首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A discrete element model is used to investigate the progressive deformation of a thin basaltic cover overlying a pre-existing, blind, normal fault as it propagates to the surface. The cover materials representing basalt are homogeneous, strong and display elastic-brittle material behaviour. Cover deformation is seen to evolve through a series of distinct stages. Initial displacement on the underlying fault produces a very gentle, monoclinal, flexure. With continued displacement, open fractures develop at the monocline surface and propagate downwards, whilst the deeper fault propagates upwards. Simultaneously, a series of fractures, in the future hanging-wall of the main fault, develop in the upper part of the cover. The monoclinal flexure is then cut by these structures, producing a surficial fault- and fracture-bounded wedge. Finally, a prominent surface fracture and the upward-propagating fault link, cutting the entire cover sequence. This fault is dilatant in the upper c. 100 m of the cover, has a significant surface aperture and forms a prominent fault scarp. Many of the key model results are strikingly similar to those seen in natural settings, and emphasise that the occurrence of dilatant faults, open fractures and cavities/caves in extensional settings is not necessarily restricted to the very shallow section but can extend to several hundred metres depth. Therefore, the results have implications for permeability and fluid flow in such settings. Comparison is also made with a weak cover experiment, using granular materials with no cohesion or tensile strength, similar to the dry sand used in many analogue modelling studies.  相似文献   

2.
侏罗纪洋壳为现存最古老的海洋地壳, 残留在地球表面上很少, 目前对于侏罗纪洋壳的断裂特征和构造变形了解很少。本文利用高分辨率的反射地震剖面精细解释了位于西太平洋的侏罗纪洋壳基底、沉积地层和断裂结构, 发现在研究区存在基底断层、沉积断层和垮塌断层三种类型的断裂构造, 并对其走向、倾角、断距等几何参数与变形特征进行了推测和定量研究。研究还发现, 基底断层是洋壳受到板块伸展拉张而产生的, 在后期海底沉积过程中持续发育并错断上覆沉积物, 在海底形成明显的断层陡坎。沉积断层是沉积地层自身重力作用的产物,受到沉积地层岩石性质的控制。垮塌断层是岩浆侵出或者侵入形成海山, 导致洋壳及其上覆沉积局部抬升并向两侧推移, 引起先存的基底断层和沉积断层重新错动产生的。研究区内切断洋壳基底和上覆沉积的活动断层的推测走向大体符合侏罗纪洋壳基底面起伏、重力异常骤变界面以及地磁异常条带等的走向, 表明这些断裂从侏罗纪洋中脊的海底扩张中演变而来, 并且持续活动至今。这些发育在古老洋壳上的断层能够长时间让水进入岩石圈并进入俯冲带及地球内部, 从而促进地球水循环。尽管目前尚未发现这些断裂产生大地震, 但这些断层可能随着板块俯冲而演变成俯冲带地震大断裂, 今后研究应该关注这类断层在靠近海沟之前的演化规律和潜在地震风险。  相似文献   

3.
The central part of the Zagros Fold-Thrust Belt is characterized by a series of right-lateral and left-lateral transverse tear fault systems, some of them being ornamented by salt diapirs of the Late Precambrian–Early Cambrian Hormuz evaporitic series. Many deep-seated extensional faults, mainly along N–S and few along NW–SE and NE–SW, were formed or reactivated during the Late Precambrian–Early Cambrian and generated horsts and grabens. The extensional faults controlled deposition, distribution and thickness of the Hormuz series. Salt walls and diapirs initiated by the Early Paleozoic especially along the extensional faults. Long-term halokinesis gave rise to thin sedimentary cover above the salt diapirs and aggregated considerable volume of salt into the salt stocks. They created weak zones in the sedimentary cover, located approximately above the former and inactive deep-seated extensional faults. The N–S to NNE–SSW direction of tectonic shortening during the Neogene Zagros folding was sub-parallel with the strikes of the salt walls and rows of diapirs. Variations in thickness of the Hormuz series prepared differences in the basal friction on both sides of the Precambrian–Cambrian extensional faults, which facilitated the Zagros deformation front to advance faster wherever the salt layer was thicker. Consequently, a series of tear fault systems developed along the rows of salt diapirs approximately above the Precambrian–Cambrian extensional faults. Therefore, the present surface expressions of the tear fault systems developed within the sedimentary cover during the Zagros orogeny. Although the direction of the Zagros shortening could also potentially reactivate the basement faults as strike-slip structures, subsurface data and majority of the moderate-large earthquakes do not support basement involvement. This suggests that the tear fault systems are detached on top of the Hormuz series from the deep-seated Precambrian–Cambrian extensional faults in the basement.  相似文献   

4.
This study presents an analysis of the single-channel high-resolution shallow seismic reflection data from Lake Erçek, eastern Anatolia, to provide key information on the deformational elements, on the fault patterns and on the overall tectonic structure of the Lake Erçek Basin. High-resolution seismic data reveal major structural and deformational features, including N–S trending normal faults and W–E trending reverse faults bounding the Lake Erçek Basin, basement highs and folded structures along the marginal sections of the lake. The N–S trending normal faults asymmetrically control the steep western margin and the gentle eastern deltaic section, while the W–E trending reverse faults appear at the northern and southern margins. The N–S trending normal faults, half-graben structure, and the gradual thickening of sediments in the Erçek Basin toward the fault scarps strongly suggest an extensional tectonic regime resulting from an N–S compression. The Erçek Basin is an extension-controlled depocenter; it is a relatively undeformed and flat-lying deep Basin, forming a typical example of the half-graben structure. The N–S trending normal faults appear to be currently active and control the lake center and the E-delta section, resulting in subsidence in the lake floor. In the N- and S-margins of the lake, there is evidence of folding, faulting and accompanying block uplifting, suggesting a significant N–S compressional regime that results in the reverse faulting and basement highs along the marginal sections. The folding and faulting caused strong uplift of the basement blocks in the N- and S- margins, subsequently exposing the shelf and slope areas. The exposed areas are evident in the erosional unconformity of the surface of the basement highs and thinned sediments. The tilted basement strata and subsequent erosion over the basement block highs suggest prominent structural inversion, probably long before the formation of the lake. New high-resolution seismic data reveal the fault patterns and structural lineaments of the Lake Erçek and provide strong evidence for an ongoing extension and subsidence. The present study provides new structural insights that will support future tectonic and sedimentary studies and the development of strategies related to active earthquake faults and major seismic events in the region of Lake Erçek.  相似文献   

5.
A discrete-element model is used to investigate the manner in which deformation and fault activity change in space and time during the development of a doubly vergent thrust wedge in the upper crust. Deformation is a result of shortening at a subduction slot in the base of the model, a configuration which produces a dynamic backstop within the cohesionless, frictional cover material. A series of experiments with differing basal (decollement) friction are performed. The distinct manners in which thrust wedges grow, and the variability of fault development and activity in space and time, are then examined. Both predicted large-scale wedge geometries and individual fault-fold structures are similar to those observed in sandbox models, and show the complex manner in which shortening is accommodated and localized during the development of the thrust wedge. When compared to a sandbox model with similar boundary conditions, model results are strikingly similar. In all cases, deformation initiates above the subduction slot with the formation of an axial zone; the wedge is then developed by displacement on a retro-wedge thrust and propagation of deformation into the pro-wedge region. Models with low coefficients of basal friction typically develop wide, shallow wedges with distributed, spaced deformation and rather symmetric, box-like structures; whereas those with high coefficients of basal friction develop narrower, steeper wedges, consisting of a series of stacked, pro-wedge thrust sheets, and a high-displacement retro-wedge thrust. In general, fault initiation and linkage is extremely complex in our models, with several smaller faults operating until linkage occurs to form a major through-going structure. Of particular interest is the observation that many of the faults do not develop at the basal decollement and propagate upwards through the cover but rather initiate at high levels in the cover and propagate/link downwards with other, deeper structures. Results also indicate the utility of the discrete-element approach in modelling large-displacement, complex deformation of geological materials.  相似文献   

6.
华北板块东部新生代断裂构造特征与盆地成因   总被引:22,自引:3,他引:19  
华北板块东部新生代的构造特征及动力学演化主要受左行郯庐断裂带和右行兰考-聊城-台安-大洼-法哈牛断裂带的控制。这两条断裂都是新生代岩石圈断裂。在兰考-聊城-台安-大洼-法哈牛断裂带以西,新生代伸展盆地为NNE走向的铲形正断层控制的箕状断陷;两断裂之间为北断南超的NWW走向的断陷盆地;郯庐断裂以东的北黄海盆地为南断北超的Nww走向的断陷盆地。这些构造特征继承了该区中生代的构造格局,但其构造性质发生了根本变化,在这两条走滑方向相反的断裂带控制下,这两条断裂带内古近纪以张扭作用下的裂陷为主,随后以伸展断陷为主,第四纪沿两断裂带局部发生挤压,而鲁西地块和渤海湾盆地区仍然为伸展正断。渤海湾盆地及邻区这些新生代复杂的断块或断裂构造格局受控于应力-应变-基底格局3个基本要素。  相似文献   

7.
Continental collision between Iranian and Arabian plates resulted in the formation of the Zagros fold–thrust belt and its associated foreland basin. During convergence, pre-existing faults in the basement were reactivated and the sedimentary cover was shortened above two different types of basal decollement (viscous/frictional). This led to heterogeneous deformation which segmented not only the Zagros fold–thrust belt but also its foreland basin into different compartments resulting in variation in facies, thickness and age of the sediment infill.Based on this concept, a new tectono-sedimentary model is proposed for one of the most important syn-tectonic sedimentary unit, the Gachsaran salt in the Zagros foreland basin. In this proposed model, it is argued that differential propagation of the deformation front above decollements with different mechanical properties (viscous versus frictional) results in along-strike irregularity of the Zagros deformation front whereas movement along pre-existing basement faults leads to development of barriers across the Zagros basin. The irregularity of the deformation front and the cross-basin barriers divided the Zagros foreland basin into six almost alternating sub-basins where Gachsaran salt and its non-salt equivalents are deposited. In the salt sub-basins, two different processes were responsible for the deposition of Gachsaran salt: (1) evaporation, and (2) dissolution of extruding Hormuz salt and its re-precipitation as Gachsaran salt. Re-precipitation was probably the most significant process responsible for the huge deposit of Gachsaran salt in the extreme south-east part of the Zagros foreland basin.  相似文献   

8.
Cenozoic structures in the Bohai Bay basin province can be subdivided into eleven extensional systems and three strike-slip systems. The extensional systems consist of normal faults and transfer faults. The normal faults predominantly trend NNE and NE, and their attitudes vary in different tectonic settings. Paleogene rifting sub-basins were developed in the hanging walls of the normal faults that were most likely growth faults. Neogene–Quaternary sequences were deposited in both the rifting sub-basins and horsts to form a unified basin province. The extensional systems were overprinted by three NNE-trending, right-lateral strike-slip systems (fault zones). Although the principal displacement zones (PDZ) of the strike-slip fault zones are developed only in the basement and lower basin sequences in some cross sections, the structural deformation characteristics of the upper basin sequences also indicate that they are basement-involved, right-lateral strike-slip fault zones. According to the relationships between faults and sedimentary sequences, the extensional systems were mainly developed from the middle Paleocene to the late Oligocene, whereas the strike-slip systems were mainly developed from the Oligocene to the Miocene. Strike-slip deformation was intensified as extensional deformation was weakened. Extensional deformation was derived from horizontal tension induced by upwelling of hot mantle material, whereas strike-slip deformation was probably related to a regional stress field induced by plate movement.  相似文献   

9.
Seismic reflection data imaging conjugate crustal sections at the South China Sea margins result in a conceptual model for rift-evolution at conjugate magma-poor margins in time and space.The wide Early Cenozoic South China Sea rift preserves the initial rift architecture at the distal margins. Most distinct are regular undulations in the crust–mantle boundary. Individual rift basins are bounded to crustal blocks by listric normal faults on either side. Moho uplifts are distinct beneath major rift basins, while the Moho is downbended beneath crustal blocks, with a wavelength of undulations in the crust–mantle boundary that approximately equals the thickness of the continental crust. Most of the basin-bounding faults sole out within the middle crust. At the distal margins, detachment faults are located at a mid-crustal level where a weak zone decouples crust and mantle lithosphere during rifting. The lower crust in contrast is interpreted as being strong. Only in the region within about 50 km from the Continent–Ocean Transition (COT) we suggest that normal faults reach the mantle, enabling potentially a coupling between the crust and the mantle. Here, at the proximal margins detachment fault dip either seaward or landward. This may indicate the presence of exhumed mantle bordering the continental margins.Post-rift shallow-water platform carbonates indicate a delay in subsidence during rifting in the South China Sea. We propose that this is an inherent process in highly extended continental margins and a common origin may be the influx of warm asthenospheric material into initially cool sub-lithospheric mantle.On a crustal-scale largely symmetric process predominate in the initial rifting stage. At the future COT either of the rift basin-bounding faults subsequently penetrates the entire crust, resulting in asymmetry at this location. However, asymmetric deformation which is controlled by large scale detachment faulting is confined to narrow areas and does not result in a margin-wide simple-shear model. Rather considerable along-margin variations are suggested resulting in alternating “upper and lower plate” margins.  相似文献   

10.
4D analogue modelling of transtensional pull-apart basins   总被引:3,自引:0,他引:3  
Scaled sandbox models were used to investigate the 4D evolution of pull-apart basins formed above underlapping releasing stepovers in both pure strike-slip and transtensional basement fault systems. Serial sectioning and 3D volume reconstruction permitted analysis of the full 3D fault geometries. Results show that very different pull-apart basins are developed in transtension compared to pure strike-slip. Both types of models produced elongate, sigmoidal to rhomboidal pull-apart systems, but the transtensional pull-apart basins were significantly wider and uniquely developed a basin margin of en-echelon oblique-extensional faults. Dual, opposing depocentres formed in the transtensional model whereas a single, central depocentre formed in pure strike-slip. In transtension, a distinct narrow graben system formed above the principal displacement zones (PDZs). Cross-basin fault systems that linked the offset PDZs formed earlier in the transtensional models.Sequential model runs to higher PDZ displacements allowed the progressive evolution of the fault systems to be evaluated. In cross-section, transtensional pull-aparts initiated as asymmetric grabens bounded by planar oblique-extensional faults. With increasing displacement on the PDZs, basin subsidence caused these faults to become concave-upwards and lower in dip angle due to fault block collapse towards the interior of the basin. In addition, strain partitioning caused fault slip to become either predominantly extensional or strike-slip. The models compare closely with the geometries of natural pull-apart basins including the southern Dead Sea fault system and the Vienna Basin, Austria.  相似文献   

11.
基于准连续介质方法模拟纳米多晶体Ni中裂纹的扩展   总被引:1,自引:0,他引:1  
邵宇飞  王绍青 《海洋学报》2010,32(10):7258-7265
通过准连续介质方法模拟了纳米多晶体Ni中裂纹的扩展过程.模拟结果显示:裂纹尖端的应力场可以导致晶界分解、层错和变形孪晶的形成等塑性形变;在距离裂纹尖端越远的位置,变形孪晶越少;在裂纹尖端附近相同距离处,层错要远多于变形孪晶.这反映了局部应力的变化以及广义平面层错能对变形孪晶的影响.计算了裂纹尖端附近区域原子级局部静水应力的分布.计算结果表明:裂纹前端晶界处容易产生细微空洞,这些空洞附近为张应力集中区,并可能促使裂纹沿着晶界扩展.模拟结果定性地反映了纳米多晶体Ni中的裂纹扩展过程,并与相关实验结果符合得很好  相似文献   

12.
位于东海XH凹陷的Y构造,以其两侧发育的NE—NNE向高角度逆冲断层和构造顶部发育的NW、近EW向的正断层、平面展布的“S”型构成其独特的构造风格。本文致力于应用T.P.Harding的扭动构造理论,结合该构造的成因机制进行了分析,并得出结论:Y构造为中新世末期的龙井运动压扭作用的产物。  相似文献   

13.
Much of the relief of the abyssal hills covering the ocean basins is believed to originate from faulting of oceanic crust at mid-ocean ridges. The timescale over which faults grow is controversial, however, with some authors arguing that faults continue to grow in places for 0.5 m.y. or more based on increasing relief of fault scarps with distance from ridge axes. We examine Deep Tow profiler records of the Galapagos Spreading Centre, in which basement reflections allow scarp relief to be measured beneath the sediment cover, and find that relief does not increase but decreases systematically to 40 km off-axis (1.5 Ma seafloor). Since reversal of fault offsets is unlikely in this tectonic setting, we interpret this result as indicating that variations in fault statistics could reflect temporal variations in the tectonic or volcanic state of the ridge crest, not necessarily progressive fault growth with age as previously assumed. Resolving the issue of fault longevity will therefore require independent data on the timing of fault growth and distribution of present growth activity. We suggest some possible alternative indicators of fault longevity and discuss more generally the implications of volcanic flows to studies of faulting at ridges.  相似文献   

14.
The Niger Delta is a classic example of a passive margin delta that has gravitationally deformed above an overpressured shale decollement. The outboard Niger Delta clastic wedge, including the Akata Formation overpressured shale decollement, is differentially thickened across relict oceanic basement steps formed at the Chain and Charcot fracture zones. In this study, five analogue models were applied to investigate the effects of a differentially thickened overpressured shale decollement across relict stepped basement on Niger Delta gravity-driven deformation. Gravity-driven delta deformation was simulated by allowing a lobate, layered sandpack to deform by gravity above a ductile polymer. A first series of experiments had a featureless, horizontal basement whereas a second series had differentially thickened polymer above Niger Delta-like basement steps. Two syn-kinematic sedimentation patterns were also tested. Surface strains were analysed using digital image correlation and key models were reconstructed in 3D. All five model deltas spread radially outward and formed plan view arcuate delta top grabens and arcuate delta toe folds. The arcuate structures were segmented by dip-oriented radial grabens and delta toe oblique extensional tear faults, which were formed by along-strike extensional strains during spreading. Basement steps partitioned delta toe gravity spreading into dual, divergent directions. Similarities between the analogue model structures and the Niger Delta strongly suggest a history of outward radial gravity spreading at the Niger Delta. The Niger Delta western lobe has potentially spread downdip more rapidly due to a thicker or more highly overpressured underlying Akata Fm. shale detachment. Faster western lobe spreading may have produced the Niger Delta toe ‘dual lobe’ geometry, perturbed up dip Niger Delta top growth fault patterns, and implies that western lobe toe thrusts have been very active.  相似文献   

15.
Previous GPS-based geodetic studies and onland paleoseismologic studies in Trinidad have shown that the 50-km-long, linear, onland segment of the Central Range fault zone (CRFZ) accommodates at least 60% of the total rate of right-lateral displacement (∼20 mm/yr) between the Caribbean and South American plates. 2D and 3D seismic reflection data from a 60-km-long and 30-km-wide swath of the eastern shelf of Trinidad (block 2AB) were used to map the eastern offshore extension of this potentially seismogenic and hazardous fault system and to document its deeper structure and tectonic controls on middle Miocene to recent clastic stratigraphy. Two unconformity surfaces and seafloor were mapped using 3D seismic data to generate isochron maps and to illustrate the close control of the CRFZ and associated secondary faults on small, clastic basins formed along its anastomosing strands and the east-west-striking North Darien Ridge fault zone (NDRFZ) that exhibits a down-to-the-north normal throw. Mapped surfaces include: 1) the middle Miocene angular unconformity, a prominent, regional unconformity surface separating underlying thrust-deformed rocks from a much less deformed overlying section; this regional unconformity is well studied from onland outcrops in Trinidad and in other offshore areas around Trinidad; 2) a Late Neogene angular unconformity developed locally within block 2AB that is not recognized in Trinidad; and 3) the seafloor of the eastern Trinidad shelf which exhibits linear scarps for both the CRFZ and the east-west-striking North Darien Ridge fault zone. Clastic sedimentary fill patterns identified on these isochron maps indicate a combined effect of strike-slip and reverse faulting (i.e., tectonic transpression) produced by active right-lateral shear on the CRFZ, which is consistent with the obliquity of the strike of the fault to the interplate slip vector known from GPS studies in onland Trinidad. The NDRFZ and a sub-parallel and linear family of east-west-striking faults with normal and possibly transtensional motions also contributed to the creation of accommodation space within localized, post-middle Miocene clastic depocenters south of the CRFZ.  相似文献   

16.
A re-evaluation of the reprocessed seismic reflection data was made for the investigation of the presumed western continuation of the North Anatolian Fault (NAF) in the Aegean and mapping geometries of active faults in the Aegean Sea. Seismic data collected and processed by various national and international companies were selected from the data archives and they were reprocessed after stacking to bring them to the same processing and signal-to-noise ratio standards. The total length of the selected lines is 8000 km. We investigated the character of active faulting in the North Aegean Sea using seismic reflection data. Moreover, the relations of active faults with earthquakes were examined using earthquake fault plane solutions (FPS). We show that the active faults are dominantly normal in character in the NNE Aegean where FPS for earthquakes with M>5 indicate strike-slip movements along these faults. We propose a simple mechanism that potentially explains this inconsistency. Active normal faults are oriented in a NE–SW direction in alignment with the SW escape motion of the Anatolian block in this region and this orientation facilitates instantaneously strike-slip movements along these otherwise normal faults.  相似文献   

17.
During compressive events, deformation in sedimentary basins is mainly accommodated by thrust faulting and related fold growth. Thrust faults are generally rooted in the basement and may act as conduits or barriers for crustal fluid flow. Most of recent studies suggest that fluid flow through such discontinuities is not apparent and depends on the structural levels of the thrust within the fold-and-thrust belt.In order to constrain the paleofluid flow through the Jaca thrust-sheet-top basin (Paleogene southwest-Pyrenean fold-and-thrust belt) this study compares on different thrust faults located at different structural levels. The microstructures in the different fault zones studied are similar and consist of pervasive cleavage, calcite shear veins (SV1), extension veins (EV1) and late dilatation veins (EV3). In order to constrain the nature and the source of fluids involved in fluid-rock interactions within fault zones, a geochemical approach, based on oxygen and carbon stable isotope and trace element compositions of calcite from different vein generations and host rocks was adopted. The results suggest a high complexity in the paleohydrological behaviors of thrust faults providing evidence for a fluid-flow compartmentalization within the basin. Previous studies in the southern part of the Axial Zone (North of the Jaca basin) indicates a circulation of deep metamorphic water, probably derived from the Paleozoic basement, along fault zones related to the major basement Gavarnie thrust. In contrast, in northern part of the Jaca basin, the Monte Perdido thrust fault is affected by a closed hydrological fluid system involving formation water during its activity. The Jaca and Cotiella thrust faults, in turn, both located more to the south in the basin, are characterized by a composite fluid flow system. Indeed, stable isotope and trace element compositions of the first generations of calcite veins suggest a relatively closed paleohydrological system, whereas the late calcite vein generations, which are probably associated with the late tectonic activity of the basin, support a contribution of both meteoric and marine waters. Based on these results, a schematic fluid-flow model is presented. This model allows visualization of three main fluid flow compartments along a N–S transect.  相似文献   

18.
Recently acquired (2005) multi-beam bathymetric and high-resolution seismic reflection data from the E–W-oriented Gulf of Gökova off SW Anatolia were evaluated in order to assess the uneven seafloor morphology and its evolution in terms of present-day active regional tectonics. Stratigraphically, the three identified seismic units, i.e., the basement, deltaic sediments deposited during Quaternary glacial periods, and modern gulf deposits, are consistent with those observed in previous studies. Structurally, the folds and faults with strike-slip and reverse components have been regionally mapped for the first time. Of these, NE–SW-oriented left-lateral strike-slip faults with compressional components forming the so-called Gökova Fault Zone intersect and displace two WNW–ESE-oriented submarine ridges and deep submarine plains. Thus, strike-slip faults are the youngest major structures in the gulf, and control present-day active tectonism. E–W-oriented folds on the inner and outer shelf, which are generally accompanied by reverse faults, delimit the margins of these submarine ridges, and deform the young basin deposits. These features also reveal the concomitant existence of a compressional tectonic regime. The compressional structures probably represent pressure ridges along left-lateral strike-slip fault segments. However, some E–W-oriented normal faults occur on the northwestern and partly also southern shelf, and along the borders of the adjacent deep submarine plains. They are intersected and displaced by the strike-slip faults. The lower seismicity along the normal faults relative to the NE–SW-oriented strike-slip faults suggests that the former are at present inactive or at least less active.  相似文献   

19.
Amlia and Amukta Basins are the largest of many intra-arc basins formed in late Cenozoic time along the crest of the Aleutian Arc. Both basins are grabens filled with 2–5 km of arc-derived sediment. A complex system of normal faults deformed the basinal strata. Although initial deposits of late Micocene age may be non-marine in origin, by early Pliocene time, most of the basinfill consisted of pelagic and hemipelagic debris and terrigenous turbidite deposits derived from wavebase and subaerial erosion of the arc's crestal areas. Late Cenozoic volcanism along the arc commenced during or shortly after initial subsidence and greatly contributed to active deposition in Amlia and Amukta Basins.Two groups of normal faults occur: major boundary faults common to both basins and ‘intra-basin’ faults that arise primarily from arc-parallel extension of the arc. The most significant boundary fault, Amlia-Amukta fault, is a south-dipping growth fault striking parallel to the trend of the arc. Displacement across this fault forms a large half-graben that is separated into the two depocentres of Amlia and Amukta Basins by the formation of a late Cenozoic volcanic centre, Seguam Island. Faults of the second group reflect regional deformation of the arc and offset the basement floor as well as the overlying basinal section. Intra-basin faults in Amlia Basin are predominantly aligned normal to the trend of the arc, thereby indicating arc-parallel extension. Those in Amukta basin are aligned in multiple orientations and probably indicate a more complex mechanism of faulting. Displacement across intra-basin faults is attributed to tectonic subsidence of the massif, aided by depositional loading within the basins. In addition, most intra-basin faults are listric and are associated with high growth rates.Although, the hydrocarbon potential of Amlia and Amukta Basins is difficult to assess based on existing data, regional considerations imply that an adequate thermal history conducive to hydrocarbon generation has prevailed during the past 6-5 my. The possibility for source rocks existing in the lower sections of the basins is suggested by exposures of middle and upper Miocene carbonaceous mudstone on nearby Atka Island and the implication that euxinic conditions may have prevailed during the initial formation of the basins. Large structures have evolved to trap migrating hydrocarbons, but questions remain concerning the preservation of primary porosity in a sedimentary section rich in reactive volcaniclastic debris.  相似文献   

20.
琼东南盆地深水区断层垂向输导及成藏模式   总被引:2,自引:1,他引:1  
In the Qiongdongnan Basin, faults are well developed.Based on the drilling results, the traps controlled two or more faults are oil-rich. However, when only one fault cut through the sand body, there is no sign for hy-drocarbon accumulation in the sandstone. In terms of this phenomenon, the principle of reservoir-forming controlled by fault terrace is proposed, i.e., when the single fault activates, because of the incompressibility of pore water, the resistance of pore and the direction of buoyancy, it is impossible for hydrocarbon to ac-cumulate in sandstone. But when there are two or more faults, one of the faults acts as the spillway so the hydrocarbon could fill in the pore of sandstone through other faults. In total five gas bearing structures and four failure traps are considered, as examples to demonstrate our findings. According to this theory, it is well-advised that south steep slope zone of Baodao-Changchang Depression, south gentle slope zone of Lingshui Depression, north steep slope zone of Lingshui Depression, and north steep slope zone of Baodao Depression are the most favorable step-fault zones, which are the main exploration direction in next stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号