首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A current predominant paradigm emphasizes the role of epiphytic algae for invertebrates in most seagrass food webs. However, in some intertidal Zostera noltii beds, epiphyte biomass is very low compared to microphytobenthos and seagrass biomasses. We assessed the role of microphytobenthos in a temperate intertidal Z. noltii bed by combining stable isotope and fatty acid (FA) analyses on primary producers, composite sources — suspended particulate organic matter (SPOM) and sediment surface organic matter (SSOM) — and the main macrofaunal consumers. Z. noltii showed high δ13C (−9.9‰) and high 18:2(n-6) and 18:3(n-3) contents. Microphytobenthos was slightly more 13C-depleted (−15.4‰) and had high levels of diatom markers: 14:0, 16:1(n-7)c, 20:5(n-3). Low mean δ13C (−22.0‰) and large amounts of diatom and bacteria (18:1(n-7)c) markers indicated that SPOM was mainly composed of a mixture of fresh and decayed pelagic diatoms. Higher mean δ13C (−17.9‰) and high amounts of diatom FAs were found in SSOM, showing that microphytobenthic diatoms dominate. Very low percentages of 18:2(n-6) and 18:3(n-3) in consumers indicated a low contribution of Z. noltii material to their diets. Grazers, deposit and suspension-deposit feeders had δ13C close to microphytobenthos and high levels of diatom FAs, confirming that microphytobenthos represented the main part of their diet. Lower δ13C and higher amounts of flagellate FAs – 22:6(n-3) and 16:4(n-3) – in suspension feeders indicated that their diet resulted from a mixture of SPOM and microphytobenthos. These results demonstrate that invertebrates do not consume high amounts of seagrass and highlight the main role of benthic diatoms in this intertidal seagrass bed.  相似文献   

2.
Interlinked mangrove–seagrass ecosystems are characteristic features of many tropical coastal areas, where they act as feeding and nursery grounds for a variety of fishes and invertebrates. The autotrophic carbon sources supporting fisheries in Gazi bay (Kenya) were studied in three sites, two located in the tidal creeks flowing through extensive mangrove forests, another site located in the subtidal seagrass meadows, approximately 2.5 km away from the forest. Carbon and nitrogen stable isotope composition of 42 fish species, 2 crustacean species and a range of potential primary food sources (e.g., mangroves, seagrasses and epiphytes, macroalgae) were analysed. There was considerable overlap in the δ13C signatures between fish (−16.1 ± 2.1‰), seagrasses (−15.1 ± 3.0‰), seagrass epiphytes (−13.6 ± 3.3‰), and macroalgae (−20.4 ± 3.1‰). Nevertheless, the signatures for most primary producers were sufficiently distinct to indicate that the dominant carbon sources for fish were mainly derived from the seagrass and their associated epiphytic community, and possibly macroalgae. Mangrove-derived organic matter contributes only marginally to the overall fish food web. Carbon supporting these fish communities was derived directly through grazing by herbivorous and some omnivorous fishes, or indirectly through the benthic food web. Fishes from the mangrove creeks had distinctly lower δ13C signatures (−16.8 ± 2.0‰) compared to those collected in the adjacent seagrass beds (−14.7 ± 1.7‰). This indicated that these habitats were used as distinct sheltering and feeding zones for the fishes collected, with minimal degree of exchange within the fish communities despite their regular movement pattern.  相似文献   

3.
Preservation of organic matter in estuarine and coastal areas is an important process in the global carbon cycle. This paper presents bulk δ13C and C/N of organic matter from source to sink in the Pearl River catchment, delta and estuary, and discusses the applicability of δ13C and C/N as indicators for sources of organic matter in deltaic and estuarine sediments. In addition to the 91 surface sediment samples, other materials collected in this study cover the main sources of organic material to estuarine sediment. These are: terrestrial organic matter (TOM), including plants and soil samples from the catchment; estuarine and marine suspended particulate organic carbon (POC) from both summer and winter. Results show that the average δ13C of estuarine surface sediment increases from −25.0 ± 1.3‰ in the freshwater environment to −21.0 ± 0.2‰ in the marine environment, with C/N decreasing from 15.2 ± 3.3 to 6.8 ± 0.2. In the source areas, C3 plants have lower δ13C than C4 plants (−29.0 ± 1.8‰ and −13.1 ± 0.5‰ respectively). δ13C increases from −28.3 ± 0.8‰ in the forest soil to around −24.1‰ in both riverbank soil and mangrove soil due to increasing proportion of C4 grasses. The δ13CPOC increases from −27.6 ± 0.8‰ in the freshwater areas to −22.4 ± 0.5‰ in the marine-brackish-water areas in winter, and ranges between −24.0‰ in freshwater areas and −25.4‰ in brackish-water areas in summer. Comparison of the δ13C and C/N between the sources and sink indicates a weakening TOM and freshwater POC input in the surface sedimentary organic matter seawards, and a strengthening contribution from the marine organic matter. Thus we suggest that bulk organic δ13C and C/N analysis can be used to indicate sources of sedimentary organic matter in estuarine environments. Organic carbon in surface sediments derived from anthropogenic sources such as human waste and organic pollutants from industrial and agricultural activities accounts for less than 10% of the total organic carbon (TOC). Although results also indicate elevated δ13C of sedimentary organic matter due to some agricultural products such as sugarcane, C3 plants are still the dominant vegetation type in this area, and the bulk organic δ13C and C/N is still an effective indicator for sources of organic matter in estuarine sediments.  相似文献   

4.
The aim of this study was to distinguish between sources of the complex variety of Marennes-Oléron Bay suspended particulate organic matter (SPOM) contributing to the tropho-dynamics of the Marennes-Oléron oyster farming bay. Basic biomarkers (Chl a, C/N and POC/Chl a ratios), carbon and nitrogen stable isotopes from SPOM were analyzed and the microalgae community was characterized. The sampling strategy was bimonthly from March 2002 to December 2003; samples were taken from an intertidal mudflat. Four main sources contributed to the SPOM pool: terrigenous input from rivers, neritic phytoplankton, resuspended microphytobenthos and periodic inputs from intertidal Zostera noltii meadows. Seasonal fluctuations were observed in both years of the study period: (1) SPOM collected in the spring of 2002 (δ13C = −25‰ to −23‰) was mainly composed of fresh estuarine inputs; (2) SPOM from the summer and fall of 2002 and 2003 was predominantly neritic phytoplankton (δ13C = − 22‰ to −19‰); (3) SPOM from the winter of 2002, spring of 2003 and winter of 2003 (δ13C = −21 to −23‰) was composed of a mixture of decayed terrigenous river inputs and pelagic phytoplankton, which was predominantly resuspended microphytobenthos. In the summer of 2003—the warmest summer on record in southern France and Europe—SPOM was particularly enriched for 13C, with δ13C values ranging from −14‰ to −12‰. Pulses in δ13C values, indicative of 13C-enriched decaying materials, extended into the fall. These were attributed to benthic intertidal inputs, including both resuspended microphytobenthos and Z. noltii detritus. Changes in SPOM sources in Marennes-Oléron Bay may lead to differences in the quality of the trophic environment available for reared oysters.  相似文献   

5.
We investigated the distribution of δ13C and δ15N of organic matter among benthic communities from the upper estuary of Yura River to offshore of Tango Sea, Japan, to determine spatial variation in utilization of organic matter by benthic communities. The δ13C values of benthic animals ranged from −27 to −15‰ in the upper estuary, −21 to −15‰ in the lower estuary, −20 to −16‰ in the shallow coast (5–10 m depths), −18 to −16‰ in the deep coast (30–60 m depths) and −19 to −15‰ in offshore (100–150 m depths) stations. Adapting the dual isotope values to mixing models, we estimated the relative contributions of potential food sources to the benthos diet. Phytoplankton and macroalgae that intruded the estuary in summer were utilized as alternative food aside from the terrestrial-origin organic matter assimilated by the estuarine benthic consumers. Resuspended benthic microalgae were important source of energy in the shallow coastal stations, while abundant supply of phytodetritus fueled the deep coastal and offshore benthic food webs. Spatial difference in the diet of benthic communities depends largely on the shifts in the primary carbon source. Thus, benthic communities are important link of autochthonous/allochthonous production and secondary production in the continuous river–estuary–marine system.  相似文献   

6.
Carbon and nitrogen stable isotope composition of a range of organisms collected from two intermittently connected floodplain pools in the Ross River estuary were analysed to assess the extent to which carbon fixed by terrestrial wetland producers is incorporated into adjacent aquatic food webs. The two pools differed in surrounding vegetation with one surrounded by mangroves and the other by the salt couch Sporobolus virginicus. At both pools, animals showed differences in δ13C, indicating differences in sources of carbon. Since δ13C values of C3 mangroves (−29.7 to −26.3‰) were very different from those of the C4 salt couch (−16.3 to −15.4‰), it was possible to determine the importance of terrestrial wetland producers by comparing isotope values of consumers between sites, in a species by species approach. Most animal species collected showed lower δ13C at the mangrove pool than at the Sporobolus pool, which indicates a greater incorporation of mangrove carbon at the mangrove pool. However, the animals’ isotopic shifts were also similar to that shown by epiphytes, and hence the differences in animal δ13C could also be a result of a dependence on these producers. The IsoSource model was useful to clarify this question, indicating that mangrove and salt marsh material was a crucial contributor to the diet of several fish and invertebrate species at both sites, indicating that carbon of terrestrial origin is incorporated in the estuarine food web.  相似文献   

7.
Multiple stable isotope analyses were used to examine the trophic shifts at faunal assemblages within the invading macroalga Caulerpa racemosa in comparison to established communities of Posidonia oceanica seagrass meadows. Sampling of macrobenthic invertebrates and their potential food sources of algal mats and seagrass meadows in Mallorca (NW Mediterranean) showed differences in species composition of faunal and primary producers among seagrass and C. racemosa. Accordingly, changes in food web structure and trophic guilds were observed, not only at species level but also at community level. The carbon and nitrogen isotope signatures of herbivores, detritivores and deposit feeders confirmed that the seagrass provided a small contribution to the macrofaunal organisms. δ13C at the P. oceanica seagrass and at the C. racemosa assemblages differed, ranging from −6.19 to −21.20‰ and −2.67 to −31.41‰, respectively. δ15N at the Caulerpa mats was lower (ranging from 2.64 to 10.45‰) than that at the seagrass meadows (3.51–12. 94‰). Significant differences in isotopic signatures and trophic level among trophic guilds at P. oceanica and C. racemosa were found. N fractionation at trophic guild level considerable differed between seagrass and macroalgae mats, especially for detritivores, deposit feeders, and herbivores. Filter feeders slightly differed with a relatively lower N signal at the seagrass and CR values at community level and at trophic guild level were higher in the C. racemosa invaded habitats indicating an increase in diversity of basal resource pools. C. racemosa did seem to broaden the niche diversity of the P. oceanica meadows it colonised at the base of the food web, may be due to the establishment of a new basal resource. The extent of the effects of invasive species on ecosystem functioning is a fundamental issue in conservation ecology. The observed changes in invertebrate and macrophytic composition, stable isotope signatures of concomitant species and consequent trophic guild and niche breadth shifts at invaded Caulerpa beds increase our understanding of the seagrass systems.  相似文献   

8.
We simultaneously followed stable carbon (δ13C) and nitrogen (δ15N) isotopes in a two-source food web model to determine trophic levels and the relative importance of open water- and ice-associated food sources (phytoplankton vs. ice algae) in the lower marine food web in the European Arctic during four seasons. The model is based upon extensive seasonal data from 1995 to 2001.Phytoplankton, represented by samples of particulate organic matter from open water (Pelagic-POM) and ice algae, represented by samples from the underside of the ice (Ice-POM), were isotopically different. Ice-POM was generally dominated by the typical ice diatoms Nitzschia frigida and Melosira arctica and was more enriched than Pelagic-POM in 13C (δ13C = −20‰ vs. −24‰), but less enriched in 15N (δ15N = 1.8‰ vs. 4.0‰). However, when dominated by pelagic algae, Ice-POM was enriched in 13C and 15N similarly to Pelagic-POM.The derived trophic enrichment factors for δ15N (ΔN = 3.4‰) and δ13C (ΔC = 0.6‰) were similar in both pelagic and sympagic (ice-associated) systems, although the ΔC for the sympagic system was variable.Trophic level (TL) range for zooplankton (TL = 1.8-3.8) was similar to that of ice fauna (TL = 1.9-3.7), but ice amphipods were generally less enriched in δ15N than zooplankton, reflecting lower δ15N in Ice-POM compared to Pelagic-POM. For bulk zooplankton, TLs and carbon sources changed little seasonally, but the proportion of herbivores was higher during May-September than in October and March. Overall, we found that the primary carbon source for zooplankton was Pelagic-POM (mean 74%), but depending on species, season and TL, substantial carbon (up to 50%) was supplied from the sympagic system. For bulk ice fauna, no major changes were found in TLs or carbon sources from summer to autumn. The primary carbon source for ice fauna was Ice-POM (mean 67%), although ice fauna with TL > 3 (adult Onisimus nanseni and juvenile polar cod) primarily utilized a pelagic food source.  相似文献   

9.
Total suspended matter was collected along the Yangtze River (Changjiang) and in the East China Sea in April to May and in September 2003, respectively, to study origin and fate of particulate organic nitrogen. Concentrations of particulate organic carbon (POC), nitrogen (PN) and hydrolyzable particulate amino acids (PAA; d- and l-enantiomers) were higher in the Yangtze Estuary than in the river and decreased offshore towards the shelf edge. In the coastal area, higher values of PAA were observed in the surface layer than in the bottom water. Stable carbon isotope ratios (δ13C) of POC increased from − 24.4‰ in the river to values around − 21‰ on the East China Sea Shelf. Dominant amino acids were aspartic acid + aspartine (Asx), glutamic acid + glutamine (Glx), glycine, alanine and serine. The proportions of Asx, Glx and isoleucine were higher in the marine than in the riverine samples contrary to the distributions of glycine, alanine, threonine and arginine. The proportions of d-amino acids were highest in the riverine suspended organic matter (6% of PAA) decreasing towards the shelf edge (1.5% of PAA). d-arginine, not reported in natural aquatic samples so far, was the most abundant d-amino acid in the river. The amino acid composition of the particulate organic matter (POM) in the Yangtze River indicates an advanced stage of degradation of POM. Highly degraded organic matter from soils is probably a main source of POM in the Yangtze River, but the relatively high δ13C values and low C/N ratios (7.7 ± 1.6) also indicate contribution from anthropogenic sources. The degraded riverine material was a dominant organic matter source in the estuary, where aquatic primary production had only a small overall contribution. In the East China Sea, gradual settling of riverine organic matter and the addition of fresher phytoplankton impacted the amino acid composition and δ13C values, and on the outer shelf relatively fresh phytoplankton-derived organic matter dominated.  相似文献   

10.
A cross-system analysis of bulk sediment composition, total organic carbon (TOC), atomic C/N ratio, and carbon isotope composition (δ13C) in 82 surface sediment samples from natural and planted mangrove forests, bank and bottom of tidal creeks, tidal flat, and the subtidal habitat was conducted to examine the roles of mangroves in sedimentation and organic carbon (OC) accumulation processes, and to characterize sources of sedimentary OC of the mangrove ecosystem of Xuan Thuy National Park, Vietnam. Sediment grain sizes varied widely from 5.4 to 170.2 μm (mean 71.5 μm), with the fine sediment grain size fraction (< 63 μm) ranging from 11 to 99.3% (mean 72.5%). Bulk sediment composition suggested that mangroves play an important role in trapping fine sediments from river outflows and tidal water by the mechanisms of tidal current attenuation by vegetation and the ability of fine roots to bind sediments. The TOC content ranged from 0.08 to 2.18% (mean 0.78%), and was higher within mangrove forests compared to those of banks and bottoms of tidal creeks, tidal flat, and subtidal sediments. The sedimentary δ13C ranged from − 27.7 to − 20.4‰ (mean − 24.1‰), and mirrored the trend observed in TOC variation. The TOC and δ13C relationship showed that the factors of microbial remineralization and OC sources controlled the TOC pool of mangrove sediments. The comparison of δ13C and C/N ratio of sedimentary OC with those of mangrove and marine phytoplankton sources indicated that the sedimentary OC within mangrove forests and the subtidal habitat was mainly composed of mangrove and marine phytoplankton sources, respectively. The application of a simple mixing model showed that the mangrove contribution to sedimentary OC decreased as follows: natural mangrove forest > planted mangrove forest > tidal flat > creek bank > creek bottom > subtidal habitat.  相似文献   

11.
Multidisciplinary study of seep-related structures on Southern Vøring Plateau has been performed during several UNESCO/IOC TTR cruises on R/V Professor Logachev. High-resolution sidescan sonar and subbottom profiler data suggest that most of the studied fluid discharge structures have a positive relief at their central part surrounded by depression. Our data shows that the present day fluid activity is concentrated on the top of these “seep mounds”. Number of high hydrocarbon (HC) gas saturated sediment cores and 5 cores with gas hydrate presence have been recovered from these structures. δ13C of methane (between −68 and −94.6‰ VPDB) and dry composition of the gas points to its biogenic origin. The sulfate depletion generally occurs within the upper 30–200 cm bsf and usually coincides with an increase of methane concentration. Pore water δ18O ranges from 0.29 to 1.14‰ showing an overall gradual increase from bottom water values (δ18O ∼ 0.35‰). Although no obvious evidence of fluid seepage was observed during the TV surveys, coring data revealed a broad distribution of living Pogonophora and bacterial colonies on sea bottom inside seep structures. These evidences point to ongoing fluid activity (continuous seepage of methane) through these structures. From other side, considerable number and variety of chemosynthetic macro fauna with complete absence of living species suggest that present day level of fluid activity is significantly lower than it was in past. Dead and subfossil fauna recovered from various seep sites consist of solemyid (Acharax sp.), thyasirid and vesicomyid (cf. Calyptogena sp.) bivalves belonging to chemosymbiotic families. Significant variations in δ13C (−31.6‰ to −59.2‰) and δ18O (0.42‰ and 6.4‰) of methane-derived carbonates collected from these structures most probably related to changes in gas composition and bottom water temperature between periods of their precipitation. This led us to ideas that: (1) seep activity on the Southern Vøring Plateau was started with large input of the deep thermogenic gas and gradually decries in time with increasing of biogenic constituent; (2) authigenic carbonate precipitation started at the near normal deep sea environments with bottom water temperature around +5 °C and continues with gradual cooling up to negative temperatures recording at present time.  相似文献   

12.
Carbon and nitrogen stable isotope ratios (13C and 15N) and trophic level (TL) estimates based on stomach content analysis and published data were used to assess the contribution of autotrophic sources to 55 consumers in an intertidal mangrove creek of the Curuçá estuary, northern Brazil. Primary producers showed δ13C signatures ranging between −29.2 and −19.5‰ and δ15N from 3.0 to 6.3‰. The wide range of the isotopic composition of carbon of consumers (−28.6 to −17.1‰) indicated that different autotrophic sources are important in the intertidal mangrove food webs. Food web segregation structures the ecosystem into three relatively distinct food webs: (i) mangrove food web, where vascular plants contribute directly or indirectly via POM to the most 13C-depleted consumers (e.g. Ucides cordatus and zooplanktivorous food chains); (ii) algal food web, where benthic algae are eaten directly by consumers (e.g. Uca maracoani, mullets, polychaetes, several fishes); (iii) mixed food web where the consumers use the carbon from different primary sources (mainly benthivorous fishes). An IsoError mixing model was used to determine the contributions of primary sources to consumers, based on δ13C values. Model outputs were very sensitive to the magnitude of trophic isotope fractionation and to the variability in 13C data. Nevertheless, the simplification of the system by a priori aggregation of primary producers allowed interpretable results for several taxa, revealing the segregation into different food webs.  相似文献   

13.
One hundred and ten carbon and nineteen strontium isotopic values of outcropping Cambrian Series 2 and Series 3 carbonate rocks in the Penglaiba section of the Keping area were analyzed. Effective isotopic data with little influence of diagenesis were used to address the global correlation. The δ13C values exhibit two major positive excursions (peaking at 3.1‰ and 3.3‰) and three major negative excursions (peaking at −3.0‰, −4.2‰ and −3.2‰). The carbon isotope excursions (peaking at −3.0‰ and −4.2‰) across the Cambrian Series 2-Series 3 boundary show good correlations with similar variations reported in Siberia, Laurentia, North China and South China. In contrast, the other three carbon isotope excursions (peaking at 3.1‰, 3.3‰ and −3.2‰) do not have a fairly good global correlation because of the lack of biostratigraphic data. With respect to the 87Sr/86Sr ratios, they show good correlation with those reported for Laurentia, and further support the global δ13C comparison. On the basis of these new data, it is showed that the combination of δ13C curves and 87Sr/86Sr variations serves as a powerful tool for correlation and subdivision of Cambrian strata in the Tarim Basin of northwest China, and provides new data for global correlation.  相似文献   

14.
The stable carbon isotopic ratios (δ13C) of methane (CH4) and carbon dioxide (CO2) of gas-rich fluid inclusions hosted in fracture-fill mineralization from the southern part of the Lower Saxony Basin, Germany have been measured online using a crushing device interfaced to an isotopic ratio mass spectrometer (IRMS). The data reveal that CH4 trapped in inclusions seems to be derived from different source rocks with different organic matter types. The δ13C values of CH4 in inclusions in quartz hosted by Carboniferous rocks range between −25 and −19‰, suggesting high-maturity coals as the source of methane. Methane in fluid inclusions in minerals hosted by Mesozoic strata has more negative carbon isotope ratios (−45 to −31‰) and appears to represent primary cracking products from type II kerogens, i.e., marine shales. There is a positive correlation between increasing homogenization temperatures of aqueous fluid inclusions and less negative δ13C(CH4) values of in co-genetic gas inclusions probably indicating different mtaturity of the potential source rocks at the time the fluids were released. The CO2 isotopic composition of CH4-CO2-bearing inclusions shows slight negative or even positive δ13C values indicating an inorganic source (e.g., water-rock interaction and dissolution of detrital, marine calcite) for CO2 in inclusions. We conclude that the δ13C isotopic ratios of CH4-CO2-bearing fluid inclusions can be used to trace migration pathways, sources of gases, and alteration processes. Furthermore, the δ13C values of methane can be used to estimate the maturity of the rocks from which it was sourced. Results presented here are further supported by organic geochemical analysis of surface bitumens which coexist with the gas inclusion-rich fracture-fill mineralization and confirm the isotopic interpretations with respect to fluid source, type and maturity.  相似文献   

15.
To assess the potential of stable isotope ratios as an indicator of fish migration within estuaries, stable isotope ratios in important zooplankton species were analyzed in relation to estuarine salinity gradients. Gut contents from migratory juveniles of the euryhaline marine fish Lateolabrax japonicus were examined along the Chikugo River estuary of the Ariake Sea, which has the most developed estuarine turbidity maximum (ETM) in Japan. Early juveniles in March and April preyed primarily on two copepod species; Sinocalanus sinensis at lower salinities and Acartia omorii at higher salinities. Late juveniles (standard length > 40 mm) at lower salinities preyed exclusively on the mysid Acanthomysis longirostris until July and complementarily on the decapod Acetes japonicus in August. These prey species were collected along the estuary during the spring–summer seasons of 2003 and 2004, and their carbon and nitrogen stable isotope ratios (δ13C and δ15N) were evaluated. The δ13C values of prey species were distinct from each other and were primarily depleted within and in close proximity to the ETM (salinity < 10); S. sinensis (−26.6‰) < Acanthomysis longirostris (−23.3‰) < Acartia omorii (−21.1‰) < Acetes japonicus (−18.5‰). The overall gradient of δ13C with salinity occurred for all prey species and showed minor temporal fluctuations, while it was not directly influenced by the δ13C values in particulate organic matter along the estuary. In contrast to δ13C, the δ15N values of prey species did not exhibit any clear relationship with salinity. The present study demonstrated that δ13C has the potential for application as a tracer of fish migration into lower salinity areas including the ETM.  相似文献   

16.
The food-web structure of the epibenthic and infaunal invertebrates on the continental slope of the Catalan Sea (Balearic basin, NW Mediterranean) was investigated using carbon and nitrogen stable isotopes on a total of 34 species, and HPLC pigment analyses for three key species. Samples were collected close to Barcelona (NE Iberian Peninsula), between 650 and 800 m depth and between February 2007 and February 2008. Mean ??13C values ranged from −21.0‰ (small Calocaris macandreae and Amphipholis squamata) to −14.5‰ (Sipunculus norvegicus). Values of ??15N ranged from 4.0‰ (A. squamata) to 12.1‰ (Molpadia musculus). The stable isotope ratios of benthic fauna displayed a continuum of values (e.g. ??15N range of 8‰), confirming a wide spectrum of feeding strategies (from active suspension feeders to predators) and complex food webs. According to the available information on diets of benthic fauna, the lowest values were found for surface deposit feeders (small C. macandrae and the two ophiuroids A. squamata and Amphiura chiajei) and active suspension feeders (Abra longicallus and Scalpellum scalpellum) feeding on different sizes of particulate organic matter (POM), among which small particles may exhibit lower ??15N. High annual mean ??15N values were found among sub-surface deposit feeders, exploiting refractory or frequently recycled organic matter that is enriched in ??15N. Carnivorous polychaetes (Nephtys spp., Oenonidae and Polynoidae) and large decapods (Geryon longipes and Paromola cuvieri) also displayed high ??15N values. ??13C ranges were particularly wide among surface deposit feeders (ranging from −21.0‰ to −16.4‰), suggesting exploitation of POM of both terrigenous and oceanic origins. Correlation between ??13C and ??15N was generally weak, indicating multiple carbon sources, likely due to the consumption of different kinds of sinking particles (e.g. marine snow, phytodetritus, etc.), sedimented and frequently recycled POM, together with macrophyte remains. The stronger ??13C-??15N correlations found in February and April suggest that during the period of water column homogeneization (winter-spring), the benthic community was sustained by phytodetritus inputs originating from the peak of surface primary production in February. Conversely, weaker ??13C-??15N correlations were observed during the period of water column stratification (beginning in June-July), suggesting that the benthic community in this period was sustained, with a delay of ca. 2/3 months, by multiple carbon sources including continental inputs from river discharge (with the maxima in April-May). Thus both advective and vertical fluxes seem to be food sources for benthos on the Catalonian slope. Pigments in the guts of key species were generally degraded, and only the active suspension feeder A. longicallus ingested fresh chlorophyll during periods of high primary production at the surface (February and April 2007).  相似文献   

17.
Mandovi estuary is a tropical estuary strongly influenced by the southwest monsoon. In order to understand, sources and fate of particulate organic nitrogen, suspended particulate matter (SPM) collected from various locations, was analyzed for particulate organic carbon (POC) and particulate organic nitrogen (PON), δ13CPOC, total hydrolysable amino acid enantiomers (l- and d- amino acids) concentration and composition. δ13CPOC values were depleted (−32 to −25‰) during the monsoon and enriched (−29.6 to −21‰) in the pre-monsoon season implying that OM was derived from terrestrial and marine sources during the former and latter season, respectively. The biological indicators such as C/N ratio, d-amino acids, THAA yields and degradation indices (DI) indicate that the particulate organic matter (POM) was relatively more degraded during the monsoon season. Conversely, during the pre-monsoon, the biological indicators indicated the presence of relatively fresh and labile POM derived from autochthonous sources. Amino acids such as alanine, aspartic acid, leucine, serine, arginine, and threonine in monsoon and glutamic acid, glycine, valine, lysine, and isoleucine in pre-monsoon were relatively abundant. Presence of bacterial biomarker, d-amino acids in the SPM of the estuary during both the seasons signifies important contribution of bacteria to the estuarine detrital ON pool. Based on d-amino acid yields, bacterial OM accounted for 16-34% (23.0 ± 6.7%) of POC and 29-75% (47.9 ± 18.7%) of PON in monsoon, and 30-78% (50.0 ± 15%) of POC and 34-79% (51.2 ± 13.3%) of the PON in pre-monsoon in the estuary. Substantial contribution of bacterial-N to PON indicates nitrogen (N) enrichment on terrestrial POM during the monsoon season. Transport of terrestrial POM enriched with bacterial OM to the coastal waters is expected to influence coastal productivity and ecosystem functioning during the monsoon season.  相似文献   

18.
The 13C signature of forty-five macroalgal species from intertidal zones at Cádiz Bay was analysed in order to research the extension of diffusive vs. non-diffusive utilisation of dissolved inorganic carbon (DIC) and to perform a comparison with data published for other bio-geographic regions. The ∂13C values ranged from −6.8‰ to −33‰, although the span of variation was different depending on the taxa. Thus, ∂13C for Chlorophyta varied from −7‰ (Codium adhaerens) to −29.6‰ (Flabellia petiolata), while all the Phaeophyceae (excepting Padina pavonica with ∂13C higher than −10‰) had values between −10‰, and −20‰. The widest variation range was recorded in Rhodophyta, from values above −10‰ (Liagora viscida) to values lower than −30‰ obtained in three species belonging to the subclass Rhodymeniophycidae. Accordingly, the mean ∂13C value calculated for red algae (−20.2‰) was significantly lower than that for brown (−15.9‰) and green algae (−15.6‰). Most of the analysed red algae were species inhabiting crevices and the low intertidal fringe which explains that, on average, the shaded-habitat species had a ∂13C value lower than those growing fully exposed to sun (i.e. in rockpools or at the upper intertidal zone). The comparison between the capacity for non-diffusive use of DIC (i.e. active or facilitated transport of HCO3 and/or CO2) and the ∂13C values reveals that values more negative than −30‰ indicate that photosynthesis is dependent on CO2 diffusive entry, whereas values above this threshold would not indicate necessary the operation of a non-diffusive DIC transport mechanism. Furthermore, external carbonic anhydrase activity (extCA) and ∂13C values were negatively correlated indicating that the higher the dependence of the photosynthesis on the CO2 supplied from HCO3 via extCA, the lower the ∂13C in the algal material. The comparison between the ∂13C values obtained for the analysed species and those published for species inhabiting other bio-geographic areas (warm-temperate, cold and polar) suggests that globally (at least for the red and brown algae) the non-diffusive entry of DIC is more widely spread among the species from Cádiz Bay than among those of polar regions. If it is assumed that non-diffusive use of DIC implies saturation of photosynthesis at the present-day CO2 concentration in seawater, our data indicate that the potential impact of the acidification on photosynthesis in the seaweed communities will be different depending on the latitude.  相似文献   

19.
We estimated the composition of two food sources for the cultured pearl oyster Pinctada fucata martensii using stable isotopes and stomach content analysis in the coastal areas of the Uwa Sea, Japan. The δ13C values of oysters (−17.5 to −16.8‰) were intermediate between that of particulate organic matter (POM, −20.2 to −19.1‰) and attached microalgae on pearl cages (−13.0‰). An isotope mixing model suggested that oysters were consuming 78% POM (mainly phytoplankton) and 22% attached microalgae. The attached microalgal composition of the stomach content showed a strong resemblance to the composition of that estimated through the isotope mixing model, suggesting preferential utilization of specific components is unlikely in this species. These results indicate that P. fucata martensii feed on a mixture of phytoplankton and attached microalgae, and that the attached microalgae on pearl cages can serve as an important additional food source.  相似文献   

20.
Oxygen and carbon isotopes (δ18O and δ13C) have been investigated in carbonate tests of deep-sea foraminifera living in the Mozambique Channel (eastern Africa) to understand how environmental constraints (e.g., organic matter, oxygenation) control the intra- and interspecific variability of isotopic signatures. 197 living individuals, including eight different species, from various microhabitats within the sediment were sorted from sediment samples gathered at two stations on the Malagasy upper slope. Results show that the δ18O values of foraminiferal taxa were not controlled by microhabitat pattern. They presented tremendous and intriguing intraspecific variability that is not explained by the classical ontogenetic effect. The δ13C values of infaunal foraminiferal taxa do not show a 1:1 relationship with the bottom water δ13C DIC and do not present a constant offset from it; instead, they appear to be mainly controlled by a microhabitat effect. The lower δ13C values of shallow, intermediate, and deep infaunal taxa at the deeper station compared to those seen at the shallower station reflect the enhanced exportation of sedimentary organic matter at the sediment–water interface, and its related mineralization within the upper sediments. The ?δ13C between shallow/very shallow infaunal species (i.e., Hoeglundina elegans, Uvigerina hispida) and intermediate/deep infaunal species (i.e., Melonis barleeanus, Globobulimina barbata) permits insight into (1) the exportation of organic matter to the seafloor and (2) the various degradation pathways for organic detritus in the benthic environments off NW Madagascar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号