993. The Rim Current is identified as a well-defined meandering jet stream confined over the steepest topographic slope and associated cyclonic–anticyclonic eddy pairs located on both its sides. It has a form of highly energetic and unstable flow system, which, as it propagates cyclonically along the periphery of the basin, is modified in character. It possesses a two-layer vertical structure with uniform upper layer speed in excess of 50 cm/s (maximum value ∼100 cm/s), followed by a relatively sharp change across the pycnocline (between 100 and 200 m) and the uniform sub-pycnocline currents of 20 cm/s (maximum value ∼40 cm/s) observed up to the depth of ∼350 dbar, being the approximate limit of ADCP measurements. The cross-stream velocity structure exhibits a narrow core region (∼30 km), flanked by a narrow zone of anticyclonic shear on its coastal side and a broader region of cyclonic shear on its offshore side. The northwestern shelf circulation is generally decoupled from the influence of the basinwide circulation and is characterized by much weaker currents, less than 10 cm/s. The southward coastal flow associated with the Danube and Dinepr Rivers is weak during the measurement period and is restricted to a very narrow coastal zone.The data suggest the presence of temperature-induced overturning prior to the measurements, and subsequent formation of the Cold Intermediate Water mass (CIW) within the Northwestern Shelf (NWS) and interior of the western basin. The newly formed shelf CIW is transported in part along the shelf by the coastal current system, and in part it flows downslope across the shelf and intrudes into the Rim Current convergence zone. A major part of the cold water mass, however, seems to be trapped within the northwestern shelf. The CIW mass, injected into the Rim Current zone from the shelf and the interior region, is then circulated around the basin.  相似文献   

16.
赵辰  杨晨俊 《海洋工程》2014,32(3):72-77
螺旋桨工作时在其周围形成诱导速度场,诱导速度随到桨叶距离的增大而衰减。采用CFD方法模拟螺旋桨敞水性能时,只能截取有限尺度的流域进行计算,此时计算域边界上诱导速度并不为零,将进口速度设为进速是近似的。一般采用足够大的计算域,使螺旋桨前方及侧面边界尽量远离桨叶。为了在较小的计算域中实现螺旋桨敞水性能的准确预报,提出在设定进口速度时计入螺旋桨诱导速度的CFD模拟方法。应用升力面方法计算诱导速度,将进口速度设为进速与诱导速度之和。逐步减小计算域尺度,考察敞水性能及压力分布计算结果的变化情况及精度。算例比较表明:通过考虑诱导速度,可以大幅度减小进口与螺旋桨的距离而不降低计算精度。  相似文献   

17.
18.
The U.S. Navy’s Sound Surveillance System (SOSUS) hydrophone arrays are extemely efficient receptors of a high-frequency earthquake energy phase known as the t(ertiary)-wave, or t-phase (Fox et al., 1994). After a nearly 30-year hiatus in such studies, SOSUS arrays are again being utilized to detect t-phases and to locate seismic and volcanic events occurring along the Gorda seafloor spreading center (Fox et al., 1995; Fox and Dziak, 1998). Earlier, Northrop et al. (1968) also used other military arrays to infer tectonic structure along the Gorda Ridge. From October 1964 through December 1966, over 600 low-magnitude earthquakes occurred along the Gorda Ridge. Nearly all of these events had magnitudes below the detection thresholds of land-based seismic networks. Northrop et al. (1968) interpreted the geographic distribution of these events as evidence for a nascent fracture zone near the midpoint of the ridge. In the present study, the spatial distributions of these older data and, for the first time, their temporal distributions as well, were examined with respect to detailed bathymetry of the ridge that was acquired in the early 1980s. This analysis, of 570 on-axis and 74 off-axis events, led to the following observations: (1) nearly all of the Gorda Ridge t-phase events occurred in discreet swarms centered about the ridge axis, (2) most of the events within each of 8 (of 9) observed swarms occurred mainly along single ridge segments, and, (3) reconfirming the earlier Northrop et al. (1968) conclusion, most of the events originated in the region of a major change in the strike of the ridge axis. During the 27-month interval that the ridge was observed, relatively few t-phase events took place along the northernmost segment of the Gorda Ridge where the 1996 eruption occurred. However, a unique sequence of small events which visually resemble the events associated with a Juan de Fuca Ridge eruption in 1993 (Fox et al., 1995) and a Gorda Ridge eruption in 1996 (Fox and Dziak, 1998) may have been associated with an eruption on the ridge during 1965.  相似文献   

19.
A coupled ocean-ice-wave model is used to study ice-edge jet and eddy genesis during surface gravity wave dissipation in a frazil-pancake ice zone. With observational data from the Beaufort Sea, possible wave dissipation processes are evaluated using sensitivity experiments. As wave energy dissipated, energy was transferred into ice floe through radiation stress. Later, energy was in turn transferred into current through ocean-ice interfacial stress. Since most of the wave energy is dissipated at the ice edge, ice-edge jets, which contained strong horizontal shear, appeared both in the ice zone and the ocean. Meanwhile, the wave propagation direction determines the velocity partition in the along-ice-edge and cross-ice-edge directions, which in turn determines the strength of the along-ice-edge jet and cross-ice-edge velocity. The momentum applied in the along-ice-edge(cross-ice-edge)direction increased(decreased) with larger incident angle, which is favorable condition for producing stronger mesoscale eddies, vice versa. The dissipation rate increases(decreases) with larger(smaller) wavenumber, which enhances(reduces) the jet strength and the strength of the mesoscale eddy. The strong along-ice-edge jet may extend to a deep layer(> 200 m). If the water depth is too shallow(e.g., 80 m), the jet may be largely dampened by bottom drag, and no visible mesoscale eddies are found. The results suggest that the bathymetry and incident wavenumber(magnitude and propagation direction) are important for wave-driven current and mesoscale eddy genesis.  相似文献   

20.
The tip vortex cavitation (TVC) is an issue of increasing interest, because the TVC plays an important role in propeller radiated noise and cavitation erosion. The marine propeller with winglets, which is inspired by the winglets of airfoil, is numerically investigated in the present paper. The blade tip of newly designed propeller tilts toward the pressure side. The difference between six propellers is the change of the rake angle at r/R = 1.0. The pressure coefficient, TVC, axial velocity field and helicity are analyzed. The numerical results show that the winglets of newly designed propeller scarcely affect the efficiency of propeller. The thrust coefficient gradually decreases with the increase in rake angle. As for the suction side, the pressure coefficient (Cp) of winglets propellers is higher than the conventional propeller in general. In addition, the winglets are beneficial to generate less cavitation behavior when the rake angle is small. However, as the rake angle is further increased, the cavitation behavior of winglets propeller is also increased, even larger than the conventional propeller. Therefore, it can be deduced that the winglets can be used to effectively improve the TVC characteristics to some extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号