首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Steel catenary riser (SCR) is the transmission device between the seabed and the floating production facilities. As developments move into deeper water, the fatigue life of the riser can become critical to the whole production system, especially due to the vortex-induced vibration (VIV), which is the key factor to operational longevity. As a result, experimental investigation about VIV of the riser was performed in a large plane pool which is 60 m long, 36 m wide and 6.5 m deep. Experiments were developed to study the influence of current speed and seabed on VIV of SCR. The results show that amplitudes of strain and response frequencies increase with the current speed both in cross-flow (CF) and in-line (IL). When the current speed is high, multi-mode response is observed in the VIV motion. The amplitudes of strain in IL direction are not much smaller than those in CF direction. The seabed has influence on the response frequencies of riser and the positions of damage for riser.  相似文献   

2.
Steel catenary riser(SCR) is the transmission device between the seabed and the floating production facilities. As developments move into deeper water, the fatigue life of the riser can become critical to the whole production system, especially due to the vortex-induced vibration(VIV), which is the key factor to operational longevity. As a result, experimental investigation about VIV of the riser was performed in a large plane pool which is 60 m long, 36 m wide and 6.5 m deep. Experiments were developed to study the influence of current speed and seabed on VIV of SCR. The results show that amplitudes of strain and response frequencies increase with the current speed both in cross-flow(CF) and in-line(IL). When the current speed is high, multi-mode response is observed in the VIV motion. The amplitudes of strain in IL direction are not much smaller than those in CF direction. The seabed has influence on the response frequencies of riser and the positions of damage for riser.  相似文献   

3.
With the increase in demand and supply gap in the oil and gas industry, new developments of oil and gasinfrastructure are moving into deeper water. This requires design and construction of long high temperature and high pressure pipelines from deep sea to shore. These pipelines are subjected to cyclic expansion during operating cycles. Accumulated axial movement due to repeated thermal cycles may lead to global displacement referred to as ‘walking’. Walking rates depend on the restraint associated with seabed friction. In conventional analyses, seabed friction is independent of the rate of thermal loading and expansion but it has been recognised that the sliding resistance between a pipe and the seabed varies with velocity, partly due to drainage effects. In this paper a numerical model is used to explore the effect of velocity-dependent seabed friction. A velocity-dependent friction model is implemented in commercial software ABAQUS and validated via single element and simple (flat seabed) pipeline cases. This model features upper and lower friction limits, with a transition that occurs as an exponential function of velocity. A parametric study is performed using differing rates of heating and cool-down in walking situations driven by seabed slope, SCR end tension and the difference between heat up and cool down rates. The walking behaviour is compared to cases with constant friction and solutions are proposed to express the velocity-dependent response in terms of an equivalent constant friction. These equivalent friction values can then be applied in existing simple solutions or more complex numerical analyses, as a short cut method to account for velocity-dependent friction.  相似文献   

4.
This paper describes a new device for measuring seabed sliding resistance in situ, and provides an associated interpretation procedure. The device is designed to use a work class ROV as a testing platform to allow measurements to be obtained without use of a specialized geotechnical survey platform. The measurements are to assist pipeline design or analysis of the sliding resistance of other on-bottom infrastructure such as anchor chains. The device has been trialled using three tools: a flat plate, a cylindrical pipe section and a length of chain. The tools are dragged axially along the seabed using the ROV thrusters or a separate hydraulic actuator. An interpretation technique has been developed to estimate the passive resistance mobilized by the faces of the tools to eliminate end effects and to account for shape effects such as wedging. Onshore-trial tests were performed in a bed of dry sand. The individual tools exhibited different overall coefficients of friction, but the back-analysis method yielded equal interface friction angles acting on all three devices, indicating internal consistency. The interface friction angle also matched shear box test results. These outcomes confirm the correct operation of the device in drained seabed conditions, and yield useful information on the sliding resistance of pipes and chains. In addition, the back-analysis method allows measurements from one shape of tool to be used to estimate the response of other objects.  相似文献   

5.
Two single-sensor piezometer probes, 8 mm in diameter, were developed for deep-ocean geotechnical investigations. These probes were tested in a hyperbaric chamber pressurized to 55 MPa (8000 psi). Testing was performed for a period of five weeks under high hydrostatic pressure with the probes inserted in reconstituted illitic marine sediment. Small differential pore-water pressures were generated in response to both mechanically and thermally generated forcing functions. During deep-ocean simulated pressure tests, the sensors exhibited excellent sensitivity and stability. These developments in piezometer-probe technology provide a quantitative means of assessing important geotechnical parameters of fine-grained seabed deposits.  相似文献   

6.
Marine pollution has received considerable attention during the past few years as the news media has focused on such topics as contaminated seafoods, algae blooms, fish and mammal kills, and dirty beaches. The source of these pollution problems are many and include: sewage outfalls, industrial discharges, storm runoff from agricultural lands and metropolitan areas, waste sludges, dredge materials, and highly concentrated chemical and radioactive wastes. Although the United Nations has banned marine dumping, there is still the problem of legacy wastes and low level discharges into the coastal zone. Disposal of these wastes in the marine environment typically involves either: their placement directly on or within the seabed or dilution in the water column. If wastes are diluted in the water column, they have the potential to be adsorbed onto the surface of sediment particles which are settling to the seabed. As particles settle through the water column they are subjected to extensive dispersal and may eventually be injested by bottom-feeding organisms or bio-accumulation by plankton and, thus, enter the food chain. Geotechnical engineers working as members of multidisciplinary teams apply quantitative knowledge about the behavior and physical performance of earth materials toward designing systems for disposing of these wastes in the oceans and aid in monitoring waste disposal sites. In dredged material disposal geotechnical engineers assist in selecting disposal equipment, predict stable characteristics of dredged material mounds, design mound caps, and predict erodibility of the material. With sewage outfalls, geotechnical engineers design foundation and anchor elements, estimate scour potential around the outfalls, and determine the stability of deposits made up of discharged materials. Geotechnical engineers also consider the influence that pollutants have on the engineering behavior of marine sediment and the extent to which changes in behavior affect the performance of structures founded on the sediment. In each of these roles, careful application of geotechnical engineering principles can contribute toward more efficient and environmentally safe disposal operations.  相似文献   

7.
Marine pollution has received considerable attention during the past few years as the news media has focused on such topics as contaminated seafoods, algae blooms, fish and mammal kills, and dirty beaches. The source of these pollution problems are many and include: sewage outfalls, industrial discharges, storm runoff from agricultural lands and metropolitan areas, waste sludges, dredge materials, and highly concentrated chemical and radioactive wastes. Although the United Nations has banned marine dumping, there is still the problem of legacy wastes and low level discharges into the coastal zone. Disposal of these wastes in the marine environment typically involves either: their placement directly on or within the seabed or dilution in the water column. If wastes are diluted in the water column, they have the potential to be adsorbed onto the surface of sediment particles which are settling to the seabed. As particles settle through the water column they are subjected to extensive dispersal and may eventually be injested by bottom-feeding organisms or bio-accumulation by plankton and, thus, enter the food chain. Geotechnical engineers working as members of multidisciplinary teams apply quantitative knowledge about the behavior and physical performance of earth materials toward designing systems for disposing of these wastes in the oceans and aid in monitoring waste disposal sites. In dredged material disposal geotechnical engineers assist in selecting disposal equipment, predict stable characteristics of dredged material mounds, design mound caps, and predict erodibility of the material. With sewage outfalls, geotechnical engineers design foundation and anchor elements, estimate scour potential around the outfalls, and determine the stability of deposits made up of discharged materials. Geotechnical engineers also consider the influence that pollutants have on the engineering behavior of marine sediment and the extent to which changes in behavior affect the performance of structures founded on the sediment. In each of these roles, careful application of geotechnical engineering principles can contribute toward more efficient and environmentally safe disposal operations.  相似文献   

8.
The generally accepted formation mechanism of pockmarks worldwide is the expulsion of fluid at the seafloor, but such a mechanism does not explain the close association between pockmarks and seabed infrastructure such as pipelines and wellheads within the Stag oil field on the North West Shelf of Australia. Furthermore, certain characteristics of the pockmarks, such as conical mounds of sediment positioned around their perimeters, are strongly suggestive of a biotic origin. Pockmarks in this case are typically 5 m in diameter and 1 m deep, excavated within a sandy seabed in 45 m water depth. Inspection of ROV footage acquired during oilfield operations within the Stag field supports but does not entirely confirm without doubt the proposition that the pockmarks are created by fish of the genus Epinephelus.Having determined the characteristic features of pockmarks within the Stag field which mark them as biotic excavations, data from commercial seabed surveys at 11 other sites on the North West Shelf, all of which reveal numerous pockmarks, was reviewed for evidence of similar pockmark characteristics. Based on the review, it appears likely that the majority of pockmarks on the shallow North West Shelf (between 40 m and 130 m water depth) are representative of biological rather than geological activity. The probability that pockmarks less than approximately 10 m in diameter throughout the remainder of the Australian continental shelf are also the result of purely biological activity is high, as demonstrated by the analysis of data from three further sites.Close inspection of seabed survey data from further afield could extend the findings of this paper throughout not only the tropical Indo-West Pacific (the range of the particular fish species implicated on the North West Shelf), but potentially worldwide if other species can be shown to display similar behaviour.  相似文献   

9.
波浪加载下海底土质特性变化的研究   总被引:3,自引:0,他引:3  
通过不同的制样方法 ,在水槽中模拟了多种海底在波浪作用下的变化行为。试验发现 ,加压排水固结的砂质粉土海底在波浪作用下较稳定 ;加压不产生排水而固结的砂质粉土海底易受波浪的冲刷 ;自然条件和轻微振动的砂质粉土海底最易受到波浪的扰动破坏 ,形成塌陷凹坑。粘粒含量较高的粉质粘土对波浪的反映不敏感 ;下卧软土层土体在上覆压力下的变形量与含水量关系密切 ,含水量越高 ,变形越大。试验结果证明 ,波浪会引起沉积物性质发生改变 ,也是引起海底形态变化的主要原因。  相似文献   

10.
Abstract

The instability of the seabed constitutes an important consideration in the planning and design of various offshore facilities. The stresses and the pore water pressure in the sediments, induced by the action of waves during a storm, may cause them to fail, leading to seabed instability. In this article the possible mechanism of such failures are discussed and the conditions necessary for them are formulated through simplified analyses. These provide the combinations of wave, site, and sediment parameters likely to cause instability, which may be used to identify potentially unstable sediments in a given offshore region during a storm. The numerical results are presented in convenient graphical form. Some illustrative field studies are also presented.  相似文献   

11.
浅水区波浪非线性效应对砂质海床动力响应的影响   总被引:4,自引:2,他引:2  
以广义Biot动力固结理论为基础,运用一阶椭圆余弦波和二阶Stokes波等非线性波浪理论考虑浅水区波浪荷载的非线性效应,在时域上采用有限元方法对非线性波浪力作用下饱和砂质海床的动力响应进行了数值求解,并与线性波浪作用下海床动力响应特性进行了对比分析。结果表明,随着波长与水深之比L/d及无量纲参数T(g/d)^1/2的增大,非线性波浪对海床动力响应的影响增大。与线性波浪理论相比,孔隙水压力与有效应力幅值的增大效应非常显著。因此在近海海洋建筑物设计与工程场地评价中,波浪力的非线性特性必须引起注意。  相似文献   

12.
In this study, a set of generalized analytical solutions are developed for the wave-induced response of a saturated porous seabed under plane strain condition. When considering the water waves originating in deep water and travelling towards the shore, their velocities, lengths and heights vary. Depending on the characteristics of the wave and the properties of the seabed, different formulations (fully dynamic, partly dynamic, quasi-static) for the wave-induced response of the seabed are possible. The solutions for the response with these formulations are established in terms of non-dimensional parameters. The results are presented in terms of pore pressure, shear stress and vertical effective stress distributions within the seabed. For typical values of wave period and seabed permeability, the regions of applicability of the three formulations are identified and plotted in parametric spaces. With given wave and seabed characteristics, these regions provide quick identification of the appropriate formulation for an adequate evaluation of the wave-induced seabed response.  相似文献   

13.
Abstract

This article reviews information recently available from existing marine and coastal mining for responses to environmental issues affecting marine mining at different depths. It is particularly but not exclusively concerned with those issues affecting seabed biodiversity impact and recovery. Much information has been gathered in the past 10 years from shallow mining operations for construction aggregate, diamonds, and gold, from coastal mines discharging tailings to shallow and deep water, and from experimental deep mining tests. The responses to issues identified are summarized in a series of eight tables intended to facilitate site-specific consideration. Since impacts can spread widely in the surface mixing layer SML, and can affect the biologically productive euphotic zone, the main issues considered arise from the depth of mining relative to the SML of the sea. Where mining is below the SML, the issue is whether it is environmentally better to bring the extraction products to the surface vessel for processing (and waste discharge), or to process the extraction products as much as possible on the seabed. Responses to the issues need to be site-specific, and dependent on adequate preoperational environmental impact and recovery prediction. For deep tailings disposal from a surface vessel, there are four important environmental unknowns: (1) the possible growth of “marine snow” (bacterial flocs) utilizing the enormous quantities of fine tailings particles (hundreds or thousands of metric tons per day) as nuclei for growth, (2) the possibility that local keystone plankton and nekton species may migrate diurnally down to and beyond the depth of deep discharge and hence be subjected to tailings impact at depth, (3) the burrow-up capability of deep benthos and their ability to survive high rates of tailings deposition, and (4) the pattern and rate of dispersion of a tailings density current through the deep water column from discharge point to seabed. Actions to obtain relevant information in general and site-specifically are suggested.  相似文献   

14.
In order to gain insight into the formation dynamics of mudbanks off the Kerala coast of India, extensive surveying of the nearshore bathymetry along with sediment characterization was undertaken. The textural and geotechnical properties of the surficial sediments of a mudbank were determined during pre-monsoon, monsoon, and post-monsoon periods. The mudbank sediments were clayey silts with high water and organic carbon contents, high Atterberg limits, and low bulk density, and therefore very susceptible to entrainment. During the monsoon, the mudbank regime was characterised by enhanced turbidity and a benthic fluff layer, triggered by the increasing swell of the early monsoon period. Re-suspension exposed a more consolidated, previously sub-bottom, layer which exhibited lower water content and greater shear strength than the pre-monsoon seabed. Texturally, the monsoon seabed was similar to the pre-monsoon seabed, with the same modal grain size, but the proportions of sand and coarse silt increased nearshore, while the proportions of fine and very fine silt increased offshore. There was a seaward-fining textural gradient at all times, but this became pronounced during the monsoon period. Paradoxically, the monsoonal seabed displayed greatly reduced wet bulk density. It is hypothesized that this was due to the presence of gas, probably methane, in the sediments (while the pre-monsoon sediments were fully saturated, the monsoon sediments were only 83% saturated). We speculate that the gas was forced into the surficial sediments either by wave pumping (at the onset of the monsoon) or by seaward-flowing subbottom freshwater (derived from monsoonal rains). With the waning of the monsoon, the benthic fluid mud layer rapidly disappeared and the seabed returned to its pre-monsoon state as suspended sediments were redeposited. The mudbank regime is therefore essentially an in situ phenomenon. It is suggested that the mudbanks are palimpsest, marshy, lagoonal deposits, rich in organic matter and derived gas, that were submerged after a marine transgression. The surficial sediment is annually entrained during the monsoon, but erosion is limited by the formation of the benthic fluid mud layer, which attenuates wave generated turbulence. Although some fine sediment disperses alongshore and offshore, most is returned to the seabed as the monsoon declines.  相似文献   

15.
《Ocean Engineering》2004,31(5-6):561-585
The evaluation of the wave-induced seabed instability in the vicinity of a breakwater is particularly important for coastal and geotechnical engineers involved in the design of coastal structures. In this paper, an analytical solution for three-dimensional short-crested wave-induced seabed instability in a Coulomb-damping porous seabed is derived. The partial wave reflection and self-weight of breakwater are also considered in the new solution. Based on the analytical solution, we examine (1) the wave-induced soil response at different location; (2) the maximum liquefaction and shear failure depth in coarse and fine sand; (3) the effects of reflection coefficients; and (4) the added stresses due to the self-weight of the breakwater.  相似文献   

16.
Pipelines are the main element in transporting hydrocarbons from their extraction sites to on-shore or floating facilities, with preference now given to pipelines laid directly on the seabed due to their fast and economic installation. However, these pipelines are exposed and must be stable under all environmental conditions, and therefore, their design for on-bottom stability is of critical importance. Although accurate prediction of the pipe–soil interaction behaviour under hydrodynamic loads from waves and currents is of major concern, limited physical testing of pipes subjected to these cyclic loading conditions has occurred. Tests have concentrated on simpler load combinations in order to develop pipe–soil friction factors or the key parameters in plasticity models that described pipe–soil behaviour. In this paper, results from geotechnical centrifuge experiments of a model pipe on calcareous sand soil collected from offshore on the North West Shelf of Australia are presented. A sophisticated load control scheme allowed complex paths characteristic of hydrodynamic loads to be applied during the testing. Furthermore, pipe testing could be extended to relatively large horizontal movements of up to 5 pipe diameter. The results of the centrifuge testing programme provide improved understanding of the pipe–soil interaction under complex hydrodynamic load paths. They have also been used to assess a state-of-the-art plasticity model describing pipe–soil interaction on calcareous sands.  相似文献   

17.
Geoacoustic properties of the seabed have a controlling role in the propagation and reverberation of sound in shallow-water environments. Several techniques are available to quantify the important properties but are usually unable to adequately sample the region of interest. In this paper, we explore the potential for obtaining geotechnical properties from a process-based stratigraphic model. Grain-size predictions from the stratigraphic model are combined with two acoustic models to estimate sound speed with distance across the New Jersey continental shelf and with depth below the seabed. Model predictions are compared to two independent sets of data: 1) Surficial sound speeds obtained through direct measurement using in situ compressional wave probes, and 2) sound speed as a function of depth obtained through inversion of seabed reflection measurements. In water depths less than 100 m, the model predictions produce a trend of decreasing grain-size and sound speed with increasing water depth as similarly observed in the measured surficial data. In water depths between 100 and 130 m, the model predictions exhibit an increase in sound speed that was not observed in the measured surficial data. A closer comparison indicates that the grain-sizes predicted for the surficial sediments are generally too small producing sound speeds that are too slow. The predicted sound speeds also tend to be too slow for sediments 0.5-20 m below the seabed in water depths greater than 100 m. However, in water depths less than 100 m, the sound speeds between 0.5-20-m subbottom depth are generally too fast. There are several reasons for the discrepancies including the stratigraphic model was limited to two dimensions, the model was unable to simulate biologic processes responsible for the high sound-speed shell material common in the model area, and incomplete geological records necessary to accurately predict grain-size  相似文献   

18.
The interaction between wave, seabed and marine structure is a vital issue in coastal engineering, as well as marine geotechnical engineering. However, most previous investigations have been focused on the wave forces acting on the structure from the aspect of hydrodynamics. In this study, we will examine the problem of wave-seabed-caisson interaction from the aspect of marine geotechnical engineering. Based on Biot's poro-elastic theory (Biot, M.A., 1941. General theory of three-dimensional consolidation. Journal of Applied Physics 12, 155–164), a two-dimensional finite element model is proposed to investigate the wave-induced soil response in the vicinity of a caisson. Based on the numerical model, the water wave driven pore pressure around a caisson will be examined through a parametric analysis.  相似文献   

19.
海洋深水区域日益成为海洋油气勘探开发的热点,但海洋深水地层因其特殊的沉积环境,致使深水钻井面临不稳定的海床、地层破裂压力低及海底低温等诸多的挑战,喷射导管技术是解决深水浅层所面临挑战的技术之一.该技术采用在导管内下入喷射动力钻具的方式,依靠导管串自身重力边钻进边下入导管,喷射到位后利用地层的黏附力和摩擦力稳固住导管,起出送入工具和管内钻具,完成导管的安装,避免因水泥浆密度过大而压破地层,也可避免由于深水低温等因素影响固井质量.通过对导管的受力分析,提出了导管的下深及导管串组成结构,同时也研究了导管在喷射安置过程中如何优选喷射钻进参数及采取的技术措施,确保导管喷射安置到预定位置,为海洋深水井导管设计与喷射安置导管提供了很好的参考与借鉴.  相似文献   

20.
This article reviews information recently available from existing marine and coastal mining for responses to environmental issues affecting marine mining at different depths. It is particularly but not exclusively concerned with those issues affecting seabed biodiversity impact and recovery. Much information has been gathered in the past 10 years from shallow mining operations for construction aggregate, diamonds, and gold, from coastal mines discharging tailings to shallow and deep water, and from experimental deep mining tests. The responses to issues identified are summarized in a series of eight tables intended to facilitate site-specific consideration. Since impacts can spread widely in the surface mixing layer SML, and can affect the biologically productive euphotic zone, the main issues considered arise from the depth of mining relative to the SML of the sea. Where mining is below the SML, the issue is whether it is environmentally better to bring the extraction products to the surface vessel for processing (and waste discharge), or to process the extraction products as much as possible on the seabed. Responses to the issues need to be sitespecific, and dependent on adequate preoperational environmental impact and recovery prediction. For deep tailings disposal from a surface vessel, there are four important environmental unknowns: (1) the possible growth of "marine snow" (bacterial flocs) utilizing the enormous quantities of fine tailings particles (hundreds or thousands of metric tons per day) as nuclei for growth, (2) the possibility that local keystone plankton and nekton species may migrate diurnally down to and beyond the depth of deep discharge and hence be subjected to tailings impact at depth, (3) the burrow-up capability of deep benthos and their ability to survive high rates of tailings deposition, and (4) the pattern and rate of dispersion of a tailings density current through the deep water column from discharge point to seabed. Actions to obtain relevant information in general and site-specifically are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号