首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
哀牢山-红河断裂带中段应变分析   总被引:1,自引:0,他引:1  
对哀牢山—红河断裂带中段和平—水塘剖面、墨江—元江剖面和其它地段的岩石应变及磁组构进行了分析,表明应变强度的校正磁各向异性度PJ从断裂带向西至三叠系明显降低,变形强度向西迅速减弱。磁化率椭球体主轴展布反映出剪切带内、外变形方式的改变。剪切带内,以水平走滑运动为主;向西则以水平缩短为主。在应变分析中,对断裂带内的S—C组构两组面理夹角、杏仁体和石榴石应变标志体进行了测量,结果显示,剪切带内的磁组构和岩石组构间关系较差。此外,还对这两条剖面中的三叠系进行了应变和磁组构分析,找出了它们与磁化率椭球体对应轴率间的相关性。  相似文献   

2.
红河活动断裂带在南海西北部的反映   总被引:6,自引:0,他引:6  
红河断裂带是一条走滑的活动断裂带,它控制着南海西北部的构造活动,也控制着莺歌海盆地的形成和演化。根据南海西北部中穿过莺歌海盆地的地震剖面和历史资料进行解释,结果表明,莺歌海盆地的形成可分3个阶段:自50MaB.P.开始,沿红河断裂带的左旋错动和在印支地块的顺时针旋转的应力作用下,形成了莺歌海盆地的雏形;24MaB.P.之后在左旋压扭应力场作用下,形成了盆地西北部的反转构造;5MaB.P.之后发生了右旋错动,盆地内快速沉降,发育巨厚沉积层。根据盆地内最老和最新的沉积中心之间的距离,推测沿红河断裂带的左旋位错约200km。该断裂带发展到现代,其活动性大为减弱,曾发生10次小于5级地震。  相似文献   

3.
文章首先论述了中南—礼乐断裂带的研究现状, 然后基于重力、磁力、地震剖面和地形等地球物理资料, 综合分析了中南—礼乐断裂带在南海海盆中的空间展布和内部构造形变特征。研究表明: 该断裂带在海盆中由北至南具有明显的分段性。北段(西北次海盆与东部次海盆北部之间)断裂带宽15km, 由(18°00'N, 115°30'E)向(17°30'N, 116°00'E)呈NNW向分布。南段(西南次海盆与东部次海盆之间)断裂带宽约60~80km, 由中沙海台东侧向礼乐地块西侧呈NNW向展布。中南—礼乐断裂带的主控断裂沿中南海岭呈NNW向分布。断裂带在南北两段的过渡区总体呈NNE向展布。断裂带两侧海盆的沉积厚度和洋壳厚度存在差异, 推断该断裂带对其东西两侧海盆的地质构造具有控制作用。根据地壳结构变化, 推测该断裂带至少是一条地壳级断裂。  相似文献   

4.
红河断裂带的新生代变形机制及莺歌海盆地的实验证据   总被引:30,自引:4,他引:30  
红河断裂带是印藏碰撞过程中,印支地块被顺时针旋转挤出的走滑变形带。莺歌海盆地发育于红河断裂带海上延伸带上。根据莺歌海盆地和相邻的NE向琼东南盆地在晚中新世前(5.5Ma B.P.)独立的构造发育和差异的沉降特点,认为红河断裂不可能穿越莺琼盆地界限向北东延伸,而越东断裂和中建南断裂很可能是红河断裂的延续。莺歌海盆地成盆机制的物理模拟结合红河断裂带陆上的变形特征、年代学证据与青藏高原隆升过程的研究,参考莺歌海盆地模拟过程中不同应力场下沉降中心的长轴方向,我们推断红河断裂带新生代的演化大致分4个阶段:(1)50-38Ma B.P.期间的缓慢平移运动;(2)38—25MaB.P.期间的快速左行走滑运动;(3)25—5Ma B.P.期间的左行走滑逐渐停止阶段;(4)5Ma B.P.后的右行走滑阶段。  相似文献   

5.
李凯  宋立军  东玉  李爱荣 《海洋学报》2019,41(3):96-105
塔斯曼海位于西南太平洋地区,处于印度-澳大利亚板块和西兰板块之间,大地构造背景复杂。该地区是全球油气资源勘探的重点海域之一,但是国内对该地区的研究相当匮乏。本文根据塔斯曼海海域的自由空气重力异常对塔斯曼海海域的构造单元进行了划分,前人关于塔斯曼海的研究主要集中在Resolution海岭北部,我们认为塔斯曼海的范围应包括Resolution海岭以南,麦夸里海岭以西,塔斯曼断裂带以东的区域(即南部次盆)。结果显示,塔斯曼海域及邻区包括3个一级构造单元:东澳大利亚陆缘、西兰板块和塔斯曼海盆,且塔斯曼海盆可进一步划分为西部次盆、东部次盆和南部次盆。本文基于塔斯曼海域90 Ma以来的洋壳年龄数据编制了构造演化图,将塔斯曼海的形成演化过程分为4个阶段:(1)中生代陆内裂谷期(90~83 Ma BP);(2)塔斯曼海扩张阶段(83~61 Ma BP);(3)塔斯曼海北部扩张停止阶段(61~52 Ma BP);(4)塔斯曼海南部改造阶段(52 Ma BP至今)。  相似文献   

6.
郯庐断裂带及其周缘中新生代盆地发育特征   总被引:19,自引:2,他引:19  
郯庐断裂带作为中国东部滨太平洋地区一条巨型走滑构造带,对其周缘中、新生代盆地的发育、演化起着重要的控制作用。随着太平洋板块俯冲方向从NNW向NW到NWW的变化,郯庐断裂带的活动方式逐步从中生代左行走滑-左行斜向滑动过渡到早第三纪以左行斜向-倾向滑动,晚第三纪-第四纪转为倾滑-右行斜向滑动-右行走滑。走滑活动经历了一个循序渐进的周期演变过程。随着郯庐断裂活动方式的演变,其周缘中、新生代盆地的发育逐渐向北迁移,其中南段周缘盆地主要为中生代盆地,中段周缘盆地主要为中、新生代叠加盆地,中北段周缘盆地主要为早第三纪盆地。每个盆地都经历了拉分(伸展)裂陷到挤压反转的演化过程。此外,在同一时期、同一区域剪切应力场作用下,不同区段因其走向变化导致局部应力场变化,在增压弯曲部位发生会聚、挤压、隆升;而释压拉张部位发生离散、伸展、沉降,从而盆地发育。  相似文献   

7.
为深入研究滨海断裂带的地质构造特征,收集、整理了台湾海峡西部的地质、构造和地球物理等相关资料并进行综合分析和研究。结果显示:(1)牛山岛、兄弟屿、南澎列岛3个关键海岛上的地质和线性构造直接反映了滨海断裂带的产状、性质、分段分布及区域变化等特征;(2)台湾海峡西部存在3条主要断裂带,其中F1为滨海断裂带,属于浙闽隆起上隆中凹陷的西界控凹断裂,F2断裂带为浙闽隆起上隆中凹陷的东界控凹断裂,F3断裂带为台西盆地西界控盆断裂,3条断裂带及其内部发育的正断层组合整体组成了海峡西部断裂系,控制了台湾海峡西部区域隆、坳格局的形成;(3)滨海断裂带和海峡西部断裂系被4条NW向区域断裂带自北向南切割为5段,即平潭外海段、泉州外海段、厦门外海段、东山外海段和南澳外海段。  相似文献   

8.
1郯庐断裂带的构造特征 1.1右旋走滑 郯庐断裂具有几个右旋走滑特点:①比较平直,弯曲性不大;②花状构造;③区域性延伸的雁列式褶皱和断层;④地震相发生突然改变;⑤单个断层由正到逆的变化。  相似文献   

9.
对红河断裂带及其邻区219个地震的相关数据进行震源机制解分析,阐述了红河断裂带不同区段的地震分布特征及其地震类型的差异性,结合对研究区区域深部动力学条件的分析,从地震发生及其深部动力学特征分析红河断裂带活动的分段性特征,取得如下新认识:(1)红河断裂带北西段由于受印-藏碰撞影响而显现出挤压应力场特征,断裂活动具有逆断特征和局部拉张应力场下的正断特征;(2)中段作为华南亚板块与印支亚板块之间的主体剪切活动带,显现剪切应力场特征,断裂以剪切活动为主;(3)南东段在断裂带右旋走滑的基础上,受到深部物质抬升、岩石圈拉伸减薄的影响,而表现出张扭应力场性质,断裂活动显现张扭特征.  相似文献   

10.
在数字高程模型(DEM)数据处理和前人磷灰石裂变径迹测年(AFT)数据的基础上,分析和识别了红河断裂带中南段(弥渡至河口段)夷平面和河流阶地的展布特征,对断裂带两盘的构造地貌进行了定量、半定量研究。研究表明,弥渡-元江段、红河-河口段南西盘夷平面高于北东盘150~840m,元江-红河段北东盘夷平面高于南西盘140~230m。红河断裂带中南段经历了7.36~11.9、3.6~4.9、1.6~2.5Ma 3个主要构造活动期次。估算了元江-红河段上新世晚期以来的隆升速率,南西盘为1.38~1.53mm/a,北东盘为1.46~1.59mm/a。红河断裂带元江-红河段北东盘处于小江断裂带和红河断裂带交汇区,其构造隆升是后二者共同作用的结果。  相似文献   

11.
The Kane Fracture Zone probably is better covered by geophysical survey data, acquired both by design and incidentally, than any other fracture zone in the North Atlantic Ocean. We have used this data to map the basement morphology of the fracture zone and the adjacent crust for nearly 5700 km, from near Cape Hatteras to the middle of the Mesozoic magnetic anomalies west of Cap Blanc, northwest Africa. We use the trends of the Kane transform valley and its inactive fracture valley to determine the record of plate-motion changes, and we interpret the basement structural data to examine how the Kane transform evolved in response to changes in plate motion. Prior to about 133 Ma the Kane was a small-offset transform and its fracture valley is structurally expressed only as a shallow ( < 0.5 km) trough. In younger crust, the offset may have increased to as much as 190 km (present offset 150 km) and the fracture valley typically is up to 1.2 km deep. This part of the fracture valley records significant changes in direction of relative plate motion (5°–30°) near 102 Ma, 92 Ma, 59 Ma, 22 Ma, and 17 Ma. Each change corresponds to a major reorganization of plate boundaries in areas around the Atlantic, and the fracture-zone orientation appears to be a sensitive recorder of these events. The Kane transform has exhibited characteristic responses to changes in relative plate motion. Counterclockwise plate-motion changes put the left-lateral transform offset into extension, and the response was for ridge tips at the ridge-transform intersections to propagate across the transform valley and against the truncating lithosphere. Heating of this lithosphere appears to have produced uplift and formation of a well developed transverse ridge that bounds the inactive fracture valley on its older side. The propagating ridge tips also rotated toward the transform fault in response to the local stress field, forming prominent hooked ridges that now extend into or across the inactive fracture valley. Clockwise (compressional) changes in relative plate motion produced none of these features, and the resulting fracture valleys typically have a wide-V shape. The Kane transform experienced severe adaptions to the changes in relative plate motion at about 102 Ma (compressional shift) and 92 Ma (extensional shift), and new transform faults were formed in crust outside the contemporary transform valley. Subsequently, the transform offset has been smaller and the rates of change in plate motion have been more gradual, so transform-fault adjustment has been contained within the transform valley. The fracture-valley structure formed during extensional and compressional changes in relative plate motion can be decidedly asymmetrical in conjugate limbs of the fracture zone. This asymmetry appears to be related to the ‘absolute’ motion of the plate boundary with respect to the asthenosphere.  相似文献   

12.
A multi-channel seismic reflection image shows the reflection Moho dipping toward the Clipperton Fracture Zone in crust 1.4 my old. This seismic line crosses the fracture zone at its eastern intersection with the East Pacific Rise. The seismic observations are made in travel time, not depth. To establish constraints on crustal structure despite the absence of direct velocity determinations in this region, the possible effects of temperature, tectonism, and anomalous lithospheric structure have been considered. Conductive, advective, and frictional heating of the old crust proximal to the ridge-transform intersection can explain <20% of the observed travel-time increase. Heating has a negligible effect on crustal seismic velocity beyond ~10 km from the ridge tip. The transform tectonized zone extends only 6 km from the ridge tip. Serpentinization is unlikely to have thickened the seafloor-to-reflection Moho section in this case. It is concluded that, contrary to conventional wisdom, the 1.4 my old Cocos Plate crust thickens approaching the eastern Clipperton Ridge-Transform Intersection. Increase in thickness must be at least 0.9 km between 22 and 3 km from the fracture zone.  相似文献   

13.
Planktonic foraminiferal and ice-rafted debris count data, as well as the mean size of mineral particles of the 10–63 μm fraction (sortable silt, \(\overline {SS} \)) were used as a proxy for surface and near-bottom paleocurrent intensity variations. The data obtained support our hypothesis about turbiditic origin of the lower (80–370 cm) section of the studied AMK-4515 core. Stratigraphic subdivision of the upper section (0–80 cm) makes it possible to allocate two marine isotope stages (MIS) covering the last 27 ka. The main intervals of the North Atlantic Polar Front (PF) migrations were recorded: south of the modern PF position during early MIS 2 (24–27 ka) with PF presence in the study area during MIS 2 (20–24 ka); south of the study area during the last glacial maximum (18–20 ka). Influence of the near-bottom currents within the investigated interval led to beginning of the channel-related drift formation on the northern slope of the southern channel of the Charlie-Gibbs Fracture Zone. There is a weak relationship between intensity of near-bottom contour currents and long-term climatic cyclicity. However, intervals corresponding to Heinrich events coincide with decrease in bottom currents activity.  相似文献   

14.
The north/south-trending Panama Fracture Zone forms the present eastern boundary of the Cocos Plate, with the interplate motion being right-lateral strike-slip. This fracture zone is composed of at least four linear troughs some hundreds of kilometers in length. Separate active or historic faults undoubtedly coincide with each trough. The greatest sediment fill is found in the easternmost trough. Surface and basement depths of the western trough are generally greater than those of the other three; the western trough contains the least sediment, and is most continually linear. Morphology and sediments suggest that the principal locus of strike-slip movement within the fracture zone probably migrated incrementally westward from one fault-trough to another. From north to south, the fracture zone apparently narrows from the continental intersection to approximately 5°30N, and again widens from about 5°N to at least 3°N. Residual E/W-trending magnetic anomalies are centered between two of the four troughs; sea floor spreading in a north-south direction is interpreted to have occurred between 5°30N and 7°N from 4.5 m.y. ago to 2 m.y. ago, with the symmetric center roughly coinciding with a rift valley at 6°10N, 82°30W.  相似文献   

15.
Magnetic properties and bulk densities of 27 serpentinized harzburgite samples from the Islas Orcadas Fracture Zone, located in the vicinity of the Bouvet Triple Junction, have been measured and analyzed. Polished sections were examined using reflected light and scanning electron microscopy to characterize the size and geometric arrangement of opaque minerals. The relationship between the saturation magnetization (IS) and remanent coercive force (HR) is considered in terms of the amount of ferrimagnetic material and maghemitization. A suite of continental serpentinites from Canada is offered as contrast, to consider the role of weathering and maghemitization. Magnetite in the Islas Orcadas serpentinites is variably maghemitized, whereas continental serpentinites do not appear to contain maghemitized oxides. We verify this with optical microscopy, thermomagnetic analyses and cryogenic temperature cycling of saturation remanence. Maghemitization serves to reduce initial magnetic susceptibility, and introduce error in the use of IS to evaluate the magnetic mode of magnetite. The presence of maghemite and the existence of a three dimensional vein network for magnetite geometry would suggest that magnetic hysteresis parameters can not reliably indicate grain size. Magnetic hysteresis ratios fall in a restricted range regardless of coercivity. The apparent grain size configured in a three dimensional vein network plus maghemitization might be responsible for this observation. Maghemitization does not affect thermal magnetic stability and enhances the geophysical importance of remanence in serpentinites. Paleomagnetic data suggest that important information about the geologic circumstances for oceanic rock serpentinization is embodied in the paleomagnetic records. This observation may be very important for generation of long wavelength aeromagnetic and possibly even satellite magnetic anomalies.  相似文献   

16.
为保障我国大洋矿产资源的勘探和开采,文章根据我国于2017年对东太平洋克拉里昂-克利帕顿断裂区多金属结核保留区开展首次调查的志愿船观测数据,结合实际天气和预报过程,在对观测数据进行处理和分析的基础上,总结调查期间该保留区的气象状况和预报规律。研究结果表明:受冷高压及其外围的影响,保留区风向和风速变化较大,在预报过程中须实时关注冷空气的中心位置、走向和持续时间,适时调整作业方案;保留区气压与天气系统吻合较好,气温和湿度受降水影响,且降水频繁;除10月可能受到飓风影响外,保留区11月风速通常比10月大。  相似文献   

17.
The West O’Gorman Fracture Zone is an unusual feature that lies between the Mathematician Ridge and the East Pacific Rise on crust generated on the East Pacific Rise between 4 and 9 million years ago. We made a reconnaissance gravity, magnetic and Sea Beam study of the zone with particular emphasis on its eastern (youngest) portion. That region is characterized by an elongate main trough, a prominent median ridge and other, smaller ridges and troughs. The structure has the appearance of large-offset fracture zone, possibly in a slow spreading environment. However, magnetic anomalies indicate that the offset, if any, is quite small, and the spreading rate during formation was fast. In addition, the magnetic profiles do not support earlier models for a difference in spreading rate north and south of the fracture. The morphology of the fracture zone suggests that flexure may be responsible for some of the topography; but gravity studies indicate some of the most prominent features of the fracture zone are at least partially compensated. The main trough is underlain by a thin crust (or high density body), similar to large-offset fracture zones in the Atlantic, while the median ridge is underlain by a thickened crust. Sea Beam data does not unambiguously resolve between volcanism or serpentinization of the upper mantle as a mechanism for isostatic compensation. Why the West O’Gorman exists remains enigmatic, but we speculate that the topographic expression of a fracture zone does not require a transform offset during formation. Perhaps the spreading ridge was magma starved for some reason, resulting in a thin crust that allowed water to penetrate and serpentinize portions of the upper mantle.  相似文献   

18.
N. A. Shulga 《Oceanology》2018,58(5):672-678
This work presents the first results of a comparative study on the composition and distribution of organic matter (OM) (TOC, n-alkanes, pristane, phytane) in ferromanganese nodules and underlying sediments (0–1 cm) from three sites within the Clarion–Clipperton Fracture Zone, Pacific Ocean. Samples were collected during Cruise 120 of the RSS James Cook in 2015. The studied nodules differ in size, shape, and morphology. The TOC content in the nodules is 0.15% on average with insignificant variations which is less than in the sediments. The molecular composition of n-alkanes in the nodules is mainly determined by modern bacterial activity with high preservation of terrigenous n-alkanes in the environment of the ore deposit formation.  相似文献   

19.
Geoid data from Geosat and subsatellite basement depth profiles of the Kane Fracture Zone in the central North Atlantic were used to examine the correlation between the short-wavelength geoid (=25–100 km) and the uncompensated basement topography. The processing technique we apply allows the stacking of geoid profiles, although each repeat cycle has an unknown long-wavelength bias. We first formed the derivative of individual profiles, stacked up to 22 repeat cycles, and then integrated the average-slope profile to reconstruct the geoid height. The stacked, filtered geoid profiles have a noise level of about 7 mm in geoid height. The subsatellite basement topography was obtained from a recent compilation of structure contours on basement along the entire length of the Kane Fracture Zone. The ratio of geoid height to topography over the Kane Fracture Zone valley decreases from about 20–25 cm km-1 over young ocean crust to 5–0 cm km-1 over ocean crust older than 140 Ma. Both geoid and basement depth of profiles were projected perpendicular to the Kane Fracture Zone, resampled at equal intervals and then cross correlated. The cross correlation shows that the short-wavelength geoid height is well correlated with the basement topography. For 33 of the 37 examined pro-files, the horizontal mismatches are 10 km or less with an average mismatch of about 5 km. This correlation is quite good considering that the average width of the Kane Fracture Zone valley at median depth is 10–15 km. The remaining four profiles either cross the transverse ridge just east of the active Kane transform zone or overlie old crust of the M-anomaly sequence. The mismatch over the transverse ridge probably is related to a crustal density anomaly. The relatively poor correlation of geoid and basement depth in profiles of ocean crust older than 130–140 Ma reflects poor basement-depth control along subsatellite tracks.  相似文献   

20.
A Tiburon ROV dive within the East Blanco Depression (EBD) increased the mapped extent of a known hydrothermal field by an order of magnitude. In addition, a unique opal-CT (cristobalite-tridymite)-hematite mound was discovered, and mineralized sediments and rock were collected and analyzed. Silica-hematite mounds have not previously been found on the deep ocean floor. The light-weight rock of the porous mound consists predominantly of opal-CT and hematite filaments, rods, and strands, and averages 77.8% SiO2 and 11.8% Fe2O3. The hematite and opal-CT precipitated from a low-temperature (≥ 115° C), strongly oxidized, silica- and iron-rich, sulfur-poor hydrothermal fluid; a bacterial mat provided the framework for precipitation.

Samples collected from a volcaniclastic rock outcrop consist primarily of quartz with lesser plagioclase, smectite, pyroxene, and sulfides; SiO2 content averages 72.5%. Formation of these quartz-rich samples is best explained by cooling in an up-flow zone of silica-rich hydrothermal fluids within a low permeability system. Opal-A, opal-CT, and quartz mineralization found in different places within the EBD hydrothermal field likely reflects decreasing silica saturation and increasing temperature of the mineralizing fluid with increasing silica crystallinity.

Six push cores recovered gravel, coarse sand, and mud mineralized variously by Fe or Mn oxides, silica, and sulfides. Total rare-earth element concentrations are low for both the rock and push core samples. Ce and Eu anomalies reflect high and low temperature hydrothermal components and detrital phases.

A remarkable variety of types of mineralization occur within the EBD field, yet a consistent suite of elements is enriched (relative to basalt and unmineralized cores) in all samples analyzed: Ag, Au, S, Mo, Hg, As, Sb, Sr, and U; most samples are also enriched in Cu, Pb, Cd, and Zn. On the basis of these element enrichments, the EBD hydrothermal field might best be described as a base- and precious-metal-bearing, silica-Fe-oxide-barite deposit. Such deposits are commonly spatially and temporally associated with volcanogenic massive sulfide (VMS) ores. A plot of data for pathfinder elements shows a large hot spot at the northwestern margin of the field, which may mark a region where moderate to high temperature sulfide deposits are forming at depth; further exploration of the hydrothermal field to the northwest is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号