首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The morphological changes of spits and inlets of the Chilika lagoon, the largest brackish water tropical coastal lagoon in Asia, are investigated using real-time kinematic GPS observation and numerical models during 2009–2013. The seasonal/interannual variations of the spit and inlet cross-sectional areas with varying widths and depths are recorded in association with different physical processes. The results show significant changes in spit morphology: particularly, the south spit accreted continuously, while the middle and north spits eroded. The cross-sectional depth of inlets becomes narrower and deeper during summer and winter seasons, while they are wider and shallower during the monsoon. The model results show that sediment transport rate is larger during monsoon and summer, while it is relatively less during the winter. Alongshore, sediment transport is predominantly northward throughout the study period. The result shows that gain/loss of the spits and closure/opening of inlets are significantly controlled by the high wave power, longshore drifts, and river discharge. The study demonstrates that the combined use of observational and numerical models is very effective to understand the changes of spit and inlet morphology and their impact on ecological conditions of the lagoon environment.  相似文献   

2.
西南季风不同阶段南海北部珠江口外断面水文调查分析   总被引:6,自引:2,他引:4  
根据2000年7月及2001年5月南海北部珠江口外断面CTD调查资料、同期气象资料,并结合该海域历史资料,对调查断面珠江冲淡水扩展范围、跃层变动情况及上升流特征进行了分析,观察到对应于夏季西南季风的不同阶段,调查断面跃层分布与珠江冲淡水影响范围均发生明显变动,升降流的影响也呈现出不同特征:(1)西南季风较强时,断面陆架区上表层受冲淡水影响明显,海区的层化结构明显加强;(2)西南季风较强时.调查断面出现上升流和下降流。研究结果表明:(1)局地风应力与热通量的变化控制了调查断面跃层或混合层的温度和深度的变化,影响着珠江冲淡水的扩展范围,西南季风较强时珠江冲淡水扩展范围变大,调查断面跃层或混合层强度变大,深度变深;(2)夏季西南季风强时调查断面存在上升流,其形成机制为风产生的离岸水体Ekman输运的补偿效应,底地形的变化虽然也造成较弱的外海次表层水涌升,但可能只是加强了上升的速度或强度;(3)夏季西南季风强时调查断面上存在上升流区与下降流区毗邻的现象,下降流成因可能有二,一为近岸流和陆坡流呈相反方向运动形成弱的反气旋涡,二为“上升与下降因相互水体补充的需要而共生”。  相似文献   

3.
Study about water characteristics(temperature and salinity) from the World Ocean Database(WOD) was conducted in the area of southern South China Sea(SSCS), covering the area of 0°–10°N, 100°–117°E. From interannual analysis, upper layer(10 m) and deep water temperature(50 m) increased from 1951 until 2014. Monthly averaged show that May recorded the highest upper layer temperature while January recorded the lowest. It was different for the deep water which recorded the highest value in September and lowest in February. Contour plot for upper layer temperature in the study area shows presence of thermal front of cold water at southern part of Vietnam tip especially during peak northeast season(December–January). The appearances of warm water were obviously seen during generating southwest monsoon(May–June). Thermocline study revealed the deepest isothermal layer depth(ILD) during peak northeast and southwest monsoon. Temperature threshold at shallow area reach more than 0.8°C during the transitional period. Water mass study described T-S profile based on particular region. Water mass during the southwest monsoon is typically well mixed compared to other seasons while strong separation according to location is very clear. During transitional period between northeast monsoon to southwest monsoon, the increasing of water temperature can be seen at Continental Shelf Water(CSW) which tend to be higher than 29°C and vice versa condition during transitional period between southwest monsoon to northeast monsoon. Dispersion of T-S profile can be seen during southwest monsoon inside Tropical Surface Water(TSW) where the salinity and temperature become higher than during northeast monsoon.  相似文献   

4.
Water velocity and density profiles were obtained in late-spring and late-winter to document reversing mean circulation patterns at the entrance to a semiarid coastal lagoon, the Bay of Guaymas, in the Gulf of California, Mexico. The lagoon is shallow but the bathymetry at its entrance is similar to that of temperate estuaries with an asymmetrically positioned channel flanked by shoals. In late-spring the mean circulation at the entrance to the lagoon was driven by horizontal density gradients that arose from excess evaporation over precipitation in the area as evidenced by water density profiles. The lagoon exported relatively warm (25·8 °C) and salty (36·2) water to the Gulf of California through the channel. This export was consistent with inverse estuarine circulation influenced by bathymetry. In late-winter, the circulation at the entrance of the lagoon was mostly driven by wind stress that blew from the northwest, roughly along the main axis of the lagoon. Relatively cool (16·0) °C) and less salty (35·1) water from the Gulf of California was driven into the lagoon within the channel. Density gradients inside the lagoon seem to have played a secondary role in driving the circulation. The late-winter circulation was then estuarine-like, with outflow in the direction of the wind over the shallow areas and a compensatory inflow appearing in the channel as expected from theory of wind-driven flow over bathymetry. This estuarine-like circulation developed despite the lack of measurable freshwater input to the lagoon and was the opposite to that observed in late-spring. These observations then document a reversal in water exchange patterns from season to season in a semiarid coastal lagoon. The observations also constitute one of the few reported examples of flow over shoals driven in the same direction as the wind stress with a compensatory flow in the channel.  相似文献   

5.
2006年冬季粤东沿岸下降流观测分析   总被引:1,自引:0,他引:1       下载免费PDF全文
根据珠江口及其附近海域2006年冬季(2006年12月至2007年1月)航次的CTD调查资料发现,由于表层水体冷却而产生的对流作用,以及东北季风、浪、流等强动力条件下,冬季陆架水体垂向混合均匀,但粤东近岸海域却存在显著的温跃层及逆盐跃层,其原因在于:东北季风的Ekman效应引起了陆架表层高温、高盐海水向岸输送,东北季风还驱动了西南向沿岸流,其底边界层的Ekman效应引起了沿岸底层低温、低盐海水离岸输送,这样就形成了陆架方向的次生环流,在沿岸海域则为下降流,并表现为沿岸海域的逆盐跃层及温跃层现象。在下降流显著的区域,溶解氧垂向分布均匀且浓度较高,这应归因于下降流将溶解氧浓度较高的表层水带入深层所致。  相似文献   

6.
2006年9月南海北部表层温盐场的走航观测   总被引:1,自引:0,他引:1  
通过2006年9月南海北部开放航次的走航观测,得到了该海区多个断面的表层温度、盐度分布曲线.QuikScat海面风场资料显示观测期间处于西南季风向东北季风的转换阶段,走航观测所得的温、盐资料显示出在这一季风转换的特殊阶段该海区表层的水文特征.珠江口冲淡水的扩散范围在季风转向前后有显著的变化,低盐的冲淡水在西南季风阶段向珠江口外海区的东南方延伸较远,而在东北季风阶段则受珠江径流量、南海北部表层环流等因素的影响收缩至珠江口附近.闽南近岸和台湾浅滩南部表层具有低温高盐特征,但CTD资料表明台湾浅滩区域存在上升流,结合风场资料,可证实观测期间此处的上升流由海流-地形因素所造成.  相似文献   

7.
Although plankton bloom incidents in the upper Gulf of Thailand (UGoT) have been reported, no dynamic investigation of the phenomenon has been conducted. To address this need, a simple pelagic ecosystem model coupled with the Princeton Ocean Model (POM) was employed to investigate seasonal variations in surface chlorophyll-a (chl-a) distributions to clarify phytoplankton dynamics in this area. The results revealed patterns of seasonal chl-a distribution that correspond to local wind, water movement and river discharge. High chl-a patchiness was found to be concentrated near the western coast following westward circulation near the northern coast developed during the northeast monsoon. During the southwest monsoon high concentrations were observed around the northeastern coast due to eastward flow. The simulated results could explain the seasonal shifting of phytoplankton blooms, which typically arise along the western and eastern coasts during the northeast and the southwest monsoons, respectively. Sensitivity analyses of simulated chl-a distributions demonstrate that water stability, including wind-induced vertical currents and mixing, plays significant roles in controlling phytoplankton growth. Nutrients in the water column will not stimulate strong plankton blooms unless upwelling develops or vertical diffusivity is low. This finding suggests an alternative aspect of the mechanism of phytoplankton bloom in this region.  相似文献   

8.
To better understand large-scale interactions between fresh and saline groundwater beneath an Atlantic coastal estuary, an offshore drilling and sampling study was performed in a large barrier-bounded lagoon, Chincoteague Bay, Maryland, USA. Groundwater that was significantly fresher than overlying bay water was found in shallow plumes up to 8 m thick extending more than 1700 m offshore. Groundwater saltier than bay surface water was found locally beneath the lagoon and the barrier island, indicating recharge by saline water concentrated by evaporation prior to infiltration. Steep salinity and nutrient gradients occur within a few meters of the sediment surface in most locations studied, with buried peats and estuarine muds acting as confining units. Groundwater ages were generally more than 50 years in both fresh and brackish waters as deep as 23 m below the bay bottom. Water chemistry and isotopic data indicate that freshened plumes beneath the estuary are mixtures of water originally recharged on land and varying amounts of estuarine surface water that circulated through the bay floor, possibly at some distance from the sampling location. Ammonium is the dominant fixed nitrogen species in saline groundwater beneath the estuary at the locations sampled. Isotopic and dissolved-gas data from one location indicate that denitrification within the subsurface flow system removed terrestrial nitrate from fresh groundwater prior to discharge along the western side of the estuary. Similar situations, with one or more shallow semi-confined flow systems where groundwater geochemistry is strongly influenced by circulation of surface estuary water through organic-rich sediments, may be common on the Atlantic margin and elsewhere.  相似文献   

9.
The results of qualitative laboratory and numerical experiments on two-dimensional non-linear model are described, aiming at an investigation of the structure of the front of bottom gravity current. Non-coincidence of frontal interfaces in density and velocity fields within the bottom gravity current leading (frontal) part is stated on the base of comparative analysis of numerical and laboratory experiments. This fact is experimentally confirmed by field example of marine water inflow into a brackish lagoon. The density gradient along the stream line is shown to be an additional effective criterion for the localization of the frontal zone.  相似文献   

10.
Radium isotopes (223Ra, 224Ra, 226Ra, and 228Ra) and water chemistry were used to identify two chemically distinct sources of submarine groundwater discharge (SGD) in Celestún Lagoon, Yucatán, Mexico. Low salinity groundwater discharging from springs within the lagoon has previously been identified and extensively sampled for nutrient concentrations. However, a second type of groundwater discharging into the lagoon was detected during this study using radium isotope activity measurements. This second type of groundwater is characterized by moderate salinities (within the range of lagoon salinities) and very elevated radium activities in comparison to the low salinity groundwater, mixed lagoon water, and seawater. Further analysis showed that the two types of groundwater also have distinct chloride, strontium, and sulfate ratios, along with slightly different nutrient concentrations. Groundwater discharge occurs through large and small springs scattered throughout the lagoon, and both types of groundwater were detected discharging from one of the larger springs. The relative proportions of low salinity groundwater and brackish high radium groundwater varied over the tidal cycle. In order to better understand the relative contributions of each type of groundwater to the lagoon, a three end-member mixing model based on the distinct chemical and isotopic compositions of both types of groundwater and of seawater was used to estimate the distribution of each water type throughout the lagoon in different seasons. This study suggests that substantial groundwater discharge to the lagoon can occur during both dry and rainy seasons. The presence of two groundwater sources has implications for monitoring and protection of the Celestún Lagoon Biosphere Reserve, since the two sources may have different susceptibilities to anthropogenic contamination depending on their respective recharge area and recharge rates.  相似文献   

11.
A numerical study of the summertime flow around the Luzon Strait   总被引:3,自引:0,他引:3  
Luzon Strait, a wide channel between Taiwan and Luzon islands, connects the northern South China Sea and the Philippine Sea. The Kuroshio, South China Sea gyre, monsoon and local topography influence circulation in the Luzon Strait area. In addition, the fact that the South China Sea is a fairly isolated basin accounts for why its water property differs markedly from the Kuroshio water east of Luzon. This work applies a numerical model to examine the influence of the difference in the vertical stratification between the South China Sea and Kuroshio waters on the loop current of Kuroshio in the Luzon Strait during summer. According to model results, the loop current’s strength in the strait reduces as the strongly stratified South China Sea water is driven northward by the southwest winds. Numerical results also indicate that Kuroshio is separated by a nearly meridional ridge east of Luzon Strait. The two velocity core structures of Kuroshio can also be observed in eastern Taiwan. Moreover, the water flowing from the South China Sea contributes primarily to the near shore core of Kuroshio.  相似文献   

12.
A tidal entrance often acts as a source or a sink for sand in the littoral zone. At many entrances in biologically productive regions the bed in the vicinity of the throat section (minimum flow area) is composed of sediment containing coarse material including large shells, with sand occurring in the interstitial regions between the shell-defined roughness elements. A stochastic relationship giving the critical bed shear stress for the initiation of sand transport under these conditions is applied to hydraulic and sedimentary data obtained from two entrances in Florida. The results agree well with the critical bed shear stresses derived from data based on the observation of sand movement at the bed. The entrainment function based on observations is found to be approximately three times the value obtained from Shields' criterion. A practical implication is that the use of Shields' criterion in the computation of the rate of sand transport will in general overpredict the rate through the entrance.  相似文献   

13.
The spreading pathways of the Somali and Arabian coastal upwelled waters in the northern Indian Ocean are identified from an ocean re-analysis data set of a single year using numerical passive tracers in a transport model. The Somali and Arabian coastal upwelled waters are found to have entirely different spreading pathways in the northern Indian ocean. The former circulates anticyclonically, is mixed vertically, and is advected to the eastern Indian Ocean along the north equatorial region; while the later intrudes into the northern Arabian Sea, circulates anticyclonically and is advected to the south in the central Arabian Sea and then to the eastern Indian Ocean. The seasonal surface mixing by strong monsoon winds and sheared currents due to dominant eddies of the Somali region are found responsible for mixing 25% of Somali upwelled water with the subsurface and affecting the resultant pathways. The effect of mixing is, however, found negligible in the case of Arabian coastal upwelled water pathways. The seasonal reversal of circulation and eddy dominance during the southwest monsoon cause the Somali upwelled water to spread over the northern Indian Ocean faster than the simultaneously upwelled Arabian coastal water.  相似文献   

14.
The macrozoobenthic assemblage from the Karavasta lagoon system, the main wetland of Albania, was studied on soft bottoms and artificial hard substrates. Three different communities were identified: the typical ‘brackish‐water community’, an ‘outlet community’ dominated by filter‐feeders, and a typical ‘marine community’, inhabiting fine sandy bottoms, where polychaetes are dominant, together with a few species of tunicates and bivalves, which colonize hard substrates. The occurrence of build‐ups of the bryozoan Conopeum seurati, settled on the upper portion of long submerged wooden poles, was the main feature of faunistic interest. The faunistic affinity between the zoobenthic assemblage recorded in the hyperhaline lagoon of Karavasta and the assemblages from two Italian lagoons, the brackish Lake of Lesina and the euhaline Lake of Fogliano, was considered according to the different hydrological conditions and the geographical location. Hydrological confinement and salinity were likely to be the leading factors influencing the benthic community composition in the Karavasta wetland area. Therefore, on a vaster spatial scale, the isolation and geographical proximity of the ecosystems and colonizing ability and dispersal changes of the species appear to be the main factors liable to produce faunal variations.  相似文献   

15.
The effects of the reed,Phragmites australis (Trin.), growing in a brackish water lagoon, were studied in relation to the grain-size distribution of the substratum. At the salt marshes near the lagoon, the upper soils from the surface to a depth of 20 cm contained much silt-clay. These fine particles were found to be transferred from the river and fish ponds near the lagoon, and to be deposited when the tidal rhythm changed, that is, when the water current stopped. In addition, the fine particles, which were deposited on the bottom of the lagoon adjacent to the marshes, became resuspended as a result of wind-caused wave action, and then were transported and redeposited in the salt marshes at the flood tide. Since the reeds further reduced the water current caused by the waves and tide, the reeds were thought to promote redeposition of the resuspended matter. In other words, the reeds were considered to protect deposited and redeposited particles such as silt and clay from resuspension as a result of wave action by reducing the effects of waves and wind. These processes suggested that silt-clay will become abundant in the substratum of the salt marsh adjacent to the lagoon.  相似文献   

16.
A three-dimensional numerical model is developed and used to study the coastal upwelling processes and corresponding seasonal changes in the sea level along the west coast of India. The upwelling and associated sea level variations are seen as a response of coastal ocean to pure wind stress forcing. The model is designed to represent coastal ocean physics by resolving surface and bottom Ekman layers as realistically as possible. The prognostic variables are the three components of the velocity field, temperature, salinity and turbulent energy. The governing equations together with their boundary conditions are solved by finite-difference techniques. Experiments are performed to investigate sea level fluctuations associated with the thermal response and alongshore currents of the coastal waters. The model is forced with mean monthly wind stress forcing of January, May, July and September representing northeast monsoon and different phases of the southwest monsoon. It is known from the observational study that the upwelling process reaches to the surface waters by May along the coastal waters of the extreme southwest peninsular region. The process is more intense in July compared to May and September and its strength decreases from south to north. However, during the northeast monsoon season, which is represented by January wind stress forcing in the model, downwelling is simulated along the coast. The model simulations of the coastal response are compared with the observations and are found to be in good agreement. The maximum computed vertical velocity of about 2.0 ×10 -3 cm s -1 is predicted in July in the southern region off the coast.  相似文献   

17.
A three-dimensional numerical model is developed and used to study the coastal upwelling processes and corresponding seasonal changes in the sea level along the west coast of India. The upwelling and associated sea level variations are seen as a response of coastal ocean to pure wind stress forcing. The model is designed to represent coastal ocean physics by resolving surface and bottom Ekman layers as realistically as possible. The prognostic variables are the three components of the velocity field, temperature, salinity and turbulent energy. The governing equations together with their boundary conditions are solved by finite-difference techniques. Experiments are performed to investigate sea level fluctuations associated with the thermal response and alongshore currents of the coastal waters. The model is forced with mean monthly wind stress forcing of January, May, July and September representing northeast monsoon and different phases of the southwest monsoon. It is known from the observational study that the upwelling process reaches to the surface waters by May along the coastal waters of the extreme southwest peninsular region. The process is more intense in July compared to May and September and its strength decreases from south to north. However, during the northeast monsoon season, which is represented by January wind stress forcing in the model, downwelling is simulated along the coast. The model simulations of the coastal response are compared with the observations and are found to be in good agreement. The maximum computed vertical velocity of about 2.0 2 10 -3 cm s -1 is predicted in July in the southern region off the coast.  相似文献   

18.
Okarito Lagoon (43° 11′S, 170° 14′E) is a small (20 km2) shore‐parallel, predominantly subtidal estuary, deepest near the landward end, and linked to the sea by two subtidal channels incised through shallow subtidal and intertidal flats which occupy the southern third of the lagoon. Tides at sea vary from 2.1m (spring) to 1.2 m (neap), but in the lagoon the tidal range is constant through the lunar cycle and varies from 0.80 m at the entrance to 0.17 m in the upper lagoon. Tidal water level and flow asymmetries in the subtidal channels are separated by a 1.7 h phase difference. Variations in the net discharge through the inlet result from changing flow cross‐sections rather than from variations in current velocities. Both the tidal‐averaged volume and the tidal compartment of the lagoon vary through the lunar cycle, from maxima at spring tides to minima at neap tides.

Freshwater inflows vary from less than 11 m3.s‐1 to more than 750 m3.s‐1. During storms, water level in the lagoon rises rapidly by 2–3 m, then declines to normal over several days. Three water masses, two with salinity and turbidity largely controlled by antecedent rainfall, normally occur in the lagoon. Suspended sediment concentrations in both freshwater inflows and lagoon waters are normally low but increase during floods. Most sediment is supplied by the Waitangi‐taona River or by erosion of tidal channel margins. The lagoon is floored with organic‐rich mud and sandy mud, deposited predominantly from suspension. Surface sediment is consistently muddier than subsurface sediment, probably reflecting an increase in the mud supply since diversion of the Waitangi‐taona River in 1967.

Comparisons of the estimated sediment yield and water inflow effects of the 1967 river diversion with short‐term observations during selective logging suggest that the effects of logging on sediment yield, water balance of the lagoon, and dissolved solids inputs will be small compared with changes caused by diversion of the Waitangi‐taona River.  相似文献   

19.
基于2016年4—6月珠江口航次的现场调查资料及卫星数据, 对春季季风转换期的风场分布特征, 冲淡水路径的时空变化情况以及相应的生态响应进行了分析。结果显示珠江口及其临近海域在4—5月表现为过渡性风场, 受冬季风和夏季风的共同作用, 且风向多变。至6月, 冬季风消失, 西南季风控制了整个研究海域, 与此同时珠江径流量逐月增大, 冲淡水的分布特征也随着风场及径流变化发生转变。具体表现为4—5月份冲淡水向粤西沿岸方向扩展, 且在5月流幅更宽, 可达离岸70km处。6月冲淡水向东西两个方向扩展, 向西的冲淡水在河口外受到夏季风场以及背景流场的抑制, 形成以盐度和浊度为特征的锋面; 向东的冲淡水离岸扩展, 在粤东外海形成大面积的羽状流。此外, 珠江口叶绿素和溶解氧的分布主要受冲淡水的影响, 其分布形态与冲淡水路径相似。垂向上, 可观测到珠江口低氧的形成过程, 海水层化, 稳定水柱的形成以及生物分解过程共同导致了珠江口底部的溶解氧较低。浊度的分布主要受径流携带的悬沙影响, 与盐度有很强的负相关性。  相似文献   

20.
根据中国科学院南沙综合科学考察的现场资料和海区的历史资料,讨论了西南季风的文化及其与海区表层地转流的结构和演变间的关系。结果表明,海区西部的表层流结构随西南季风的盛衰而有变化,说明西南季风对南沙群岛海区表层流的调控作用西部大于东部;但由于密度流和地形效应等的作用,表层流的漂流性质不明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号