首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we describe results of a study designed to test the hypothesis that coastal regions with weak subtidal flow (i.e., coastal null zones) may serve as retention areas for estuarine larval forms. Our investigation assessed the distribution of 3 taxa of crab larvae (Callinectes sapidus, Uca spp., and Hexapanopeus angustifrons) within a 200-km2 region encompassing the mouth of Delaware Bay (ca. 39° N, 75° W). Previous studies had shown that larvae of C. sapidus and Uca spp. are exported to the coastal ocean, while larvae of H. angustifrons are retained within the estuary. In the present investigation, we conducted simultaneous plankton tows at 3 stations during peak spawning season. Samples were collected from a depth of 1 m every 30 min throughout a complete tidal cycle. One station was located 15 km within the bay and was subjected to strong flow at tidal frequency. A second station was located within a southward-flowing coastal current near the southern terminus of the bay at Cape Henlopen. A final station was located in a coastal area of weak subtidal flow near Cape May at the northern terminus of the bay. Results provide a unique synoptic view of larval distributions in 3 distinct hydrographic regimes in the mouth of a major estuary. The coastal-current station was characterized by low concentrations of newly hatched C. sapidus and Uca zoeae, while the null-zone station had high densities of both early and advanced larval stages of these two taxa. In contrast, the station located within the bay had few C. sapidus or Uca zoeae and was dominated by both early and advanced stages of the mud crab H. angustifrons. These data provide clear evidence for the retention of exported larval forms in a coastal null zone associated with the circulation of a large estuary and thus are consistent with our hypothesis.  相似文献   

2.
From observations of ice cover, temperature, salinity, currents and nitrate, it is evident that along-shelf variability was significant over the middle shelf of the eastern Bering Sea, but less distinct than that observed in the cross-shelf domains. Along the 70-m isobath, three zones were evident in the summer: the southeastern cold pool (centered at 57°N); an intermediate zone, consisting of warmer water, with weaker stratification; and the northern cold pool, extending northward from 58°N. Small-scale (20 km) horizontal features that persisted for months were common. Nutrient concentrations were related to salinity and were replenished more uniformly over the southern shelf, than north of the Pribilof Islands. Although mean currents were weak (1 cm s−1), short energetic advective events impacted the temperature and salinity structure.  相似文献   

3.
Multivariate principal components analysis and cluster analysis were performed on data representing presence or absence of 498 species of juvenile and adult fish species in twenty-four coastal marine systems (bays, coastal lagoons, estuaries and coastal zones) distributed from southeast to southern Brazil. Five groups of coastal systems were identified based on fish assemblage similarity: estuaries and bays of the southeast area; an estuary of the southern area; coastal lagoons; rocky coastal zones; and the continental platform. Species assemblages for each zone were identified and used as surrogate habitat indicators to compare and contrast the groups. Stepwise multiple regression of environmental and physical variables as predictors of the number of species indicated that only ‘ area ’ was included in the model as the most important variable explaining the variation of the number of species in these data sets. The total number of fish species increased as surface area increased.  相似文献   

4.
5.
In this study, seasonal and annual variability in the use of estuarine and ocean beaches by young-of-the-year bluefish, Pomatomus saltatrix, was evaluated by indices of abundance in coastal areas of southern New Jersey (1998–2000). Biological and physical factors measured at specific sites were correlated with bluefish abundance to determine the mechanisms underlying habitat selection. In addition, integrative and discrete indicators of bluefish growth were used to examine spatio-temporal dynamics in habitat quality and its effect on habitat selection by multiple cohorts of bluefish. Intra-annual recruitment to coastal areas of southern New Jersey was episodic, and resulted from the ingress of spring-spawned bluefish (hatch-date April) to estuarine beaches in late May to early June, followed by the recruitment of summer-spawned fish (hatch-date early July) to ocean beaches from July to October. Bluefish utilized estuarine and ocean beaches in a facultative manner that was responsive to dynamics in prey composition and temperature conditions. The recruitment and residency of bluefish in the estuary (1998–1999) and ocean beaches (1998), for example, was coincidental with the presence of the Atlantic silverside Menidia menidia and bay anchovy Anchoa mitchilli, the principal prey species for bluefish occupying these respective habitat-types. Bluefish abundance in the estuary (2000) and ocean beaches (1999–2000) was also correlated with water temperature, with the greatest catches of juveniles coinciding with their optimal growth temperature (24 °C). Bluefish growth, estimated as the slope of age–length relationships and daily specific growth rates, equaled 1.27–2.63 mm fork length (FL) d−1 and 3.8–8.7% body length increase d−1, respectively. The growth of sagittal otoliths was also used as a proxy for changes in bluefish size during and shortly before their time of capture. Accordingly, otolith growth rates of summer-spawned bluefish were greater at ocean beaches relative to the estuary and were explained by the more suitable temperature conditions found at ocean beaches during the mid- to late summer. Notwithstanding the fast growth of oceanic summer-spawned bluefish, individuals spawned in the spring were still larger in absolute body size at the end of the summer growing season (240 and 50–200 mm FL for spring- and summer-spawned bluefish, respectively). The size discrepancy between spring- and summer-spawned bluefish at the onset of autumn migrations and during overwintering periods may account for the differential recruitment success of the respective cohorts.  相似文献   

6.
Several flatfish species, including southern flounder (Paralichthys lethostigma) recruit to estuaries during early life. Therefore, evaluation of estuarine sites and habitats that serve as nurseries is critical to conservation and management. The present study used density data in conjunction with biochemical condition and growth measurements to evaluate settlement sites used by southern flounder in the Galveston Bay Estuary (GBE). In 2005, beam-trawl collections were made in three major sections of the GBE (East Bay, Galveston Bay, West Bay). Three sites were sampled in each bay. Within each sampling site, replicate collections were taken from three habitats: 1) marsh edge (< 1 m depth), 2) intermediate zone (10–20 m from marsh interface;  1 m depth), and 3) bay zone (typically > 100 m from marsh interface; depth > 1 m). Average size of southern flounder collected was 12–19 mm standard length, and peak densities occurred in January and February. Catch data indicated that densities of southern flounder were significantly greater in East Bay (2.75 per 100 m2) than in Galveston Bay (0.91 per 100 m2) or in West Bay (0.45 per 100 m2). Densities were statistically similar among habitats. Otolith-based estimates of age indicated that the majority of southern flounder collected were 35–45 days old and derived from early December to early January hatch-dates. Growth rates were similar among bays and among habitats, with the average growth rate being 0.40 mm day− 1 (range: 0.21–0.76 mm day− 1). RNA:DNA was above the established baseline value for nutritional stress, indicating that newly settled southern flounder in the GBE were in relatively high condition. Habitat-specific differences in RNA:DNA ratios were not observed; however, ratios were significantly lower in West Bay (average 8.0) than in East Bay (average 9.5) or in Galveston Bay (average 9.8), suggesting the condition of new recruits may vary spatially within the GBE. Findings from the current study suggest density and condition of newly settled southern flounder vary at the bay scale, suggesting that parts of GBE do not function equally as nurseries.  相似文献   

7.
本文以蓝蟹为例,研究海洋环境对甲壳动物幼体迁移规律和机制的影响。利用不规则三角形网格和有限体积模型(finite-volume coastal ocean model, FVCOM)耦合kinesis模型的方法,分析研究了墨西哥湾物理环境对蓝蟹(Callinectessapidus)幼体的分布和扩散途径的影响。蓝蟹在每年的四、五月份海水落潮期间产卵,通过跟踪算法从产卵区域沿着墨西哥湾海域进行模拟,获得了80天内蓝蟹幼体的粒子移动轨迹,记录并分析了幼体经过海域的盐度值。研究结果证明了该方法可有效模拟蓝蟹幼体在特定海域的迁移规律和扩散机制,进一步研究可为了解海洋物理环境对蓝蟹和其他渔业资源的影响提供借鉴。  相似文献   

8.
The estuarine brachyuran crab Neohelice granulata export their larvae from the parental intertidal population of the Mar Chiquita coastal lagoon, and probably other populations, to marine waters. The degree of larval dispersion or self-recruitment of populations is unknown. We evaluated the presence of all larval stages of N. granulata in coastal waters of Argentina between 37.9° and 35.8° S, at two different spatial scales: a broad scale of tens to hundreds of kilometers from the Río de la Plata estuary in the north, to Mar Chiquita lagoon in the south, and a small scale of hundreds of meters to some kilometers around the mouth of Mar Chiquita, during spring and summer. Additionally, we registered the larval composition and density at San Clemente creek population, in Samborombon Bay (Río de la Plata estuary), every 3 h along a 30-hour period. Evidence indicates that larval release of N. granulata is temporally synchronized with nocturnal ebb tides and all development from Zoea I to Zoea IV occur in areas close to the parental population, even with very different oceanographic characteristics. A possible mechanism based on salinity selection and wind-driven transport is proposed for such behavior, and some considerations related to the connectivity of present populations are made.  相似文献   

9.
Fish larvae abundance and distribution in the coastal zone off Terminos Lagoon and their relation to the environmental features of the Lagoon inlets were analysed (1986–87). The sampling grid consisted of 24 stations extending between 0·5 and 10 km off the Lagoon, including both Terminos Lagoon Inlets; El Carmen and Puerto Real. A total of 23 families and 43 species were identified. Highest larval abundance was registered during the rainy period (July and September) when the fluvial discharges favoured the planktonic development. The lowest larval abundance was recorded in the period of northern cold wind (January–March) when the fluvial discharges decreased. Bray-Curtis index defined two groups of stations, corresponding to each of the lagoon inlets, persisting throughout the year. The first one, ‘ El Carmen ’, was characterized by larvae of Engraulidae and Gobiidae; estuarine-dependent inhabitants. This group could be considered as a functional extension of the Lagoon to the sea. The second group, ‘ Puerto Real ’, was characterized by highest larval abundance of marine dwellers (e.g.Opisthonema oglinumandHarengula jaguana). This situation suggests that the Puerto Real Inlet could be the main entrance of marine fishes into the Lagoon. These results indicate that the coastal zone off Terminos Lagoon constitutes an important nursery area both for species spending part of their life cycle linked to this estuarine system, and for marine species that migrate towards the Lagoon, carried by local currents.  相似文献   

10.
We report measurements of dissolved iron (dFe, <0.4 μm) in seawater collected from the upper 300 m of the water column along the CLIVAR SR3 section south of Tasmania in March 1998 (between 42°S and 54°S) and November–December 2001 (between 47°S and 66°S). Results from both cruises indicate a general north-to-south decrease in mixed-layer dFe concentrations, from values as high as 0.76 nM in the Subtropical Front to uniformly low concentrations (<0.1 nM) between the Polar Front and the Antarctic continental shelf. Samples collected from the seasonal sea-ice zone in November–December 2001 provide no evidence of significant dFe inputs from the melting pack ice, which may explain the absence of pronounced ice-edge algal blooms in this sector of the Southern Ocean, as implied by satellite ocean-color images. Our data also allow us to infer changes in the dFe concentration of surface waters during the growing season. South of the Polar Front, a comparison of near-surface with subsurface (150 m depth) dFe concentrations in November–December 2001 suggests a net seasonal biological uptake of at least 0.14–0.18 nM dFe, of which 0.05–0.12 nM is depleted early in the growing season (before mid December). A comparison of our spring 2001 and fall 1998 data indicates a barely discernible seasonal depletion of dFe (0.03 nM) within the Polar Frontal Zone. Further north, most of our iron profiles do not exhibit near-surface depletions, and mixed-layer dFe concentrations are sometimes higher in samples from fall 1998 compared to spring 2001; here, the near-surface dFe distributions appear to be dominated by time-varying inputs of aerosol iron or advection of iron-rich subtropical waters from the north.  相似文献   

11.
The spatial distributions of dissolved manganese and nutrients were examined in the Columbia River plume off Oregon and Washington during the summer of 2004 and 2005 as part of the River Influence on Shelf Ecosystems (RISE) program. Factors influencing the hydrochemical characteristics of the freshly formed and aged Columbia River plume were investigated. Hydrographic data and nutrient concentrations were used to delineate three distinct water sources for the Columbia River Plume: California Current surface water, coastal upwelled water, and Columbia River water. The warm, intermediate salinity, nutrient poor California Current water contains low levels of dissolved manganese (< 5 nM) and silicic acid (< 5 μM), and is depleted in nitrate. The cold, high salinity, nutrient rich, freshly upwelled water is highly variable (2–20 nM) in dissolved manganese and can be as high as  45 μM in silicic acid and  30 μM nitrate. The variable Columbia River has summer temperatures ranging from  13 to 24 °C, high silicic acid concentrations (ranging from  120 to 200 μM), and lower nitrate concentrations (ranging from  2 to 20 μM). During the summer, the concentrations of silicic acid and dissolved manganese can exceed 100 μM and 200 nM, respectively, in near-field Columbia River plumes. These values are markedly greater than those of surface coastal waters (even during upwelling conditions). As the plume advects and mixes, the concentrations of these two constituents remain relatively high within plume waters. The concentrations of dissolved manganese in the near-field plume vary with tidal amplitude, exhibiting much higher concentrations for a given salinity during spring tides than during neap tides. For example, the Columbia River plume at a salinity of 20 has a concentration of dissolved manganese of  240 nM during spring tides, as compared to only  60 nM during low amplitude tides. Silicic acid concentrations in the near-field plume remain relatively constant throughout the tidal month. Calculations indicate there is roughly an equivalent yearly delivery of dissolved manganese and silicic acid to the coastal waters off Oregon and Washington by upwelled waters and by the Columbia River plume.  相似文献   

12.
Axenic cultures of the microalgae species, Dunaliella tertiolecta and Phaeodactylum tricornutum were grown at arsenic (As) concentrations typically found in uncontaminated marine environments ( 2 µg L− 1) under different phosphorus concentrations. D. tertiolecta accumulated higher arsenic concentrations (mean: 13.7 ± 0.7 µg g− 1 dry mass) than P. tricornutum (mean: 1.9 ± 0.2 µg g−1 dry mass). Media phosphorus concentrations (0.6–3 mg/L) had little influence on microalgae growth rates or arsenic accumulation. Arsenic was present as lipid bound (29–38%; 4.2–9.5%), water-soluble (20–29%; 26–34%) and residue bound (41–45%; 57–69%) arsenic species in D. tertiolecta and P. tricornutum respectively. Hydrolysed lipids contained mostly glycerol arsenoribose (OH- ribose), dimethylarsinate (DMA) and inorganic arsenic (As(V)) moieties. Water-soluble species of microalgae were very different. D. tertiolecta contained inorganic arsenic (54–86%) with variable amounts of DMA (7.4–20%), arsenoriboses (5–25%) and traces of methylarsonate (MA) ( 1%). P. tricornutum contained mostly DMA (32–56%) and phosphate arsenoribose (PO4-ribose, 23–49%) and small amounts of OH-ribose (3.8–6.5%) and As(V) (9–16%). Both microalgae contained an unknown cationic arsenic species. The residue fractions of both microalgae contained predominately inorganic arsenic (99–100%). These results show that at natural seawater arsenic concentrations, both algae take up substantial amounts of inorganic arsenic that is complexed with structural elements or sequestered in vacuoles as stable complexes. A significant portion is also incorporated into lipids. Arsenic is metabolised to simple methylated species and arsenoriboses.  相似文献   

13.
Mesoscale eddies and tropical instability waves in the eastern tropical Pacific, first revealed by satellite infrared imagery, play an important role in the dynamics and biology of the region, and in the transfer of mass, energy, heat, and biological constituents from the shelf to the deep ocean and across the equatorial currents.From boreal late autumn to early spring, four to 18 cyclonic or anticyclonic eddies are formed off the coastal region between southern Mexico and Panama. The anticyclonic gyres, which tend to be larger and last longer than the cyclonic ones, are the best studied: they typically are 180–500 km in diameter, depress the pycnocline from 60 to 145 m at the eddy center, have swirl speeds in excess of 1 m s−1, migrate west at velocities ranging from 11 to 19 cm s−1 (with a slight southward component), and maintain a height signature of up to 30 cm. The primary generating agents for these eddies are the strong, intermittent wind jets that blow across the isthmus of Tehuantepec in Mexico, the lake district in Nicaragua and Costa Rica, and the Panama canal. Other proposed eddy-generating mechanisms are the conservation of vorticity as the North Equatorial Counter Current (NECC) turns north on reaching America, and the instability of coastally trapped waves/currents.Tropical Instability Waves (TIWs) are perturbations in the SST fronts on either side of the equatorial cold tongue. They produce SST variations on the order of 1–2 °C, have periods of 20–40 days, wavelengths of 1000–2000 km, phase speeds of around 0.5 m s−1 and propagate westward both north and south of the Equator. The Tropical Instability Vortices (TIVs) are a train of westward-propagating anticyclonic eddies associated with the TIWs. They exhibit eddy currents exceeding 1.3 m s−1, a westward phase propagation speed between 30 and 40 km d−1, a signature above the pycnocline, and eastward energy propagation. Like the TIWs, they result from the latitudinal barotropically unstable shear between the South Equatorial Current (SEC) and the NECC with a potential secondary source of energy from baroclinic instability of the vertical shear with the Equatorial Undercurrent (EUC).This review of mesoscale processes is part of a comprehensive review of the oceanography of the eastern tropical Pacific Ocean.  相似文献   

14.
In this study we document how model biases in extratropical surface wind and precipitation, due to ocean–atmosphere coupling, are communicated to the equatorial Pacific thermocline through Pacific Subtropical Cell (STC) pathways. We compare the simulation of climate mean Pacific Subtropical Cells (STCs) in the NCAR Community Climate System Model version 3 (CCSM3) to observations and to an uncoupled ocean simulation (the ocean component of the CCSM3 forced by observed wind stress and surface fluxes). We use two versions of the CCSM3 with atmospheric resolution of 2.8° (T42) and 1.4° (T85) to investigate whether the climate mean STCs are sensitive to the resolution of the atmospheric model.Since STCs provide water that maintains the equatorial thermocline, we first document biases in equatorial temperature and salinity fields. We then investigate to what extent these biases are due to the simulation of extratropical–tropical water mass exchanges in the coupled models. We demonstrate that the coupled models’ cold and fresh bias in the equatorial thermocline is due to the subduction of significantly fresher and colder water in the South Pacific. This freshening is due to too much precipitation in the South Pacific Convergence Zone. Lagrangian trajectories of water that flows to the equatorial thermocline are calculated to demonstrate that the anomalously large potential vorticity barriers in the coupled simulations in both the North and South Pacific prevent water in the lower thermocline from reaching the equator. The equatorial thermocline is shown to be primarily maintained by water that subducts in the subtropical South Pacific in both the coupled and uncoupled simulations. It is shown that the zonally integrated transport convergence at the equator in the subsurface branch of the climate mean STCs is well simulated in the uncoupled ocean model. However, coupling reduces the net equatorward pycnocline transport by 4 Sv at 9°S and 1 Sv at 9°N. An increase in the atmospheric resolution from T42 to T85 results in more realistic equatorial trades and off-equatorial convergence zones.  相似文献   

15.
The dynamics of dissolved inorganic carbon (DIC) and processes controlling net community production (NCP) were investigated within a mature cyclonic eddy, Cyclone Opal, which formed in the lee of the main Hawaiian Islands in the subtropical North Pacific Gyre. Within the eddy core, physical and biogeochemical properties suggested that nutrient- and DIC-rich deep waters were uplifted by 80 m relative to surrounding waters, enhancing biological production. A salt budget indicates that the eddy core was a mixture of deep water (68%) and surface water (32%). NCP was estimated from mass balances of DIC, nitrate+nitrite, total organic carbon, and dissolved organic nitrogen, making rational inferences about the unobserved initial conditions at the time of eddy formation. Results consistently suggest that NCP in the center of the eddy was substantially enhanced relative to the surrounding waters, ranging from 14.1±10.6 (0–110 m: within the euphotic zone) to 14.2±9.2 (0–50 m: within the mixed layer) to 18.5±10.7 (0–75 m: within the deep chlorophyll-maximum layer) mmol C m−2 d−1 depending on the depth of integration. NCP in the ambient waters outside the eddy averaged about 2.37±4.24 mmol C m−2 d−1 in the mixed layer (0–95 m). Most of the enhanced NCP inside the eddy appears to have accumulated as dissolved organic carbon (DOC) rather than exported as particulate organic carbon (POC) to the mesopelagic. Our results also suggest that the upper euphotic zone (0–75 m) above the deep chlorophyll maximum is characterized by positive NCP, while NCP in the lower layer (>75 m) is close to zero or negative.  相似文献   

16.
Temperature data collected over the last 36 years (1969–2004) in Drake Passage are used to examine interannual temperature variation and long-term trends in the upper ocean. To reduce the effect of variation from different sampling locations and temporal variability introduced by meridional shifts in the Polar Front (PF), the data were divided into two sub-regions north (3800 temperature profiles) and south (3400) of the PF. Temperature anomalies were formed by removing a temporal mean field for each profile in each sub-region at 100 m depth intervals from the surface to 700 m. North of the PF, statistically significant warming trends of 0.02 °C yr−1 were observed that were largely depth-independent between 100 and 700 m. A statistically significant cooling trend of −0.07 °C yr−1 was observed at the surface south of the PF, which was smaller (−0.04 °C yr−1) but still statistically significant when possible seasonal sampling biases were accounted for. The observed cooling at the surface and warming at depth is largely consistent with a poleward shift of the PF due to enhancement of westerly winds in the Southern Ocean, as recently suggested by models and observations. The observed annual temperature anomalies in the upper 400 m north of the PF and in the upper 100 m south of the PF are highly correlated to variability in sea ice, and also to climate indices of the Antarctic Oscillation and the El Niño Southern Oscillation. Variability in sea ice and temperature anomalies lag El Niño variability in the Pacific, with a phasing consistent with the observed cyclical patterns of sea ice and sea surface temperature associated with the Antarctic Circumpolar Wave or Antarctic Dipole Mode in the Southern Ocean. In contrast, the sea ice variability and temperature anomalies at all depths north of the PF and at 0–100 m depth south of the PF were primarily coincident with, or led the Antarctic Oscillation Index. No significant correlations were found with the large-scale climate variability indices in southern Drake Passage below 100 m depth, which is occupied by upper Circumpolar Deep Water (uCDW). This water mass is not formed locally, is largely isolated from the surface, and exhibits vertical and lateral homogeneity. Hence changes may be difficult to detect in the available measurements, and climate variation in the source water regions of uCDW may take a long time to reach Drake Passage.  相似文献   

17.
Reef landscapes dominated by canopy-forming species are often irregular mosaics of habitats, with important influences on associated fauna. This study tested if differences in the ecological patterns of mobile fauna inhabiting interspersed (morphologically distinct) algal habitats were altered by the spatial arrangement of reefs of varying proximity to the shoreline. Specifically, prosobranch gastropods were used as models to test that: (1) there were differences in the ecological patterns (species composition and abundances) between three algal habitats (the kelp Ecklonia radiata, fucalean macroalgae, and erect red algae); (2) the magnitude of these differences depended on the position of reef lines (‘in-shore’ vs. ‘off-shore’); and (3) these effects were regionally consistent across a 4° latitudinal gradient (600 km of coastline) in Western Australia. The ecological patterns of algal-associated gastropods responded strongly to the presence of algal habitats with different physical structure at small spatial scales. Importantly, differences in assemblage structure (e.g. differences in total abundances) between habitats across the latitudinal gradient were especially accentuated on the in-shore reefs compared with the off-shore reefs, where a general amelioration of differences between habitats was observed, probably associated with a more widespread effect of stronger wave forces across habitats. Overall, red algae supported higher total abundances and species richness (per algal weight) compared to the other algal habitats, particularly on in-shore reefs. Patterns for individual species were considerably location-dependent, reflecting the natural variability of species across geographical gradients. In contrast, patterns at the assemblage-level were consistent, providing evidence for the existence of general rules underlying the assemblage-level organization of mobile invertebrates on subtidal reefs across this geographical gradient.  相似文献   

18.
苏北沿岸流对浒苔暴发及漂移过程的影响   总被引:4,自引:0,他引:4  
卢健  张启龙  李安春 《海洋科学》2014,38(10):83-89
根据2009年5月的温度、盐度和溶解氧观测数据,应用"对应分析法"对水团的分布范围和特性进行了分析,并探讨了苏北沿岸流对浒苔(Enteromorpha prolifera)暴发及漂移过程的影响。结果表明,春季苏北沿岸流向东南流动过程中,可以将海水中悬浮的浒苔繁殖体向南输运至长江冲淡水与苏北沿岸流交汇处,此处的浒苔繁殖体在适宜的条件下生长繁殖。在夏季风的作用下,长江口北部的浒苔与苏北沿岸海域的浒苔,随表层海流向北漂移,在地球偏转力作用下,漂移路径不断向右偏转,并最终在山东半岛南部海域聚集堆积。苏北沿岸流在浒苔暴发初期将繁殖体输送到条件适宜的生长区,并对浒苔向北漂移起到了重要作用。长江冲淡水向北扩展范围的增大对于浒苔的生长和繁殖起到了促进作用。查明浒苔扩散路径及输运机制不仅具有重要环境意义,而且对深入了解沿岸和河口区泥沙及污染物的扩散和输运机制具有指示作用。  相似文献   

19.
通过对我国沿海多次野外实地考查以及文献报道,采用统计学的分析方法,研究了马尾藻属海藻资源的物种构成和区系分布特征.结果表明,马尾藻属种数在我国海域的水平分布呈现出北少南多的趋势,黄、东海仅17种,南海达到124种、占世界马尾藻总数的36.47%.其中,黄海西区、东海西区、南海北区和南海南区种数及小区单一分布种类数分别为10、13、82和61种及2、3、52和42种.我国特有种类为64种、占世界尾藻总数的18.82%.在我国沿海马尾藻的垂直分布特征为:高潮带2种,低潮带91种,潮下带78种.  相似文献   

20.
Material transport through the shelf edge to the deep ocean determines the fate of particulate matter generated in productive coastal seas. In stratified estuaries, onshore flow in the bottom layer generally keeps particulate matter generated in the upper layer and settled down to the bottom layer within the estuaries. AT the shelf edge of Tokyo Bay under the condition of average onshore flow in the bottom layer, we observed higher vertical sediment flux during ebb than flood tidal currents. The on-shelf and off-shelf differences in turbulent mixing and water depth mainly cause such difference in sediment flux. We propose to call this export process of particulate matter the tidal pump at the shelf edge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号