首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 234 毫秒
1.
利用CHAMP卫星星载GPS实测数据,通过非差简化动力学定轨的方法,计算了CHAMP卫星2008年3月3日~10日的轨道,并以GFZ的快速轨道作为参考标准,评价了本文简化动力法轨道精度.结果表明,CHAMP卫星非差简化动力学轨道1D位置精度可达到7cm,1D的速度精度可达到0.1mm/s.  相似文献   

2.
基于对多种飞机的机载GPS测量实践,认为我国HY-2海洋二号卫星实现厘米级精度的星载GPS定轨测量的基础是:选择适合天线,捕获多颗在视GPS卫星;注重天线安装位置,减弱多路径效应影响;选择适合GPS信号接收机,确保星载GPS测量数据优质。  相似文献   

3.
北斗二代卫星导航系统定位精度分析方法研究   总被引:5,自引:0,他引:5  
范龙  柴洪洲 《海洋测绘》2009,29(1):25-27
卫星导航系统的定位精度主要受观测量的精度和卫星的空间几何分布两方面的影响,GPS等相同轨道分布的卫星导航系统一般采用几何精度因子(GDOP)来分析定位精度。我国的北斗二代卫星导航系统是由三类异质卫星组成的混合星座导航系统,不同轨道卫星定轨误差不同,用户所得到的观测量精度也不相同,因此精密定位精度计算和分析时必须要考虑这种差异。引入了加权几何精度因子(WGDOP),利用模拟观测数据对北斗二代卫星导航系统的定位精度进行了分析。外部检核计算结果表明,精密定位计算时顾及观测量精度差异可进一步提高定位精度。  相似文献   

4.
在研究GPS系统的基础上建立了GPS观测数据的仿真模型,编制了相应的计算机程序。仿真模型包括卫星参数模型、动力学模型和观测误差模型。仿真计算表明,卫星参数模型和动力学模型真实地反映了卫星的运动规律;误差模型反映了观测环境对信号传播的影响。同时可以调节和选择仿真模型的参数,仿真选择了地面静态和地面低动态的观测数据,这对于论证GPS定轨、导航算法、设计GPS接收机等有一定的实用价值。  相似文献   

5.
以力学模型为基础,只能分析GPS卫星在短时间内的变化规律,而利用IGS提供的精密星历可以分析卫星在长时间段内的变化规律。基于精密星历研究了计算GPS卫星轨道参数的方法,然后对轨道参数在长时间段内的变化情况进行了分析,给出了分析的主要结果,并提出用正弦函数对轨道参数进行逼近,以得到GPS轨道的解析模型。  相似文献   

6.
以力学模型为基础,只能分析GPS卫星在短时间内的变化规律,而利用IGS提供的精密星历可以分析卫星在长时间段内的变化规律。基于精密星历研究了计算GPS卫星轨道参数的方法,然后对轨道参数在长时间段内的变化情况进行了分析,给出了分析的主要结果,并提出用正弦函数对轨道参数进行逼近,以得到GPS轨道的解析模型。  相似文献   

7.
海洋二号卫星厘米级定轨的实施建议   总被引:1,自引:0,他引:1  
针对海洋二号(HY-2)卫星如何实现厘米级定轨问题,提出下列建议:海洋二号卫星不必采用DORIS定轨;给海洋二号卫星装备无电功耗需求的激光后向反射镜阵列,以便对它进行多个SRL测站观测的激光厘米级定轨;给海洋二号卫星装备具有双频载波相位测量能力的GPS信号接收机,实现高精度的星载GPS测量定轨.  相似文献   

8.
卫星测高术是70年代发展起来的一项新技术,到目前为止国外已陆续发射了七颗载有高度计的卫星。高度计卫星定轨的精度对测高数据的应用有很大影响.本文概述了卫星高度计测高数据在海洋应用上的一些结果、影响轨道的因素、测轨方法和轨道精校正方法。最后根据现有卫星轨道校正数据得到卫星轨道误差与校正精度的关系式,据此分析了轨道计算误差对卫星高度计测高数据在海洋应用中的影响  相似文献   

9.
高度卫星定轨精度对其测高精度数据在海洋应用中的影响   总被引:2,自引:0,他引:2  
卫星测高术是70年代发展起来的一项新技术,到目前为止国外已陆续发射了七颗载有高度计的卫星,高度计卫星定轨的精度对测高数据的应用有很大影响,本文概述了卫星高度计测高数据在海洋应用上的一些结果、影响轨道的因素、测轨方法和轨道精校正方法,最后根据现有卫星轨道校正数据得到卫星轨道误差与校正精度的关系式,据此分析了轨道计算误差地卫星高度计测高数据在海洋应用中的影响。  相似文献   

10.
研究了GPS实时精密卫星钟差的估计方法,并将实时钟差应用于实时精密单点定位。采用自编软件,依据全球均匀分布的IGS参考站实测数据,基于非差消电离层组合载波和伪距观测量实现了GPS实时精密卫星钟差估计。试验结果表明,自主估计的实时卫星钟差与IGS发布的最终精密钟差具有较好一致性,互差优于0.2ns;用于实时精密单点定位,能够获得静态定位1~2cm、仿动态定位厘米级精度。  相似文献   

11.
The Jason-1 radar altimeter satellite, launched on December 7, 2001 is the follow on to the highly successful TOPEX/Poseidon (T/P) mission and will continue the time series of centimeter level ocean topography measurements. Orbit error is a major component in the overall error budget of all altimeter satellite missions. Jason-1 is no exception and has set a 1-cm radial orbit accuracy goal, which represents a factor of two improvement over what is currently being achieved for T/P. The challenge to precision orbit determination (POD) is both achieving the 1-cm radial orbit accuracy and evaluating the performance of the 1-cm orbit. There is reason to hope such an improvement is possible. The early years of T/P showed that GPS tracking data collected by an on-board receiver holds great promise for precise orbit determination. In the years following the T/P launch there have been several enhancements to GPS, improving its POD capability. In addition, Jason-1 carries aboard an enhanced GPS receiver and significantly improved SLR and DORIS tracking systems along with the altimeter itself. In this article we demonstrate the 1-cm radial orbit accuracy goal has been achieved using GPS data alone in a reduced dynamic solution. It is also shown that adding SLR data to the GPS-based solutions improves the orbits even further. In order to assess the performance of these orbits it is necessary to process all of the available tracking data (GPS, SLR, DORIS, and altimeter crossover differences) as either dependent or independent of the orbit solutions. It was also necessary to compute orbit solutions using various combinations of the four available tracking data in order to independently assess the orbit performance. Towards this end, we have greatly improved orbits determined solely from SLR+DORIS data by applying the reduced dynamic solution strategy. In addition, we have computed reduced dynamic orbits based on SLR, DORIS, and crossover data that are a significant improvement over the SLR- and DORIS-based dynamic solutions. These solutions provide the best performing orbits for independent validation of the GPS-based reduced dynamic orbits. The application of the 1-cm orbit will significantly improve the resolution of the altimeter measurement, making possible further strides in radar altimeter remote sensing.  相似文献   

12.
《Marine Geodesy》2013,36(3-4):399-421
The Jason-1 radar altimeter satellite, launched on December 7, 2001 is the follow on to the highly successful TOPEX/Poseidon (T/P) mission and will continue the time series of centimeter level ocean topography measurements. Orbit error is a major component in the overall error budget of all altimeter satellite missions. Jason-1 is no exception and has set a 1-cm radial orbit accuracy goal, which represents a factor of two improvement over what is currently being achieved for T/P. The challenge to precision orbit determination (POD) is both achieving the 1-cm radial orbit accuracy and evaluating the performance of the 1-cm orbit. There is reason to hope such an improvement is possible. The early years of T/P showed that GPS tracking data collected by an on-board receiver holds great promise for precise orbit determination. In the years following the T/P launch there have been several enhancements to GPS, improving its POD capability. In addition, Jason-1 carries aboard an enhanced GPS receiver and significantly improved SLR and DORIS tracking systems along with the altimeter itself. In this article we demonstrate the 1-cm radial orbit accuracy goal has been achieved using GPS data alone in a reduced dynamic solution. It is also shown that adding SLR data to the GPS-based solutions improves the orbits even further. In order to assess the performance of these orbits it is necessary to process all of the available tracking data (GPS, SLR, DORIS, and altimeter crossover differences) as either dependent or independent of the orbit solutions. It was also necessary to compute orbit solutions using various combinations of the four available tracking data in order to independently assess the orbit performance. Towards this end, we have greatly improved orbits determined solely from SLR+DORIS data by applying the reduced dynamic solution strategy. In addition, we have computed reduced dynamic orbits based on SLR, DORIS, and crossover data that are a significant improvement over the SLR- and DORIS-based dynamic solutions. These solutions provide the best performing orbits for independent validation of the GPS-based reduced dynamic orbits. The application of the 1-cm orbit will significantly improve the resolution of the altimeter measurement, making possible further strides in radar altimeter remote sensing.  相似文献   

13.
The U.S./French Jason-1 satellite is carrying a state-of-the-art GPS receiver to support precise orbit determination (POD) requirements. The performance of the Jason-1 “BlackJack” GPS receiver was strongly reflected in early POD results from the mission, enabling radial accuracies of 1–2 cm soon after the satellite's 2001 launch. We have made further advances in the GPS-based POD for Jason-1, most notably in describing the phase center variations of the on-board GPS antenna. We have also adopted new geopotential models from the Gravity Recovery and Climate Experiment (GRACE). The new strategies have enabled us to better exploit the unique contributions of the BlackJack GPS tracking data in the POD process. Results of both internal and external (e.g., laser ranging) comparisons indicate that orbit accuracies of 1 cm (radial RMS) are being achieved for Jason-1 using GPS data alone.  相似文献   

14.
One-Centimeter Orbit Determination for Jason-1: New GPS-Based Strategies   总被引:2,自引:0,他引:2  
The U.S./French Jason-1 satellite is carrying a state-of-the-art GPS receiver to support precise orbit determination (POD) requirements. The performance of the Jason-1 “BlackJack” GPS receiver was strongly reflected in early POD results from the mission, enabling radial accuracies of 1-2 cm soon after the satellite's 2001 launch. We have made further advances in the GPS-based POD for Jason-1, most notably in describing the phase center variations of the on-board GPS antenna. We have also adopted new geopotential models from the Gravity Recovery and Climate Experiment (GRACE). The new strategies have enabled us to better exploit the unique contributions of the BlackJack GPS tracking data in the POD process. Results of both internal and external (e.g., laser ranging) comparisons indicate that orbit accuracies of 1 cm (radial RMS) are being achieved for Jason-1 using GPS data alone.  相似文献   

15.
We have used GPS carrier phase integer ambiguity resolution to investigate improvements in the orbit determination for the Jason-1 satellite altimeter mission. The technique has been implemented in the GIPSY orbit determination software developed by JPL. The radial accuracy of the Jason-1 orbits is already near 1 cm, and thus it is difficult to detect the improvements gained when the carrier phase ambiguities are resolved. Nevertheless, each of the metrics we use to evaluate the orbit accuracy (orbit overlaps, orbit comparisons, satellite laser ranging residuals, altimeter crossover residuals, orbit centering) show modest improvement when the ambiguities are resolved. We conservatively estimate the improvement in the radial orbit accuracy is at the 10–20% level.  相似文献   

16.
利用2016年6月17日~7月18日期间北斗卫星导航系统IGSO-6卫星相关数据,针对IGSO-6卫星的单星服务性能和对系统的服务性能影响以及新姿态控制模式对轨道确定的影响三个方面进行分析评估。分析结果表明,IGSO-6卫星空间信号用户测距误差为1.85m,卫星钟天稳定度为10-14量级,准确度为10-11量级,天漂移率接近10-13量级;新卫星的加入提升了系统服务性能,不同区域提升程度不同,PDOP最大提升20%左右;新姿态控制模式有助于改善地影期卫星精密轨道确定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号