首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
无人机遥感具有应用灵活、不受云层干扰以及时空分辨率高的显著优势。为探索无人机在海洋灾害监测中的应用,本文以科考船为起降平台,首次基于无人机获取的双时相绿潮正射影像,开展了黄海绿潮漂移速度的估算研究。同时对比了卫星影像提取的速度结果,并探讨了风与潮流对海上绿潮漂移的驱动。研究发现:(1)可见光波段的漂浮藻类指数能高精度地提取无人机可见光影像中的绿潮(kappa 系数=0.95);(2)无人机遥感估算3个站位的绿潮漂移速率为0.26~0.44 m/s,漂移方向在1天之内变化明显;(3)绿潮短时间内的漂移受到风与潮流的共同影响,漂移方向与M2分潮的潮流方向基本一致,位于风向右侧1°~62°。基于船载的无人机航测,能高精度地估算绿潮漂移速度,为精细化的绿潮灾害预警与防控提供技术支撑。  相似文献   

2.
目前绿潮遥感监测手段大多基于单一遥感数据,局限性很大,为了弥补监测中空间分辨率和时间分辨率低的问题,基于多源遥感数据,结合虚拟基线高度浮藻指数VB-FAH(virtual-baseline floating macro Algae height)和人工辅助判读方法,对2015—2016年黄海发生的绿潮(大型绿藻——浒苔(Ulva prolifera))进行了动态监测,并利用两景同步影像比较了高分一号卫星WFV(GF-1 WFV)数据和资源一号04星WFI(CBERS-04 WFI)数据的监测结果,同时也对卫星影像监测和船载监测结果进行了比较。结果表明:CBERS-04 WFI数据的监测结果与GF-1 WFV数据相比产生了15.3%~37.32%的相对偏差,主要原因是空间分辨率的差异导致的混合像元效应。对卫星影像监测结果与船测数据进行叠加对比,可以发现在Ⅲ级以上的绿潮数量级中卫星影像的监测精度较高。绿潮暴发的过程持续100 d左右,4月底—5月初绿潮开始在苏北浅滩浊水区出现,随着外界因素逐渐达到适宜生长的条件,绿潮不断生长直至暴发,并随黄海表层流向北漂移,直至山东半岛南部沿岸,7月份和8月份是绿潮的消亡阶段,8月中旬绿潮基本消亡。本研究成果提高了监测精度,可为绿潮的防控提供有效的信息支持。  相似文献   

3.
2008 年与2009 年黄海绿潮漂移路径分析   总被引:2,自引:0,他引:2  
利用卫星资料分析了2008年和2009年黄海绿潮的漂移路径的差异,基于QSCAT(Quick Scatterometer)卫星风场及海洋模式表层环流模拟结果,分析了绿潮漂移路径差异的动力机制。结果表明:2008(2009)年绿潮发生期间黄海海域以南东(偏南)风为主,江苏至山东半岛南岸海域表层平均流为偏北(东北)向,青岛附近海域低频余流为偏西(东)向流,致使绿潮的漂移方向为西北(东北)向,在青岛(烟台-威海)近岸海域发生聚集。2008年和2009年绿潮漂移路径差异,主要由海面风与表层环流的共同作用引起。通过对黄海海域海面风场和表层流场的早期预报,可以提前预判绿潮的影响区域和程度,为政府相关部门防灾减灾工作提供决策支持。  相似文献   

4.
黄海绿潮分布年际变化特征分析   总被引:2,自引:1,他引:1  
郭伟  赵亮  李秀梅 《海洋学报》2016,38(12):36-45
2008-2015年,连续8年在黄海海域暴发大规模绿潮,但因暴发时间、规模及漂移路径的不同,对沿海地区造成的环境影响和经济损失大不相同。本文利用EOS/MODIS卫星的多通道资料,采用NDVI算法获取绿潮信息,给出了2007年以来5-8月所有无云或少云晴朗天气下黄海海面绿潮的分布情况。黄海绿潮覆盖面积变化每年呈现单峰值分布,MODIS卫星在5月中旬至6月初首次发现绿潮,随后30~40 d内达到覆盖面积峰值,7月快速消退,8月上旬完全消失。2007年绿潮出现首年覆盖面积极低,发现绿潮时面积均未超过50 km2;2008年和2009年绿潮覆盖面积峰值分别为3 110 km2和4 075 km2,自此绿潮灾害成为新的海洋环境事件;2010-2012年绿潮暴发规模异常低值,各年覆盖面积峰值均未超过1 800 km2,但从2013年开始绿潮规模逐渐攀升,到2015年绿潮覆盖面积峰值达5 629 km2,持续可达98 d,覆盖面积和持续时间为历年之最。绿潮漂移路径可归纳分为3类:2008年和2011年绿潮主体先北向漂移越过34°30'N后,西北向垂直于岸线漂移,主要对连云港、日照和青岛造成较大影响;2009年和2012年绿潮主体先北向漂移越过35°N后,东北向平行于岸线漂移,故只有少许绿潮上岸;2010年、2013-2015年绿潮主体北向漂移至近岸后东北向沿岸漂移,对日照、青岛和荣成沿海造成大面积影响。所有年份绿潮影响范围均限于南黄海内,东侧边界最远未越过124.2°E。  相似文献   

5.
黄海浒苔绿潮自2007年以来连年暴发,但对漂浮绿藻在其源地—苏北浅滩的分布、发生和发展过程仍缺乏精细刻画。本文主要采用哨兵2号卫星遥感影像,对2018年苏北浅滩的漂浮绿藻信息进行提取,结合地形、微波+红外融合海表温度和CCMP海面风场数据,分析了影响漂浮绿藻时空分布的重要环境因子。结果表明:漂浮绿藻于5月23日在苏北浅滩南部首次通过遥感影像被探测到,在6月逐渐向北发展扩大,在7月中旬消失。漂浮绿藻最早可追溯至浅滩中心紫菜养殖筏架区边缘,而后沿潮沟形成宽度为10~200 m、断续绵延数十千米的条带。在黄海绿潮发展过程中,浅滩持续向北及外海输送漂浮绿藻。在浅滩以北,漂浮绿藻的分布和漂移与海面风向一致。本研究结果可为黄海绿潮的早期预警和防控提供依据。  相似文献   

6.
王蕊  王常颖  李劲华 《海洋学报》2019,41(4):131-144
由于受到云雾的影响,可见光影像能够高效用于绿潮检测的数据源较为有限,特别是云覆盖较为严重的可见光影像,基本无法用于检测绿潮。即使影像数据是在薄云、薄雾、无云覆盖的情况下获取的,由于其光谱反射值存在较大差异,依然很难采用同一阈值进行绿潮检测。基于此,为了提高可见光影像的利用率,实现不同云覆盖情况下,绿潮的高精度自适应阈值的自动检测,本文以GF-1影像为数据源,首先采用K-means聚类和C4.5决策树方法实现影像云覆盖情况的自动识别;其次,选取大量不同云覆盖情况下子图像样本(每个子图像样本中均包含绿潮和海水两类),分析得出不同云覆盖情况下绿潮和海水的区分阈值y与影像光谱差x=bandnir-bandred之间所具有的线性关系;然后,利用分析得出的线性关系提出一种适用于GF-1影像的绿潮分区自适应阈值自动检测方法。最后,为验证提出方法的有效性,分别采用NDVI方法、EVI方法和本文提出的自适应阈值自动检测方法进行绿潮提取实验。实验结果表明,对于GF-1卫星遥感数据,本文提出的绿潮自适应阈值分区自动检测方法明显优于传统的NDVI和EVI检测方法,不仅提高了绿潮的监测精度,而且实现了绿潮提取的全自动化。  相似文献   

7.
高分一号(GF-1)是我国自主研制的宽幅带高空间分辨率遥感卫星,为分析其在海岸带地区的应用潜力,本文采用主观和客观相结合的评价方法,并与SOPT-5卫星影像进行比对,开展GF-1影像的成像质量评价。主观评价结果表明:GF-1影像表现能力与SPOT-5影像相当,在某些地物特征表现上与SPOT-5比较一致。客观评价表明:GF-1影像的4种统计参数与SPOT-5影像比较接近且各有高低,GF-1影像各波段的灰度分布更分散,地物间的可分性更高;GF-1影像各波段的信噪比和波段间的独立性与SPOT-5比较,基本相同,整体看来,GF-1具有较高的成像质量,在海岸带地区具有一定的应用潜力。  相似文献   

8.
黄海绿潮应急溯源数值模拟初步研究   总被引:2,自引:0,他引:2  
基于三维全动力POM 海洋模式, 根据2008 年6 月1 日海监飞机监测绿潮所在位置, 采用拉格朗日粒子追踪法反向积分, 追溯绿潮来源。数值模拟结果显示, 回溯至5 月中旬, 绿潮主要来源于黄海南部江苏连云港和盐城近海海域。黄海绿潮溯源数值模拟, 为政府相关部门了解绿潮的源头, 并采取相应的措施提供依据, 进而为保护生态环境、防灾减灾做贡献。  相似文献   

9.
基于三维全动力POM海洋模式,根据2008年6月1日海监飞机监测绿潮所在位置,采用拉格朗日粒子追踪法反向积分,追溯绿潮来源。数值模拟结果显示,回溯至5月中旬,绿潮主要来源于黄海南部江苏连云港和盐城近海海域。黄海绿潮溯源数值模拟,为政府相关部门了解绿潮的源头,并采取相应的措施提供依据,进而为保护生态环境、防灾减灾做贡献。  相似文献   

10.
依据不同围填海类型在高分三号(GF-3)合成孔径雷达(synthetic aperture radar,SAR)卫星遥感影像上可分性,建立围填海遥感分类体系及相应的围填海类型解译标志,进而分析SAR图像岸线提取方法,构建GF-3围填海监测技术流程。采用几何主动轮廓模型进行GF-3 SAR影像自动提取海岸线,获得围填海专题图。通过外业精度调查验证GF-3 SAR卫星遥感影像可以有效获取围填海信息。  相似文献   

11.
珠江口伶仃洋是中国重要的海湾之一, 其水体的悬浮泥沙质量浓度(suspended sediment concentration, SSC)在枯季受潮汐过程影响显著, 是研究潮汐对SSC变化影响的理想区域。高分四号卫星(GF-4)是我国第一颗超高时空分辨率地球同步轨道卫星, 可见光波段的空间分辨率为50m, 最大时间分辨率可达20s, 在研究一日之内的SSC变化特征方面具有独特的优势。文章利用过境珠江口伶仃洋的GF-4卫星L1A数据并结合2020年1月的航次数据, 反演得到该海域表层SSC数据, 分析得到了伶仃洋表层SSC在潮汐周期不同阶段的分布特征及变化规律。研究结果表明, 伶仃洋海域的SSC整体呈近岸高于远岸、西岸高于东岸的分布趋势。涨潮时, 共有4个高SSC分布区, 平均SSC呈降低趋势且悬沙有向湾内移动的趋势; 在停潮末—涨急—涨憩过程中, SSC先略微降低后显著降低。落潮时, 共有7个高SSC分布区, 平均SSC呈增长趋势且悬浮泥沙有向外海方向移动的趋势; 在平潮末—落急—落憩过程中, SSC先显著增大再变缓最后呈负增长趋势。SSC变化受水平方向上的挟沙作用、垂直方向上的再悬浮过程和地形的共同影响。  相似文献   

12.
海洋一号C(HY-1C)卫星是中国首颗海洋水色业务卫星,其搭载的海岸带成像仪(CZI)在近海海洋环境监测中正发挥越来越重要的作用;随着搭载有相同传感器的HY-1D卫星发射,双星组网观测,可形成3天2次的高频次、大范围对海观测能力,在海洋漂浮藻类、海洋溢油等目标探测方面具备优异的效能。高空间分辨率光学数据中包含了丰富的海洋环境信息,给特定目标的识别提取带来一定干扰。本研究面向HY-1C卫星CZI载荷开展中国近海漂浮藻类识别提取的业务化应用需求,发展基于藻类缩放指数与虚拟基线高度融合的海洋漂浮藻类识别提取算法,算法优选适用于无短波红外波段国产数据的虚拟基线高度指数来增强藻类信号,通过藻类缩放指数滑动窗口运算,有效剔除高空间分辨率光学数据中的复杂干扰信息,实现了基于CZI数据的海洋漂浮藻类高精度提取,且具有较好的计算运行效率。此外,结合准同步高分卫星16 m多光谱数据,开展CZI数据含藻像元的不确定性分析,发现CZI数据反演结果对近海小斑块漂浮藻类存在不可忽视的高估现象。研究还指出,光学数据用于漂浮藻类监测,其不确定性不仅来源于传感器的空间分辨率差异,还与海洋漂浮藻类形态特征的空间分异性有关。明晰海洋漂浮藻类的形态学空间分异特征,将有助于提高光学数据反演结果的精度,并阐明不确定性。  相似文献   

13.
高分遥感影像在海域使用监测存在位置偏移的问题,本文针对连云港海域动态监测中常用的资源三号(ZY-3)、Rapid Eye和高分一号(GF-1)遥感数据,应用现场测量的海域界址点数据,对高分遥感影像在海域使用监测中的应用开展可行性分析。结果表明:(1)遥感影像相对海域界址数据偏移大小不同:Rapid Eye影像的均方根误差ERMS最大,为9.09 m,小于2个像元;GF-1影像的ERMS为8.90 m,大于4个像元;ZY-3影像的ERMS最小,为7.87 m,小于4个像元;(2)3种卫星影像的东西向和南北向平均偏移量接近,ZY-3影像的分别为4.92 m和5.00 m;Rapid Eye影像的分别为5.97 m和5.84 m;GF-1影像的分别为6.59 m和4.52 m;(3)不同影像的内部精度一致性存在差异,即影像上同名点与界址位置的偏移方向和偏移量存在不同,其中Rapid Eye影像的偏移方向无规律性,且偏移量较大,而ZY-3和GF-1影像总体向东偏移,ZY-3影像偏移量要小于GF-1影像;(4)对于不同空间分辨率的影像而言,校正后东西向和南北向上的误差,并不能直接决定对应地物面积的误差大小。  相似文献   

14.
中高空间分辨率宽波段光学卫星已成为赤潮监测的主要数据源,但与水色卫星传感器不同,中高空间分辨率卫星传感器主要面向陆地应用,其波段数量少、宽度大,由此对赤潮探测带来的影响尚待研究。为此,本文基于不同优势种赤潮实测高光谱数据、时空同步的GF-1 WFV2、GF-1 WFV3传感器影像、Sentinel-2A MSI传感器影像及GF-6 WFV传感器影像,探究了波段设置、光谱响应函数、信噪比及空间分辨率对赤潮探测的影响,并分析了红边波段赤潮探测优势。结果表明:波段设置对赤潮探测影响大,特别是红光波段和红边波段的中心波长和波段宽度;波段设置相同的情况下,赤潮探测精度受光谱响应函数的影响大,受信噪比的影响较小;空间分辨率对赤潮探测的影响较大,空间分辨率的提升有助于提高赤潮探测的精度。红边波段赤潮探测实验表明,较之红光波段,基于红边波段的赤潮探测具有明显的优势,平均F1-Score提高了11%。本文的研究结果一方面可为赤潮中高空间分辨率卫星探测的数据选取提供理论依据,另一方面可为中高空间分辨率卫星传感器的设计提供参考。  相似文献   

15.
基于遥感与现场观测数据的南海北部内波传播速度   总被引:2,自引:0,他引:2  
南海北部是全球海洋中内波最为活跃、生成和演变机制较为复杂的海域,本文利用多源卫星遥感数据(MODIS、GF-1、ENVISAT ASAR、RADARSAT-2)和现场观测数据开展了南海北部内波传播速度的研究。通过匹配捕获同一条内波的相邻两幅遥感图像,由内波的空间位移和时间间隔反演传播速度,并以0.5°×0.5°网格给出了南海北部内波传播速度的分布图。研究结果表明,内波传播速度受背景流场、水体层结和底地形变化等多因素影响,特别是水深。在南海北部由东至西、由南至北方向,内波传播速度逐渐递减。深海区内波传播速度最大,可达3m/s以上;内波在向西大陆架传播过程中,随着水深变浅速度逐渐减慢,传播速度为1—2m/s;大陆架浅海的内波传播速度较小,仅为零点几米每秒。同时,利用Kd V方程反演了内波传播速度理论值,对遥感数据提取的内波传播速度进行了精度验证,结果较为一致。  相似文献   

16.
高分三号卫星对海浪的首次定量遥感   总被引:1,自引:0,他引:1  
杨劲松  任林  王隽 《海洋与湖沼》2017,48(2):207-209
高分三号(GF-3)是我国首颗C频段多极化高分辨率微波遥感卫星,于2016年8月10日在太原卫星发射中心成功发射。GF-3 SAR卫星入射角范围约为20°—50°,具备单极化、双极化和全极化等多极化工作能力,还是世界上成像模式最多的SAR卫星,具有12种成像模式。不仅涵盖了传统的条带、扫描成像模式,而且可在聚束、条带、扫描、波浪、全球观测、高低入射角等多种成像模式下实现自由切换,既可以探地,又可以观海,达到"一星多用"的效果。近日,国家海洋局第二海洋研究所卫星海洋环境动力学国家重点实验室利用首批GF-3合成孔径雷达(SAR)遥感数据(图1)对夏威夷西北部附近太平洋海域的海浪进行了首次定量分析和反演研究(图2)。图1为GF-3 SAR的灰度图像,成像时间为2016年9月2日8:30(GMT),卫星此时飞行速度约为7.6km,极化方式为VV极化,飞行方向为降轨,空间分辨率为8m×8m,中心入射角为28.32°。由图1可以看出,SAR图像上存在明显的黑白相间的海浪条纹,说明海浪在图像上能够顺利成像。通过提取灰度图像上的调制信息,并作傅里叶变换分析,可得到包含海浪信息的图像谱。进一步,基于经典的Hasselmann SAR海浪成像模型的准线性形式,同时估计倾斜调制、水动力调制和聚束调制等三种海浪调制函数(MTF),可以利用图像谱反演得到海浪谱,此时的海浪谱主要为较长波长的涌浪信息,至于较短波长的海浪信息提取,由于受到方位向截断效应的影响,则需要引入初猜谱加以补偿实现。图2为图1反演的海面涌浪参数。从图2可以看出,该海域海浪由西北向东南传播(即由外海向近岸传播),平均波长约200m,有效波高从2.5m到4.0m不等,能够反映浪场的分布差异。由于没有同步的现场观测资料和其他卫星遥感资料,本文将这些结果与欧洲中期天气预报中心(ECMWF)提供的ERA-Interim再分析数据进行了比对。初步反演与比对结果表明,两者有较好的一致性,但本文的反演结果反映了更多的细节,显示GF-3 SAR有能力对海面涌浪信息进行高分辨率的观测;同时,再次表明ERA-Interim再分析数据低估了有效波高,因此GF-3卫星的发射将有利于提高全球海浪的遥感观测水平。  相似文献   

17.
漫长狭窄的马六甲海峡是重要的航道,研究该海峡内孤立波特征对潜艇、船只航行和海洋工程都是急需解决的问题。利用高空间分辨率的哨兵1号(Sentinel-1)和高分三号(GF-3)SAR遥感数据,对马六甲海峡的内孤立波特征开展了详细研究。利用哨兵一号2015年6月到2016年12月20景有内孤立波的SAR图像和高分三号2018年4月到2019年3月24景有内孤立波的SAR图像,统计分析了马六甲海峡海域的内孤立波空间分布特征。发现内孤立波多以内孤立波包以及单根内孤立波形式出现,内孤立波头波的波峰线最长可达39km。采用高阶非线性薛定谔方程反演模型可以计算出内孤立波的振幅与群速度,计算得到的内孤立波振幅和波包的传播群速度分别为4.7m ~ 23.9m和0.12m/s ~ 0.40m/s。由KdV方程得到的单根内孤立波的相速度为0.26m/s ~ 0.60m/s。可以得到,马六甲海峡内孤立波的振幅与传播速度与地形密切相关。  相似文献   

18.
Chinese Gaofen-3(GF-3) is the first civilian satellite to carry C-band(5.3 GHz) synthetic aperture radar(SAR).During the period of August 2016 to December 2017, 1 523 GF-3 SAR images acquired in quad-polarization(vertical-vertical(VV), horizontal-horizontal(HH), vertical-horizontal(VH), and horizontal-vertical(HV)) mode were recorded, mostly around China's seas. In our previous study, the root mean square error(RMSE) of significant wave height(SWH) was found to be around 0.58 m when compared with retrieval results from a few GF-3 SAR images in co-polarization(VV and HH) with moored measurements by using an empirical algorithm CSAR_WAVE. We collected a number of sub-scenes from these 1 523 images in the co-polarization channel,which were collocated with wind and SWH data from the European Centre for Medium-Range Weather Forecasts(ECMWF) reanalysis field at a 0.125° grid. Through the collected dataset, an improved empirical wave retrieval algorithm for GF-3 SAR in co-polarization was tuned, herein denoted as CSAR_WAVE2. An additional 92 GF-3 SAR images were implemented in order to validate CSAR_WAVE2 against SWH from altimeter Jason-2, showing an about 0.52 m RMSE of SWH for co-polarization GF-3 SAR. Therefore, we conclude that the proposed empirical algorithm has a good performance for wave retrieval from GF-3 SAR images in co-polarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号