首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Four uniformly spaced regional gravity traverses and the available seismic data across the western continental margin of India, starting from the western Indian shield extending into the deep oceanic areas of the eastern Arabian Sea, have been utilized to delineate the lithospheric structure. The seismically constrained gravity models along these four traverses suggest that the crustal structure below the northern part of the margin within the Deccan Volcanic Province (DVP) is significantly different from the margin outside the DVP. The lithosphere thickness, in general, varies from 110–120 km in the central and southern part of the margin to as much as 85–90 km below the Deccan Plateau and Cambay rift basin in the north. The Eastern basin is characterised by thinned rift stage continental crust which extends as far as Laxmi basin in the north and the Laccadive ridge in the south. At the ocean–continent transition (OCT), crustal density differences between the Laxmi ridge and the Laxmi basin are not sufficient to distinguish continental as against an oceanic crust through gravity modeling. However, 5-6 km thick oceanic crust below the Laxmi basin is a consistent gravity option. Significantly, the models indicate the presence of a high density layer of 3.0 g/cm3 in the lower crust in almost whole of the northern part of the region between the Laxmi ridge and the pericontinental northwest shield region in the DVP, and also below Laccadive ridge in the southern part. The Laxmi ridge is underlain by continental crust upto a depth of 11 km and a thick high density material (3.0 g/cm3) between 11–26 km. The Pratap ridge is indicated as a shallow basement high in the upper part of the crust formed during rifting. The 15 –17 km thick oceanic crust below Laccadive ridge is seen further thickened by high density underplated material down to Moho depths of 24–25 km which indicate formation of the ridge along Reunion hotspot trace.  相似文献   

2.
The Jan Mayen microcontinent was as a result of two major North Atlantic evolutionary cornerstones—the separation of Greenland from Norway (~54 Ma), accompanied by voluminous volcanic activity, and the jump of spreading from the Aegir to the Kolbeinsey ridge (~33 Ma), which resulted in the separation of the microcontinent itself from Eastern Greenland (~24 Ma). The resulting eastern and western sides of the Jan Mayen microcontinent are respectively volcanic and non-volcanic rifted margins. Until now the northern boundary of the microcontinent was not precisely known. In order to locate this boundary, two combined refraction and reflection seismic profiles were acquired in 2006: one trending S–N and consisting of two separate segments south and north of the island of Jan Mayen respectively, and the second one trending SW–NE east of the island. Crustal P-wave velocity models were derived and constrained using gravity data collected during the same expedition. North of the West Jan Mayen Fracture Zone (WJMFZ) the models show oceanic crust that thickens from west to east. This thickening is explained by an increase in volcanic activity expressed as a bathymetric high and most likely related to the proximity of the Mohn ridge. East of the island and south of the WJMFZ, oceanic Layers 2 and 3 have normal seismic velocities but above normal average crustal thickness (~11 km). The similarity of the crustal thickness and seismic velocities to those observed on the conjugate M?re margin confirm the volcanic origin of the eastern side of the microcontinent. Thick continental crust is observed in the southern parts of both profiles. The northern boundary of the microcontinent is a continuation of the northern lineament of the East Jan Mayen Fracture Zone. It is thus located farther north than previously assumed. The crust in the middle parts of both models, around Jan Mayen island, is more enigmatic as the data suggest two possible interpretations—Icelandic type of oceanic crust or thinned and heavily intruded continental crust. We prefer the first interpretation but the latter cannot be completely ruled out. We infer that the volcanism on Jan Mayen is related to the Icelandic plume.  相似文献   

3.
Magnetic and bathymetric studies on the Konkan basin of the southwestern continental margin of India reveal prominent NNW-SSE, NW-SE, ENE-WSW, and WNW-ESE structural trends. The crystalline basement occurs at about 5–6 km below the mean sea level. A mid-shelf basement ridge, a shelf margin basin, and the northern extension of the Prathap Ridge complex are also inferred. The forces created by the sea-floor spreading at Carlsberg Ridge since late Cretaceous appears to shape the present-day southwestern continental margin of India and caused the offsets in the structural features along the preexisting faults.  相似文献   

4.
Crustal Thinning of the Northern Continental Margin of the South China Sea   总被引:2,自引:0,他引:2  
Magnetic data suggest that the distribution of the oceanic crust in the northern South China Sea (SCS) may extend to about 21 °N and 118.5 °E. To examine the crustal features of the corresponding continent–ocean transition zone, we have studied the crustal structures of the northern continental margin of the SCS. We have also performed gravity modeling by using a simple four-layer crustal model to understand the geometry of the Moho surface and the crustal thicknesses beneath this transition zone. In general, we can distinguish the crustal structures of the study area into the continental crust, the thinned continental crust, and the oceanic crust. However, some volcanic intrusions or extrusions exist. Our results indicate the existence of oceanic crust in the northernmost SCS as observed by magnetic data. Accordingly, we have moved the continent–ocean boundary (COB) in the northeastern SCS from about 19 °N and 119.5 °E to 21 °N and 118.5 °E. Morphologically, the new COB is located along the base of the continental slope. The southeastward thinning of the continental crust in the study area is prominent. The average value of crustal thinning factor of the thinned continental crust zone is about 1.3–1.5. In the study region, the Moho depths generally vary from ca. 28 km to ca. 12 km and the crustal thicknesses vary from ca. 24 km to ca. 6 km; a regional maximum exists around the Dongsha Island. Our gravity modeling has shown that the oceanic crust in the northern SCS is slightly thicker than normal oceanic crust. This situation could be ascribed to the post-spreading volcanism or underplating in this region.  相似文献   

5.
The paper reports the results of a geochemical study of volcanogenic rocks from the southern part of the Kyushu–Palau Ridge. Volcanic structures, such as plateaulike rises, mountain massifs, and single volcanoes, are the major relief-forming elements of the southern part of the Kyushu–Palau Ridge. They are divided into three types according to the features of the relief and geological structure: shield, cone-shaped, and dome-shaped volcanoes. The ridge was formed on oceanic crust in the Late Mesozoic and underwent several stages of evolution with different significance and application of forces (tension and compression). Change in the geodynamic conditions during the geological evolution of the ridge mostly determined the composition of volcanic rocks of deep-mantle nature. Most of the ridge was formed by the Early Paleogene under geodynamic conditions close to the formation of oceanic islands (shield volcanoes) under tension. The island arc formed on the oceanic basement in the compression mode in the Late Eocene–Early Oligocene. Dome-shaped volcanic edifices composed of alkaline volcanic rocks were formed in the Late Oligocene–Early Miocene under tension. Based on the new geochemical data, detailed characteristics of volcanic rocks making up the shield, cone-shape, and dome-shape stratovolcanoes resulting in the features of these volcanic edifices are given for the first time. Continuous volcanism (with an age from the Cretaceous to the Late Miocene and composition from oceanic tholeiite to calc-alkaline volcanites of the island arc type) resulting in growth of the Earth’s crust beneath the Kyushu–Palau Ridge was the major factor in the formation this ridge.  相似文献   

6.
 Crustal structure of the Co^te d’Ivoire–Ghana marginal ridge and its transition with oceanic lithosphere are deduced from multichannel seismic reflection, wide-angle seismic, and gravity data. The CIGMR is cut into rotated blocks and displays a crustal structure quite similar to that of the nearby northern Ivorian extensional basin. These results strongly support that the CIGMR represents an uplifted fragment of continental crust. Transition with the oceanic crust appears sharp; continental crustal thinning occurs over less than 5 km. We did not find evidence for underplating and/or contamination as anticipated from such a sharp contact between continental and oceanic crust. Received: 12 March 1995/Revision received: 2 July 1996  相似文献   

7.
The northwestern continental margin of New Zealand offers one of the finest examples of a continent-backarc transform. This transform, part of the Vening Meinesz Fracture Zone (VMFZ), accommodated about 170 km of sea-floor spreading in the Norfolk backare basin together with eastward migration of a volcanic arc, the Three Kings Ridge, in the Mid- to Late Miocene. Before the onset of spreading, strain along the VMFZ may have been linked to a major Early Miocene obduction event — the emplacement of the Northland Allochthon. The transform is manifested by a belt up to 50 km wide of left-stepping, linear fault scarps up to 2000 m high within an approximately 100 km-wide deformed zone. A marginal ridge, the Reinga Ridge, which includes a faulted, folded and uplifted Miocene sedimentary basin, occurs within the high-standing continental side of the deformed zone, whereas a narrow strip of linear detached blocks occupies the deep backarc oceanic side. Prespreading uplift and erosion of crust in the proto-backarc region, are volcanism, and obduction of the allochthon, supplied clastic sediments to the basin on the continental side. This basin was complexly deformed as the transform evolved. The transform was initiated as a dextral strike-slip fault zone, which developed right-branching splays and left-steps along its length, uplifting and cutting the continental margin into left-hand, en echelon blocks and relays. Folds formed locally within relay blocks and at the distal ends of the splays. Only the high continental side of this zone (the Reinga Ridge) remains, the formerly adjacent crust (the Three Kings Ridge) having been displaced towards the southeast. As the Three Kings block moved and the Norfolk Basin opened, opposing rift margins of the backarc basin foundered to form terraces. The oceanic side of the transform also subsided to produce the belt of detached blocks (some laterally displaced by strike slip) and linear troughs along the main escarpment system.  相似文献   

8.
The Ulleung Basin (Tsushima Basin) in the southwestern East Sea (Japan Sea) is floored by a crust whose affinity is not known whether oceanic or thinned continental. This ambiguity resulted in unconstrained mechanisms of basin evolution. The present work attempts to define the nature of the crust of the Ulleung Basin and its tectonic evolution using seismic wide-angle reflection and refraction data recorded on ocean bottom seismometers (OBSs). Although the thickness of (10 km) of the crust is greater than typical oceanic crust, tau-p analysis of OBS data and forward modeling by 2-D ray tracing suggest that it is oceanic in character: (1) the crust consists of laterally consistent upper and lower layers that are typical of oceanic layers 2 and 3 in seismic velocity and gradient distribution and (2) layer 2C, the transition between layer 2 and layer 3 in oceanic crust, is manifested by a continuous velocity increase from 5.7 to 6.3 km/s over the thickness interval of about 1 km between the upper and lower layers. Therefore it is not likely that the Ulleung Basin was formed by the crustal extension of the southwestern Japan Arc where crustal structure is typically continental. Instead, the thickness of the crust and its velocity structure suggest that the Ulleung Basin was formed by seafloor spreading in a region of hotter than normal mantle surrounding a distant mantle plume, not directly above the core of the plume. It seems that the mantle plume was located in northeast China. This suggestion is consistent with geochemical data that indicate the influence of a mantle plume on the production of volcanic rocks in and around the Ulleung Basin. Thus we propose that the opening models of the southwestern East Sea should incorporate seafloor spreading and the influence of a mantle plume rather than the extension of the crust of the Japan Arc.  相似文献   

9.
The paper presents the results of a study on the geomorphic structure, tectonic setting, and volcanism of the volcanoes and volcanic ridges in the deep Central Basin of the Sea of Japan. The ridges rise 500–600 m above the acoustic basement of the basin. These ridges were formed on fragments of thinned continental crust along deep faults submeridionally crossing the Central Basin and the adjacent continental part of the Primorye. The morphostructures of the basin began to submerge below sea level in the Middle Miocene and reached their contemporary positions in the Pliocene. Volcanism in the Central Basin occurred mostly in the Middle Miocene–Pliocene and formed marginal-sea basaltoids with OIB (ocean island basalt) geochemical signatures indicating the lower-mantle plume origin of these rocks. The OIB signatures of basaltoids tend to be expressed better in the eastern part of the Central Basin, where juvenile oceanic crust has developed. The genesis of this crust is probably related to rising and melting of the Pacific superplume apophyse.  相似文献   

10.
Geological comparative studies of Japan Arc System and Kyushu-Palau Arc   总被引:5,自引:3,他引:2  
Based on the published data of structure geology,geochronology,petrology and isotope geochemistry,the authors of this paper have conducted studies on the tectonic evolution history of Japan arc system and Kyushu-Palau ridge(KPR) . The studies show that the initial Japan arc system was resulted from the subduction of ancient Pacific plate beneath Eurasian Plate in Permian. It was part of an Andean-type continental volcanic arc which occurred in the offshore in the east of Asian during late Mesozoic era. The formation of tertiary back-arc basin(Japan Sea) resulted in the fundamental tectonic framework of the present arc system. Since Quaternary the system has been lying at E-W compression tectonic setting due to the eastward subduction of Amur Plate. It is expected that Japan arc system will be juxtaposed with Asian continent,which is similar to the present Taiwan arc system. The origin of Philippine Sea Plate(PSP) is still in debate. Some studies argued that it is a trapped oceanic crust segment,while the others insisted that it is a back-arc basin accompanied with ancient IBM arc. However,it is all agreed that the tectonic evolution of PSP started since 50 Ma,i.e.,PSP has drifted from the site around equator at 50 Ma to the present site,and the subduction of PSP along Nankai trough-Ryukyu Trench beneath the Japan arc system during 6-2 Ma led to the formation of the present Ryukyu arc system. Of the PSP,the KPR has been found with the oldest rocks formed at 38 Ma. Combining with its geochemical characteristics of oceanic arc tholeiite,it is suggested that KPR is an intraoceanic volcanic arc,more specifically,a relic arc(i.e.,rear arc of the ancient IBM) after rifting of ancient IBM. In addition,Amami-Daito province is of arc tectonic affinity,but has been affected by mantle plume. Therefore,based on their respective tectonic evolution history and geochemical characteristics of rock samples,it is inferred that there is no genetic relationship between Japan arc system and KPR. It is noted that rocks reflecting continental crust basement feature have been collected on the northern tip of KPR,which may be related to the process of KPR accreting on Japan arc,but the arc-continent accretion process are still at initial stage of modern continental crust accretion model. However,due to the scarcity of data of the northern tip of KPR,crustal structure of this location and its adjacent Nankai trough need to be further constrained by geophysical studies in the future.  相似文献   

11.
Aeromagnetic data collected over the Offshore Mahanadi Basin along the Eastern margin of India display high amplitude magnetic anomalies. The presence of a Cretaceous volcanic sequence masks the seismic response from the underlying basement and results in poor quality seismic data. In this study spectral analysis of the aeromagnetic data collected over this part of the Offshore Mahanadi Basin was carried out. Results of this analysis indicate the presence of a high density, highvelocity (6.45 km/s) mafic layer within the crystalline basement varying from 4–6 km depth. This intra-basement layer seems to have been affected by a number of lineaments, which have played a role in the evolution of the Mahanadi Offshore Basin. The western part of the offshore basin is affected by the volcanism related to the 85°E Ridge, whereas the intense anomaly band (900 nT) offshore Puri, Konark and Paradip is interpreted as a combined effect of crystalline Precambrian basement overlain (i) by Cretaceous volcanic rocks of variable thickness (25–860 m) and (ii) by a mafic layer within the basement.  相似文献   

12.
The Early Cretaceous separation of Newfoundland from Iberia–Ireland is a classic example of a magma-poor continental margin with hyperextension and with widespread minor magmatism resulting in seamounts. This study defines the distribution of seamounts east of Orphan Knoll, and documents and interprets the geochemical character of the one recovered lava sample. Video imagery of lava outcrops, and the sample, were obtained by ROV from Orphan seamount, one of a linear series of small seamounts overlying transitional thinned continental crust on the seaward side of Orphan Knoll. New multibeam bathymetry and legacy seismic data show several seamounts that extend irregularly along the fault-bound NE margin of Orphan Knoll. Whole rock geochemistry shows the sample to be highly alkaline basanite or possibly tephrite. Diopside–hedenbergite, kaersutite and K-feldspar phenocrysts were analyzed by electron microprobe and scanning electron microscope, and alteration minerals including kaolinite were identified by X-ray diffraction. The highly alkaline character of the basanite is similar only to Early Cretaceous volcanic and sub-volcanic rocks erupted through thick continental crust of the Mesoproterozoic Grenville Orogeny. The location of the linear set of seamounts is related to margin-parallel faults on the seaward side of Orphan Knoll that provided a pathway for magma, although ENE-trending lineaments in individual seamounts or seamount groups suggest the influence of oceanic fracture zones. A lower gradient crest to Orphan seamount above 2,200 m suggests subaerial erosion, consistent with the presence of kaolinite as an alteration product and the absence of lava pillows at and above this depth.  相似文献   

13.
The ridge like seafloor highs with various geological origins can be classed into mid-ocean ridges,transverse ridges related to transform faults,hot spot/mantle plume originated ridges,microcontinent rifted from major continent,intra-plate arc formed by interaction of two oceanic plates,and tectonic ridges uplifted by later tectonic activity.Those ridges moved towards the convergent continental margins along with the underlain plate drifting and formed so-called accreted ridges commonly trending at a high angle to the continental margins.At divergent continental margins,the continental crusts were extended and thinned accompanying with magmatism,which formed high terrains protruding or parallel to the coastal line.The ridges worldwide have various origins and the crustal thicknesses and structures of them are diversity.The crusts beneath the microcontinents,and the transverse ridges along the transform margin,and the seafloor highs beside the passive continental margins are continental,while the crusts of other ridges are oceanic.Article 76 of the United Nations Convention on the Law of the Sea (UNCLOS) has classed the seafloor highs worldwide into three legal categories,namely oceanic ridges,submarine ridges and submarine elevations,for the purpose to delineate the outer limit of the coastal States’ continental shelf beyond 200 nautical miles.To define the categories of the legal seafloor highs to which the ridges with various geological origins belong,the continuities in morphology and geology including the rock types,crustal structures,origins and tectonic setting of the ridges and the coastal States’ land mass with its submerged prolongation should be taken into account.If a ridge is continuous both in morphology and geology with the coastal States’ land mass and its submerged prolongation,it is a submarine elevation stipulated in Article 76.If it is discontinuous in morphology,the ridge should be regarded as oceanic ridges.If a ridge is continuous in morphology but discontinuous in geology with the coastal States’ land mass and its submerged prolongation,then it is a submarine ridge as stipulated in Article 76.  相似文献   

14.
The Manihiki Plateau is an elevated oceanic volcanic plateau that was formed mostly in Early Cretaceous time by hotspot activity. We analyze new seismic reflection data acquired on cruise KIWI 12 over the High Plateau region in the southeast of the plateau, to look for direct evidence of the location of the heat source and the timing of uplift, subsidence and faulting. These data are correlated with previous seismic reflection lines from cruise CATO 3, and with the results at DSDP Site 317 at the northern edge of the High Plateau. Seven key reflectors are identified from the seismic reflection profiles and the resulting isopach maps show local variations in thickness in the southeastern part of the High Plateau, suggesting a subsidence (cooling) event in this region during Late Cretaceous and up to Early Eocene time. We model this as a hotspot, active and centered on the High Plateau area during Early Cretaceous time in a near-ridge environment. The basement and Early Cretaceous volcaniclastic layers were formed by subaerial and shallow-water eruption due to the volcanic activity. After that, the plateau experienced erosion. The cessation of hotspot activity and subsequent heat loss by Late Cretaceous time caused the plateau to subside rapidly. The eastern and southern portions of the High Plateau were rifted away following the cessation of hot spot activity. As the southeastern portion of the High Plateau was originally higher and above the calcium carbonate compensation depth, it accumulated more sediments than the surrounding plateau regions. Apparently coeval with the rapid subsidence of the plateau are normal faults found at the SE edge of the plateau. Since Early Eocene time, the plateau subsided to its present depth without significant deformation.  相似文献   

15.
On the basis of new geophysical data acquired by the Federal Institute of Geosciences and Natural Resources (BGR) and the Polar Marine Geological Research Expedition (PMGRE) as well as existing data new geophysical maps were compiled for the Lazarev Sea and the Riiser-Larsen Sea between 10°W and 25°E. The new results are: – The drastic change in the strike direction of the volcanic Explora Wedge between longitudes 10°W and 5°W is accompanied with a gradual change from one major wedge, i.e. the Explora Wedge, into at least two wedge-shaped volcanic constructions, each manifested by a sequence of seaward-dipping reflectors in the seismic records. – The southern Lazarev Sea is best described as a continental margin affected by multiple rifting episodes accompanied with transient volcanism. – A distinct N80°E striking basement depression separates the volcanic-prone continental margin of the southern Lazarev Sea from oceanic crust upon which the Maud Rise rests. The southern scarp of the narrow depression was presumably aligned with the eastern scarp of the Mozambique Ridge during the Early Cretaceous. – The Astrid Ridge proper occupies the transition from the volcanic-prone continental margin of the Lazarev Sea to old oceanic crust of the Riiser -Larsen Sea, and it rests upon a large volcanic apron which covers the basement of the southwestern Riiser-Larsen Sea. – No evidence was found that prolific volcanism has affected the early opening of the Riiser-Larsen Sea. – The Lazarev Sea is a sediment-starved region.  相似文献   

16.
A sedimentary rock complex overlays the deep layers of oceanic crust in the Mussau Trench (and the conjugated underwater ridge) of the Caroline Basin. Paleontological analyses supported the previous idea of Oligocene-Quaternary deposits. In addition, Upper Cretaceous (Acila ex gr. demessa, Anisomyon sp., and others) and Eocene (Heterostegina sp., Discocyclina sp., and others) deposits have been found, suggesting shallow water environments in Late Cretaceous-Early Cenozoic time. Later on, regional submergence started. The complex of the deep-seated formations of the Mussau Trench is not younger than the Early Cretaceous oceanic crust of the Ontong-Java Plateau.  相似文献   

17.
This study presents the results of a seismic refraction experiment that was carried out off Dronning Maud Land (East Antarctica) along the Explora Escarpment (14° W–12° W) and close to Astrid Ridge (6°E). Oceanic crust of about 10 km thickness is observed northwest of the Explora Escarpment. Stretched continental crust, observed southeast of the escarpment, is most likely intruded by volcanic material at all crustal levels. Seismic velocities of 7.0–7.4 km/s are modelled for the lower crust. The northern boundary of this high velocity body coincides approximately with the Explora Escarpment. The upper crystalline crust is overlain by a 4-km thick and 70-km wide wedge of volcanic material: the Explora Wedge. Seismic velocities for the oceanic crust north of the Explora Escarpment are in good agreement with global studies. The oceanic crust in the region of the Lazarev Sea is also up to 10-km thick. The lower crystalline crust shows seismic velocities of up to 7.4 km/s. This, together with the larger crustal thickness might point to higher mantle temperatures during the formation of the oceanic crust. The more southerly rifted continental crust is up to 25-km thick, and also has seismic velocities of 7.4 km/s in the lower crystalline crust. This section is interpreted to consist of stretched continental crust, which is heavily intruded by volcanic material up to approximately 8-km depth. Multichannel seismic data indicate that, in this region, two volcanic wedges are present. The wedges are interpreted to have evolved during different time/rift periods. The wedges have a total width of at least 180 km in the Lazarev Sea. Our results support previous findings that the continental margin off Dronning Maud Land between ≈2°E and ≈13°E had a complex and long-lived rift history. Both continental margins can be classified as rifted volcanic continental margins that were formed during break-up of Gondwana.  相似文献   

18.
The study focuses on the flexural down-warping of oceanic crust related to the Early Cretaceous hotspot volcanic chain in offshore East India, drawing from robust reflection seismic coverage of the 85°E Ridge and associated moats and arches. Seismic data image three moat-filling units including the basal pelagic, landslide and ponded units, representing the sedimentary record preceding, coeval and postponing flexure. Their stacking patterns allow one to understand the flexural history of the oceanic crust reacting to the volcanic load, in space and time. The flexural history of the oceanic crust can be divided into four stages. The first stage is the brittle faulting-assisted flexure reacting to the appearance of the load. It has a short wavelength and controls the development of moat undergoing deposition of the landslide unit. Then follows the long-wavelength flexure, when the arch starts to develop. The flexural arch formation prevents the landslide unit from covering it, while the moat keeps subsiding. The third flexure stage is a short-wavelength deformation when the moat and arch subside together. Accordingly, the syn-flexural landslide unit records an initial rapid and a later slower subsidence. The fourth flexure stage is characterized by the passive infill of moat by sediments of ponded unit, although limited isostatic adjustments can occur, accompanied by mass wasting.  相似文献   

19.
Abyssal hills were delineated in a 185 × 185-km area by an 18.5 × 18.5-km grid of narrow-beam bathymetric and geophysical profiles in oceanic crust of Cretaceous age near 23°N latitude, 31°W longitude. The abyssal hills are similar to features located along flow lines of sea-floor spreading near the crest of the Mid-Atlantic Ridge. This similarity indicates a primary origin for these abyssal hills related to axial processes at a mid-oceanic ridge involving construction (igneous) and tectonics (faulting), and secondary modification by volcanic activity.  相似文献   

20.
Two dimensional crustal models derived from four different ocean bottom seismographic (OBS) surveys have been compiled into a 1,580 km long transect across the North Atlantic, from the Norwegian Møre coast, across the extinct Aegir Ridge, the continental Jan Mayen Ridge, the presently active Kolbeinsey Ridge north of Iceland, into Scoresby Sund in East Greenland. Backstripping of the transect suggests that the continental break-up at ca. 55 Ma occurred along a west-dipping detachment localized near the western end of a ca. 300 km wide basin thinned to less than 20 km crustal thickness. It is likely that an east-dipping detachment near the present day Liverpool Land Escarpment was active during the late stages of continental rifting. A lower crustal high-velocity layer (7.2–7.4 km/s) interpreted as mafic intrusions/underplating, was present beneath the entire basin. The observations are consistent with the plume hypothesis, involving the Early Tertiary arrival of a mantle plume beneath central Greenland and focused decompression melting beneath the thinnest portions of the lithosphere. The mid-Eocene to Oligocene continental extension in East Greenland is interpreted as fairly symmetric and strongly concentrated in the lower crustal layer. Continental break-up which rifted off the Jan Mayen Ridge, occurred at ca. 25 Ma, when the Aegir Ridge became extinct. The first ca. 2 m.y. of oceanic accretion along the Kolbeinsey Ridge was characterized by thin magmatic crust (ca. 5.5 km), whereas the oceanic crustal formation since ca. 23 Ma documents ca. 8 km thick crust and high magma budget.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号