首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Since early Pliocene, a counterclockwise surface gyre transported Nile derived silt and clay northeastwards along the Levant coast, where a basinward prograding plastered drift emerged. Based on high-resolution seismic reflection data we develop a middle to late Pleistocene sequence stratigraphic scheme for this plastered drift. For creating stacked sections of the seismic data we used the common reflection surface (CRS) stack technology which enhanced lateral reflection continuity and visibility of deep reflections. The shelf comprises stratigraphic sequences which show classical, systems tract like stacking patterns of sea level controlled sequences such as offlapping forced regression deposits or diachronous ravinement surfaces which formed during base level rise. On the slope, base level was periodically located well below the wave base and thus rather controlled by hydrodynamics, presumably by high-velocity contour currents. Hence, the term ‘deep base level’ is introduced. The deep base level controlled especially down and backstepping slope deposits. This example shows that care has to be taken when interpreting subsurface data containing typical systems tract like seismic sequences, since such geometries do not necessarily imply shallow water deposition of the sediments. A chronostratigraphic analysis based on the seismic stratigraphy indicates that base level fluctuations were related to eccentricity driven glacio-eustatic fluctuations. Periodic mass wasting, facilitated by foreset over-steepening and possibly triggered by salt tectonics or erosion by the contour current occurred during late base level fall or early base level rise.  相似文献   

2.
Differing seismic facies are observed from within the Westphalian sequences of the southern North Sea. A review of published synthetic seismograms and seismic data from known coal-bearing basins establishes seismic facies types and their relationships. Similar reflection character is recognized from Westphalian sequences in the southern North Sea and lithologies confirmed by borehole information. Probable sand/silt or clastic-prone Upper Coal Measures (Westphalian C/D) stages and coal-prone Lower and Middle Coal Measures (Westphalian A, B and part C) stages can be defined and mapped, providing information on the regional distribution of source and reservoir rocks and stratigraphic plays. It is suggested that sand-prone channel complexes or clastic dominated areas within the mainly A/B stages can be recognized and mapped, providing information on migration pathways and stratigraphic plays.  相似文献   

3.
The Lower Cretaceous Knurr Sandstone deposited along the southern slope of Loppa High and overlain by the Kolje and Kolmule seals forms an attractive play in the Hammerfest Basin of the Barents Sea. Late Jurassic organic-rich Hekkingen shale directly underlies the Knurr Sandstone and acts as a source to provide effective charge. Three wells, 7120/2-2, 7122/2-1 and 7120/1-2, have proven the Knurr-Kolje play in structural traps, with an oil discovery in 7120/1-2. Prospectivity related to stratigraphic traps is, however, highly under-explored.In order to document and map the reservoir distribution and stratigraphic-trap fairway, the Lower Cretaceous sedimentary package containing the Knurr Sandstone is divided into a number of depositional sequences and systems tracts using key regional seismic profiles calibrated with logs. Mapping of the key surfaces bounding the Knurr sandstone has been carried out using all the seismic vintages available from Norwegian Petroleum Directorate (NPD).The thick massive nature of the sandstone (123 m in well 7122/2-1), sedimentary features characteristic of gravity flow deposits, high-resolution internal seismic reflections and stratal geometries (truncations and lapout patterns), and sequence stratigraphic position of the Knurr Sandstone on seismic profiles confirm that the lobes identified on the seismic section are gravity driven base of the slope lobes. These Knurr lobes and slope aprons were formed as a result of uplift of the Loppa paleo-high in the Late Jurassic to Early Cretaceous times which caused subaerial exposure and incision. The characteristic mounded, lobate geometry evident on the seismic can be mapped along the toe-of-slope and records multiple stacked lobes fed by multiple feeder canyons. Lateral partitioning and separation of the lobes along the toe-of-slope could potentially create stratigraphic traps. The existing 2D seismic coverage is, however, not sufficient to capture lateral stratigraphic heterogeneity to identify stratigraphic traps. 3D seismic coverage with optimum acquisition parameters (high spatial and vertical resolution, appropriate seismic frequency and fold, long offsets and original amplitudes preserved) can allow for the reconstruction of 3D geomorphologic elements to de-risk potential stratigraphic traps prior to exploratory drilling.  相似文献   

4.
The authors deal with the computing seismic passive earth pressure acting on a vertical rigid wall. The wall is provided with a drainage system along soil-structure interface and retains the cohesionless backfill subjected to water seepage. A general solution for the seismic passive earth pressure is presented. The solution is based on Coulomb's theory wherein seismic forces are assumed to be pseudostatic. The solution considers the pore water pressures induced by water seepage and earthquake shaking. Some important parameters are included in the solution. The parameters are the soil effective internal friction angle, wall friction, soil unit weight, and horizontal and vertical seismic acceleration coefficients. The comparison of the total seismic passive earth pressure in horizontal direction from the present method with published works indicates that the present method may be reasonable. The variations of the passive earth pressure coefficient with the soil effective internal friction angle are investigated for different wall friction angles and seismic forces. The effect of the water seepage on the seismic passive earth pressure is also investigated.  相似文献   

5.
Fault activity and sandstone-body geometries and spread, all bear significant weight to understanding the potential hydrocarbon systems on the NW Barents Shelf. Synthetic seismic modelling of onshore sedimentary successions provides insight into the seismic resolution and expression of various sedimentological features on Edgeøya: (i) sandy growth basins in pro-delta mudstones (ii) paralic sedimentary deposits and (iii) low-angle tidally influenced progradational successions.Synthetic modelling suggests that the lithological contrast associated with sand-infilled growth basins in pro-deltaic shales, even with offsets as small as 50–75 m, will create distinct geometries in seismic data. Modelling suggests that while optimal 90° illumination, low frequency bands and more typical sedimentary velocities around 2000 m/s will generate very clear discernible growth faults, the angular lithological contrast should generate discernible features even with the high velocities and typical 20–30 Hz frequency band of seismic sections on the NW Barents Shelf. Comparing to actual seismic data in which multiples, noise and in places overburden are influential, it is possible to identify growth-fault geometries more confidently, and to link them to larger planar fault activity.Modelling other features identified in the paralic sedimentary system it is apparent that many of the massive channel or lenticular shaped sandstone bodies should be identifiable in the actual seismic, although their expression is less distinct and more easily misinterpreted than that of growth faults. It is apparent that features such as igneous intrusions, unless imaged in a “perfect” survey, can be difficult to properly identify, particularly near-vertical connections. The velocity contrast creates strong impedance along horizontal sections, but heavily fractured igneous intrusions with lower velocities could easily be assumed to be isolated sandstone bodies. While the modelling appreciates the overall wedging nature of the successions, the simplified lithological observations onshore cannot predict the probable erosion/condensation contrast associated with low-angle clinoforms which are visible in the seismic data, and hence not reproduce them easily in the models.  相似文献   

6.
High-frequency sequences composed of mixed siliciclastic-carbonate deposits may exhibit either vertical or horizontal changes between siliciclastics and carbonates. Vertical facies shifts occur between systems tracts and define a ‘reciprocal sedimentation’ pattern, typically consisting of transgressive/highstand carbonates and forced regressive/lowstand siliciclastics, although variations from this rule are common. Mixed systems with lateral facies change, usually typifying transgressive and/or highstand systems tracts, may exhibit proximal siliciclastics and distal carbonates or vice-versa, although variations may also occur along depositional strike. The marked variability of mixed siliciclastic-carbonate sequences makes the definition of a universal sequence stratigraphic model impossible, as the composition and geometries of systems tracts may change considerably, and sequence stratigraphic surfaces and facies contacts may vary in terms of occurrence and physical expression. However, some resemblance exists between siliciclastic sequences and mixed sequences showing lateral facies changes between siliciclastics and carbonates. In particular, these mixed sequences display 1) a stratal architecture of the clastic part of the systems tracts that is comparable to that of siliciclastic deposits, 2) a dominant role of the inherited physiography and of erosional processes, rather than carbonate production, in shaping the shelf profile, and 3) a local lateral juxtaposition of siliciclastic sandstones and carbonate bioconstructions due to hydrodynamic processes. These observations are helpful in predicting the location of porous and potential sealing bodies and baffles to fluid flow at the intra-high-frequency sequence scale, and ultimately they are useful for both petroleum exploration and production.  相似文献   

7.
Forward seismic models of two ‘seismic scale’ outcrops of different style channel systems have been made to investigate their seismic signature. These two outcrops illustrate the geometric end members of channel stacking architecture in response to low- and high-accommodation space. The Eocene Nohut Tepe channel system of the Elaziğ Basin in eastern Turkey was deposited in an area of high accommodation resulting in an aggradational geometrical offset stacking of channels up against a slope. The Eocene Ainsa II Channel system of the Tremp-Pamplona Basin in the Spanish Pyrenees was deposited in an area of low accommodation resulting in a tabular, compound sheet geometry, with amalgamated channel bodies separated by clay drapes.Depth models were drawn from outcrop photos and converted to impedance models by assigning acoustic impedance properties to the sand filled channels and surrounding and interbedded mud and clay layers. These were the input for the forward seismic models, which constructed various frequency synthetic seismic sections of the two outcrops. Analysis of the outcrop synthetic seismic identified three distinct reflection configurations. Type I is characterised by a strong black peak and white trough reflection, which is due to a discrete channel body. Type II is characterised by multiple offset, time ‘stepped’ black peak reflections that are underlain by one continuous, strong white trough reflection, which is due to offset stacked channel bodies. Type III is characterised by strong black peaks which onlap an underlying, continuous white trough reflection, caused by the lateral amalgamation of channel bodies.These three types of reflection configurations observed on the outcrop synthetic seismic can also be found on actual seismic from channelised turbidite systems, which aids in interpreting channel stacking architecture, accommodation space prediction and depositional styles from the actual seismic data. Channel stacking architecture is clearly an important aspect which needs to be considered when making channel system interpretations based on seismic data.  相似文献   

8.
根据地震反射特征、古生物组合、湖水面变化及构造变动,应用层序地层学原理,对下第三系进行层序划分,分析了地震相类型,总结出主要的沉积体系特征及其展布规律  相似文献   

9.
The occurrence of shale diapirs in the Yinggehai-Song Hong (YGH-SH) Basin is well documented, as is their association with big petroleum fields. In order to better understand how and why the diapirs form we performed a detailed geophysical analysis using a new regional compilation of high-resolution two- and three-dimensional seismic reflection data, as well as drilling data that cover the diapirs in YGH-SH Basin. As many as 18 diapirs were identified and are arranged in six N-S-striking vertical en échelon zones. On seismic reflection sections gas chimney structures, diapiric faults and palaeo-craters are genetically linked with the process of diapirism. Here we use geophysical and geological observations to propose a three-stage model for diapirism: initiation, emplacement, and collapse. During these three stages, different diapiric structure styles are formed, which we describe in detail. These include buried diapirs, piercing diapirs and collapsed diapirs. We link the diapirism to activity on the offshore continuation of the Red River Fault, as shown on our high-resolution seismic reflection data, which is also related to a high paleogeothermal gradient caused by crustal thinning. We also recognize the role of loading by the very large volume of sediment eroded from the edges of the Tibetan Plateau and delivered by the Red River to the basin.  相似文献   

10.
N油田U组上段地层发育粉砂岩和钙质泥页岩的三角洲前缘一浅海过渡相,多变的沉积相加大了小层对比的难度。针对此特点,结合层序地层学理论以及地震地层学的理论与研究方法,进行井一震结合对比划分地层,利用地震资料和标准层控制,构建大套地层等时格架;然后运用地震反射轴的等时性结合沉积旋回在地层格架内对比小层,确定研究区80口井6个分界界面。建立了区域高分辨率层序地层格架,形成了可容纳空间控制下的高级次层序格架建立的技术方法。  相似文献   

11.
Seismic reflection data and bathymetry analyses, together with geological information, are combined in the present work to identify seabed structural deformation and crustal structure in the Western Mediterranean Ridge (the backstop and the South Matapan Trench). As a first step, we apply bathymetric data and state of art methods of pattern recognition to automatically detect seabed lineaments, which are possibly related to the presence of tectonic structures (faults). The resulting pattern is tied to seismic reflection data, further assisting in the construction of a stratigraphic and structural model for this part of the Mediterranean Ridge. Structural elements and stratigraphic units in the final model are estimated based on: (a) the detected lineaments on the seabed, (b) the distribution of the interval velocities and the presence of velocity inversions, (c) the continuity and the amplitudes of the seismic reflections, the seismic structure of the units and (d) well and stratigraphic data as well as the main tectonic structures from the nearest onshore areas. Seabed morphology in the study area is probably related with the past and recent tectonics movements that result from African and European plates’ convergence. Backthrusts and reverse faults, flower structures and deep normal faults are among the most important extensional/compressional structures interpreted in the study area.  相似文献   

12.
An experimental, high-resolution 3-D seismic survey was acquired over a 1.5 km2 section of an incised fluvial valley. The data were acquired as a near-zero offset, single-channel survey using a 15 in3 water gun as the source, and differential GPS for navigation and positioning. The objective was to acquire a 3-D seismic data volume suitable for calculating the volume of shallow sand deposits. Horizontal time sections from the 3-D volume clearly show the flanks of the incised valley, as well as high-amplitude reflections interpreted as coarse-grained channel-lag deposits. The volume of this lag deposit can be calculated using the combination of the horizontal and vertical sections from the high-resolution 3-D seismic data set. The results of the experiment also illustrate the importance of spatial sampling in 3-D seismic surveying.  相似文献   

13.
The seismic geomorphology and seismic stratigraphy of a deep-marine channel-levee system is described. A moderate to high-sinuosity channel trending southeastward across the northeastern Gulf of Mexico basin floor, and associated depositional elements are well imaged using conventional 3D multi-channel seismic reflection data. Depositional elements described include channels, associated levees, a channel belt, avulsion channels, levee crevasses, frontal splays, sediment waves, and mass transport complexes. Distinguishing morphologic and stratigraphic characteristics of each depositional element are discussed. These deposits are presumed to be associated with repeated deep-marine turbidity flows and other mass transport processes.  相似文献   

14.
Three-dimensional (3D) seismic data acquired for hydrocarbon exploration reveal that gas accumulations are common within the 2–3 km thick Plio-Pleistocene stratigraphic column of the south-western Barents Sea continental margin. The 3D seismic data have relatively low-frequency content (<40 Hz) but, due to dense spatial sampling, long source-receiver offsets, 3D migration and advanced interpretation techniques, they provide surprisingly detailed images of inferred gas accumulations and the sedimentary environments in which they occur. The presence of gas is inferred from seismic reflection segments with anomalously high amplitude and reversed phase, compared with the seafloor reflection, so-called bright spots. Fluid migration is inferred from vertical zones of acoustic masking and acoustic pipes. The 3D seismic volume allows a spatial analysis of amplitude anomalies inferred to reflect the presence of gas and fluids. At several locations, seismic attribute maps reveal detailed images of flat spots, inferred to represent gas–water interfaces. The data indicate a focused fluid migration system, where sub-vertical faults and zones of highly fractured sediments are conduits for the migration of gas-bearing fluids in Plio-Pleistocene sediments. Gas is interpreted to appear in high-porosity fan-shaped sediment lobes, channel and delta deposits, glacigenic debris flows and sediment blocks, probably sealed by low-permeability, clayey till and/or (glacio)marine sediments. Gas and fluid flow are here attributed mainly to rapid Plio-Pleistocene sedimentation that loaded large amounts of sedimentary material over lower-density, fine-grained Eocene oozes. This probably caused pore-fluid dewatering of the high-fluid content oozes through a network of polygonal faults. The study area is suggested to have experienced cycles of fluid expulsion and hydrocarbon migration associated with glacial–interglacial cycles.  相似文献   

15.
Subsurface mass-transport deposits (MTDs) commonly have a chaotic seismic-reflection response. Synthetic seismic-reflection profiles, created from a precise lithological model, are used to interpret reflection character and depositional geometries at multiple frequencies. The lithological model was created from an outcrop of deep-water lithofacies where sandstone deposition was influenced by mass-transport deposit topography. The influence of MTD topography on sandstone distribution should be considered in reservoir characterization and modeling when MTDs underlie the reservoir, especially if the reservoir is thin relative to the scale of the topography. MTD topography up to several tens of meters in both the horizontal and vertical dimensions (relative to local elevation) compartmentalizes significant quantities of sandstone and is not resolved at lower seismic-reflection frequencies. The resolvability of thick (up to 70 m) sandstone packages is hindered when they are encased in MTDs of at least equivalent thickness. Lateral and vertical changes in seismic-reflection character (e.g., amplitude, polarity, geometry) of sandstone packages in the synthetic profiles are due to lithology changes, tuning effects, resolution limits, and depositional geometries, which are corroborated by the lithological model. Similar reflection-character changes are observed in an actual seismic-reflection profile, of comparable scale to the synthetic profiles, from the Gulf of Mexico, which demonstrates similar lithofacies distributions. Synthetic profiles, when constrained by a precise lithological model, are particularly useful analogues for interpretation of lithofacies relationships, and depositional geometries, in complicated depositional environments, such as deep-water slope deposits.  相似文献   

16.
声学地层剖面深水探测研究与开发   总被引:1,自引:0,他引:1  
深水浅部地层精细探测是深海地质勘探与资源开发的重要调查内容。与浅水海域声学地层剖面探测相比,深水地层剖面探测会遇到严重的能量衰减、大数据量长时间反射序列采样、纵向地层分辨率降低以及横向空间覆盖率偏稀等问题,为解决这些问题,国外仪器商采用了不同的方法。采取重采样减少数据量会严重影响纵向分辨率;采取MultiPing技术可以很好解决横向空间覆盖率问题,但多Ping接收采用海底追踪变深度范围采集会造成反射同相轴跳跃突变,或采用短时间间隔采集会造成回波数据无法准确计算海底深度。为了解决这些技术问题,作者研究开发了相关的技术处理方法,解决MultiPing技术反射同相轴拼接改正处理和海底深度记录延迟处理,这些问题的解决为深水浅部地层精细探测提供了技术保障。  相似文献   

17.
Gravity flow deposits form a significant component of the stratigraphic record in ancient and modern deep-water basins worldwide. Analyses of high-resolution 3D seismic reflection data in a predominantly slope setting, the southern slope of Qiongdongnan Basin, South China Sea, reveal the extensive presence of gravity flow depositional elements in the Late Pliocene−Quaternary strata. Three key elements were observed: (1) mass transport deposits (MTDs) including slumps and debris flows, (2) turbidity current deposits including distributary channel complexes, leveed channel complexes and avulsion channel complexes, and (3) deep-water drapes (highstand condensed sections). Each depositional element displays a unique seismic expression and internal structures in seismic profiles and attribute maps. Based on seismic characteristics, the studied succession is subdivided into six units in which three depositional cycles are identified. Each cycle exhibits MTDs (slump or debris) at the base, overlain by turbidities or a deep-water drape. The genesis of these cycles is mainly controlled by frequent sea-level fluctuations and high sedimentation rates in the Late Pliocene–Quaternary. Moreover, tectonics, differential subsidence, and paleo-seafloor morphology may have also contributed to their formation processes. The present study is aimed to a better understanding of deep-water depositional systems, and to a successful hydrocarbon exploration and engineering-risk assessment.  相似文献   

18.
Quantifying the geometries of evaporite deposits at a <1 km scale is critical in our understanding of similar ancient depositional systems, but is challenging given evaporite mineral dissolution at surface conditions. A high-resolution stratigraphic study of the basal Purbeck Beds in Brightling Mine, UK, provides insight into the three-dimensional architecture, lateral continuity and vertical heterogeneity within an evaporite seal. We conducted a field mapping study, combined with X-ray diffraction, petrographic microscopy, and δ13C and δ18O isotope analysis. The stratigraphic interval contains five facies. In stratigraphic order, these include supratidal porphyritic nodular evaporite, shallow subtidal peloidal packstone with evaporite and two overlying rhythmic sequences of intertidal microbial laminite, subtidal shale, and subtidal laminar marl, capped by nodular anhydrite. The interpreted environment of deposition is a supratidal sabkha subject to periodic flooding in which intertidal (tidal flat) facies and subtidal (shallow marine) facies laterally passed into the evaporative sabkha. The cycles are interpreted as meter-scale shoaling-upward sequences, likely controlled by localized high-frequency changes in relative sea level and/or sabkha hydrology. Spatial patterns in the geometries of key stratigraphic surfaces reveal a subtle depression towards the central western region of the mine seam. The variation in stratal geometries is interpreted as paleotopography and is a function of individual or composite processes related to dissolution, eolian processes, and coastal erosion. These observations indicate a similar mode of deposition to the modern-day sabkha of the Persian Gulf. We conclude that the dynamic process of evaporite deposition led to subtle stratigraphic heterogeneities and changes in bed thicknesses, but largely continuous lateral bedding at an interwell-scale.  相似文献   

19.
An analytical expression of a gravity retaining wall's seismic stability against sliding and overturning is proposed in this article. The derivation, aiming at the cohesionless soil with inclined backfill surface and nonvertical wall back, is based on limit equilibrium analysis and the pseudo-dynamic method. The variations of the sliding and overturning stability safe factors with the horizontal seismic acceleration are investigated for different seismic amplification factors, soil friction angles, wall friction angles, vertical seismic acceleration coefficients, wall back inclination angles, and backfill surface inclination angles. The results indicate that the soil friction and horizontal seismic action significantly impact the seismic stability. The increase of vertical earthquake action changes the curvature of stability factor curves. The wall friction and back inclination strengthen the gravity retaining wall's resistance to sliding and overturning failure while the backfill surface inclination plays a negative role in the seismic stability. We also found that the seismic stability safe factors calculated by the proposed method are larger but more reasonable than those by the Mononobe-Okabe method.  相似文献   

20.
Multichannel seismic reflection and multi-beam bathymetry data were used to study the active tectonic and syn-tectonic stratigraphic setting of the Gulf of ?zmit in the Marmara Sea (Turkey). The gulf and its near surroundings are deformed by the northern strand of the dextral North Anatolian Fault. Three connected basins of the gulf, the western (Dar?ca), central (Karamürsel) and eastern (Gölcük) basins are formed by active faults, as observed in the stacked and migrated seismic sections, as well as the bathymetry map. The main branch and its surrounding sedimentary strata are confined by normal faults to the north and south. These normal faults converge at depth towards the main fault, forming a negative flower structure in the gulf. The average maximum sedimentation rate is 0.4 mm/year according to the three most recent seismo-stratigraphic units that are located to the south of the main fault branch within the central basin. A 20° south-dipping major discontinuity along the northern shoreline of the gulf represents the top of Paleozoic basement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号