首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张宇  陈旭  刘娟  宁珏 《海洋与湖沼》2024,55(2):306-317
南海北部吕宋海峡是内潮最为活跃的区域之一,且涡旋种类繁多,不同特性的涡旋对内潮的影响不同。基于近岸与区域海洋共同模式(coastal and regional ocean community model,CROCO),模拟探究理想涡旋存在时,涡旋位置、极性、峰值流速和半径对内潮的影响。结果表明:涡旋位置是影响内潮的直接因素,位于涡旋区域内的内潮是主要影响对象,涡旋中心以西内潮方向变化的角度是以东的3倍。气旋涡和反气旋涡分别使潮能通量的方向向南和向北偏转,最大偏转角度超过12°,当涡旋所致背景流与内潮传播方向一致时,内潮群速度增强,反之减弱。涡旋对内潮的影响范围和幅度随着涡旋的半径和峰值流速的增大而变大。当涡旋峰值速度变大时,反气旋涡心以北的潮能通量增长量超过15 kW/m。当涡旋半径增大时,涡旋峰值速度的位置发生变化,涡旋的峰值流速和半径共同影响潮能通量水平分布结构,使其呈现纬向单峰或多峰结构。  相似文献   

2.
渤海垂直湍流混合强度季节变化的数值模拟   总被引:4,自引:1,他引:4  
渤海为极浅陆架海 ,其中湍流耗散作用显著。将三维斜压陆架海模式 HAMSOM应用于渤海 ,以渤海周边台站每天 4次的常规气象资料作为风和热驱动 ,渤海海峡开边界以 5个主要分潮调和常数计算水位强迫 ,计算了渤海 1982年水文要素和流场变化 ,并用模式以湍的局地平衡理论封闭计算出垂直湍流粘性的时空分布。结果表明 :渤海湍流混合冬强夏弱 ,变化幅度较大 ( 10~ 2 0 0 cm2 / s) ,这是风搅拌和潮混合的湍流输入在密度层化调整下的结果 ;风的作用在冬季强于潮的作用 ,而底层则由潮混合控制呈现半月周期 ;渤海湍粘性系数的空间分布十分复杂 ,这是在渤海地形和岸形轮廓限制下 ,由一定大气条件驱动的流场和密度场导致的湍流混合强度不同所致  相似文献   

3.
纪艳菊  刘淑波  齐震 《海洋科学》2014,38(12):120-127
本文通过假定底边界层湍黏性的三次多项式参数化形式,基于简化的Navier–Stokes方程,并利用超几何方程的性质,推导出了湍流粗糙底边界层的速度解析解。同时,得到了底边界层内其他的动力参数,如底剪应力、Ekman传输、Ekman抽吸及近底部速度分布场,从理论上讨论了均匀混合底边界层特征量分布特征。通过数值结果分析,进一步得出底边界层的总速度、亏损速度及其剪应力受平均流的角频率和地球自转影响比较大;而底边界层的动力结构对于底边界层顶部粗糙度不敏感。该涡黏性模式从理论上丰富了底边界层涡黏性的形式,为底边界层的动力系统研究提供了借鉴和理论参考。  相似文献   

4.
上混合中剪切湍流和朗缪尔环流动力特征差异   总被引:1,自引:0,他引:1  
Large eddy simulation(LES) is used to investigate contrasting dynamic characteristics of shear turbulence(ST)and Langmuir circulation(LC) in the surface mixed layer(SML). ST is usually induced by wind forcing in SML. LC can be driven by wave-current interaction that includes the roles of wind, wave and vortex forcing. The LES results show that LC suppresses the horizontal velocity and greatly modifies the downwind velocity profile, but increases the vertical velocity. The strong downwelling jets of LC accelerate and increase the downward transport of energy as compared to ST. The vertical eddy viscosity Km of LC is much larger than that of ST. Strong mixing induced by LC has two locations. They are located in the 2ds–3ds(Stokes depth scale) and the lower layer of the SML,respectively. Its value and position change periodically with time. In contrast, maximum Km induced by ST is located in the middle depth of the SML. The turbulent kinetic energy(TKE) generated by LC is larger than that by ST. The differences in vertical distributions of TKE and Km are evident. Therefore, the parameterization of LC cannot be solely based on TKE. For deep SML, the convection of large-scale eddies in LC plays a main role in downward transport of energy and LC can induce stronger velocity shear(S2) near the SML base. In addition, the large-scale eddies and S2 induced by LC is changing all the time, which needs to be fully considered in the parameterization of LC.  相似文献   

5.
It is well known that, within the linear nonviscous equations of tidal dynamics, the amplitudes of oscillations of the barotropic and baroclinic tidal velocity components unlimitedly increase when approaching the critical latitude. It is also known that the linear equations of tidal dynamics with a constant and specified vertical eddy viscosity indicate the occurrence of significant tidal velocity shears in the near-bottom layer, which are responsible for increasing the baroclinic tidal energy dissipation, the turbulent kinetic energy, and the thickness of the bottom boundary layer. The first circumstance—the growth of the amplitudes of oscillations of the barotropic and baroclinic tidal velocity components—is due to the elimination in the original equations of small terms, which are small everywhere except for the critical latitude zone. The second circumstance—the occurrence of significant tidal velocity shears—is due to the fact that internal tidal waves, which induce the dissipation of the baroclinic tidal energy and the diapycnal diffusion, are either not taken into account or described inadequately. It is suggested that diapycnal diffusion can lead to the degeneration (complete or partial) of tidal velocity shears, with all the ensuing consequences. The aforesaid is confirmed by simulation results obtained using the QUODDY-4 high-resolution three-dimensional finite-element hydrostatic model along the 66.25° E section, which passes in the Kara Sea across the critical latitude.  相似文献   

6.
利用旋转谱分析、调和分析和低通滤波的方法,对1987年8月至1988年1月南海北部东沙附近陆架坡折带处定点海流观测资料进行分析,研究了该区域定常余流、潮流和低频流的特征。各观测层次定常余流基本为西向流,垂向呈现较强的正压性。潮流以日分潮和半日分潮为主,呈顺时针方向旋转,全日潮流椭圆长轴普遍大于半日潮流,冬季K1分潮振幅在近底层明显增大,海流在中间层存在明显的惯性振荡。从能量角度分析,剩余流占海流总能量比例较大,定常余流能量主要存在于沿岸线方向,而垂直于岸线方向的能量主要由潮流和剩余流构成。低频流存在显著的季节变化,1988年1月呈现明显的顺时针旋转形态。冬季海表面风应力与次表层低频流有较强的相关性。结合OFES(Ocean General Circulation Model for the Earth Simulator)模拟结果,利用动量平衡分析的方法探究了动量方程中各项对低频流的贡献以及1988年1月次表层出现北向流的动力机制。冬季低频流具有较强的地转流特征,垂向分布受海水层化影响;东北风松弛和反气旋涡的联合作用是次表层出现偏北向流动的主要原因。  相似文献   

7.
A three-dimensional numerical model is established to simulate the turbulent oscillatory boundary layer over a fixed and rough bed composed by randomly arrayed solid spheres based on the lattice Boltzmann method and the large eddy simulation model.The equivalent roughness height,the location of the theoretical bed and the time variation of the friction velocity are investigated using the log-fit method.The time series of turbulent intensity and Reynolds stress are also investigated.The equivalent roughness height of cases with Reynolds numbers of 1×10~4–6×10~4 is approximately 2.81 d(grain size).The time variation of the friction velocity in an oscillatory cycle exhibits sinusoidal-like behavior.The friction factor depends on the relative roughness in the rough turbulent regime,and the pattern of solid particles arrayed as the rough bed in the numerical simulations has no obvious effect on the friction factor.  相似文献   

8.
A coupled ocean-ice-wave model is used to study ice-edge jet and eddy genesis during surface gravity wave dissipation in a frazil-pancake ice zone. With observational data from the Beaufort Sea, possible wave dissipation processes are evaluated using sensitivity experiments. As wave energy dissipated, energy was transferred into ice floe through radiation stress. Later, energy was in turn transferred into current through ocean-ice interfacial stress. Since most of the wave energy is dissipated at the ice edge, ice-edge jets, which contained strong horizontal shear, appeared both in the ice zone and the ocean. Meanwhile, the wave propagation direction determines the velocity partition in the along-ice-edge and cross-ice-edge directions, which in turn determines the strength of the along-ice-edge jet and cross-ice-edge velocity. The momentum applied in the along-ice-edge(cross-ice-edge)direction increased(decreased) with larger incident angle, which is favorable condition for producing stronger mesoscale eddies, vice versa. The dissipation rate increases(decreases) with larger(smaller) wavenumber, which enhances(reduces) the jet strength and the strength of the mesoscale eddy. The strong along-ice-edge jet may extend to a deep layer(> 200 m). If the water depth is too shallow(e.g., 80 m), the jet may be largely dampened by bottom drag, and no visible mesoscale eddies are found. The results suggest that the bathymetry and incident wavenumber(magnitude and propagation direction) are important for wave-driven current and mesoscale eddy genesis.  相似文献   

9.
本文结合二维流线可视化技术和中尺度涡旋识别技术,提出了3种中尺度涡旋时空连续可视化的方法:基于OW参数的涡旋可视化方法、基于栅格模板的涡旋可视化方法和基于矢量模板的涡旋可视化方法,这3种方法分别基于Okubo-Weiss算法、Faghmous的算法和Liu的算法来进行涡旋识别,同时将流场可视化的结果填充到涡旋内部,以获得更好的可视化效果。在可视化过程中本文引入了传输函数来对涡旋中的流线颜色和透明度进行实时交互,能够在控制界面上通过设置Key值点的颜色和位置来控制速度、涡度和OW参数等信息的显示效果。本文在性能和显示效果方面比较了3种方法的优劣。从性能上来讲,性能由高到低依次为:基于OW参数的涡旋可视化方法、基于栅格模板的涡旋可视化方法和基于矢量模板的涡旋可视化方法。从显示效果上来讲,基于OW参数的涡旋可视化方法在三者中最差,效果中有较多的杂乱的短线,同时涡旋边界较小,局限于涡旋核心区;基于栅格模板的涡旋可视化方法较第一种方法的显示效果有所提升,杂乱的短线较少,涡旋相对完整,但由于数据分辨率不够高的原因,在放大多倍后涡旋边界呈现锯齿状;基于矢量模板的涡旋可视化方法显示效果最好,涡旋完整、饱满。同时,因为首先进行了涡旋边界的重构,将涡旋边界矢量化,涡旋边界更加平滑。相对于传统长时间序列的涡旋可视化的方法而言,这3种方法提供了一个美观、动态和更富信息性的可视化方法,同时由于传输函数的加入,其可以成为科研人员研究涡旋的一个实用的工具。  相似文献   

10.
Based on the fluid motion equations, the physical meaning of eddy viscosity coefficient and the rationality of the Boussinesq hypothesis are discussed in this paper. The effect of the coefficient on numerical stability is analyzed briefly. A semi-enclosed rectangular sea area, with an orthogonal spur dike, is applied in a 2-D numerical model to study the effect of horizontal eddy viscosity coefficient (AH). The computed result shows that AH has little influence on the tidal level and averaged flow velocity, but has obvious influence on the intensity and the range of return flow around near the spur dike. Correspondingly, a wind-driven current pool and an annular current are applied in a 3-D numerical model respectively to study the effect of vertical eddy viscosity coefficient (Av). The computed result shows that the absolute value of Av is inversely proportional to that of horizontal velocity, and the vertical gradient value of Av determines the vertical distribution of horizontal velocity. The distrib  相似文献   

11.
Estimation of Bed Shear Stresses in the Pearl River Estuary   总被引:1,自引:0,他引:1  
Mean and fluctuating velocities were measured by use of a pulse coherent acoustic Doppler profiler(PC-ADP) and an acoustic Doppler velocimeter in the tidal bottom boundary layer of the Pearl River Estuary.The bed shear stresses were estimated by four different methods:log profile(LP),eddy correlation(EC),turbulent kinetic energy(TKE),and inertial dissipation(ID).The results show that(a) all four methods for estimating bed stresses have advantages and disadvantages,and they should be applied simultaneously to obtain reliable frictional velocity and to identify potential sources of errors;(b) the LP method was found to be the most suitable to estimate the bed stresses in non-stratified,quasi-steady,and homogeneous flows;and(c) in the estuary where the semi-diurnal tidal current is dominant,bed shear stresses exhibit a strong quarter-diurnal variation.  相似文献   

12.
A “slip law” connects the excess velocity or “slip” of a wind-blown water surface, relative to the motion in the middle of the mixed layer, to the wind stress, the wind-wave field, and buoyancy flux. An inner layer-outer layer model of the turbulent shear flow in the mixed layer is appropriate, as for a turbulent boundary layer or Ekman layer over a solid surface, allowing, however, for turbulent kinetic energy transfer from the air-side via breaking waves, and for Stokes drift. Asymptotic matching of the velocity distributions in inner and outer portions of the mixed layer yields a slip law of logarithmic form, akin to the drag law of a turbulent boundary layer. The dominant independent variable is the ratio of water-side roughness length to mixed layer depth or turbulent Ekman depth. Convection due to surface cooling is also an important influence, reducing surface slip. Water-side roughness length is a wind-wave property, varying with wind speed similarly to air-side roughness. Slip velocity is typically 20 times water-side friction velocity or 3% of wind speed, varying within a range of about 2 to 4.5%. A linearized model of turbulent kinetic energy distribution shows much higher values near the surface than in a wall layer. Nondimensional dissipation peaks at a value of about eight, a short distance below the surface.  相似文献   

13.
A three-dimensional,first order turbulence closure,thermal diffusion model is described inthis paper.The governing equations consist of an equation of continuity,three components of momentum,conservation equations for salt,temperature and subgridscale energy,and an equation of state.In the mod-el,according to the hypothesis of Kolmogorov and Prandtl,the viscosity coefficient of turbulent flow ofhomogeneous fluid is related to the local turbulent energy,and the horizontal and vertical exchangecoefficients of mass,heat and momentum are computed with the introduction of subgridscale turbulenceenergy.The governing equations are solved by finite difference techniques.This model is applied to theJiaozhou bay to predict thermal pollution by the Huangdao power plant.An instantaneous tidal currentfield is computed,then the distribution of temperature increment is predicted,and finally the effect of windstress on thermal discharge is discussed.  相似文献   

14.
Using the micro-structure profiler, TurboMAP, large values for the turbulent energy dissipation rate ε were found just above the bottom of the shelf and around the thermocline near the continental shelf break in the East China Sea. The values found above the bottom are produced by the bottom stress due to tidal currents, resulting in a distinct bottom mixed layer where the vertical eddy diffusivity Kz is also large. Distinct maxima in the values of ε detected around the thermocline are located at the depth of the fine-scale shear maxima detected with the moored ADCP. The vertical profiles of ε were compared with those of the current velocity, and it was found that the maxima in ε appear to correspond to those of the shear with fine scale. The magnitude of the observed ε coincided approximately with the ε calculated from the fine-scale shear and the buoyancy frequency according to the parameterization proposed by Gregg (1989), if the large-scale mean shear caused by the Kuroshio is subtracted. However, it is not clear whether the parameterization for the internal wave fields in the open ocean is applicable to the estimation of ε in the shelf break. Whereas the most predominant value of ε was found just above the bottom and around the thermocline, the maxima of ε could be found in the internal area. They could have been caused by the propagation of the vertically high wave number internal tides along the characteristic ray.  相似文献   

15.
南海北部海域是南海中尺度涡的高发区,该海区的多尺度动力过程及相互作用经常对海上工程安全造成重大影响。针对“FPSO-119”海洋工程施工船在2021年5月8日20时左右遇到“怪流”后瞬时大幅度失位现象,在排除内波等其他海洋现象与外因影响的前提下,利用海表面高度异常(SLA)数据、HYCOM模式数据以及现场实测数据,分析认为“怪流”是施工海域内中尺度涡与潮流正向叠加所导致。在此基础上,结合TPXO潮流预报数据,提出了一种将中尺度涡流与潮流矢量叠加的涡流预报方法,并通过FVCOM数值预报,对施工海域的中尺度涡流进行预报。经过与现场实测数据的后报检验,该方法能够反映施工海域内涡流在未来2 d内的主要运动特征,可作为海上工程应对“怪流”的重要参考,在工程应用中结合内波流、风海流等其他信息综合考虑分析,可更好地为海洋工程和船舶航行等提供安全保障。  相似文献   

16.
珠江河口底边界层湍流积分尺度研究   总被引:2,自引:1,他引:1  
介绍湍流积分尺度的几种常用计算方法.基于三组珠江口崖门的湍流观测资料,分别计算了一个潮周期内珠江口底边界层湍流积分尺度的变化,并对比不同计算方法的稳定性.计算结果表明,基于Taylor假定的自相关函数积分法的计算结果稳定可靠.湍流积分尺度在一个潮周期内的变化很大,积分尺度的变化与平均流的流速变化有着很好的对应关系,三个测次纵向、横向和垂向积分尺度的平均值分别约为4.9~10.4 cm、3.3~6.2 cm和4.3~5.2 cm.  相似文献   

17.
Gravitational Potential Energy (GPE) change due to horizontal/isopycnal eddy diffusion and advection is examined. Horizontal/isopycnal eddy diffusion is conceptually separated into two steps: stirring and sub scale diffusion. GPE changes associated with these two steps are analyzed. In addition, GPE changes due to stirring and subscale diffusion associated with horizontal/isopycnal advection in the Eulerian coordinates are analyzed. These formulae are applied to the SODA data for the world oceans. Our analysis indicates that horizontal/isopycnal advection in Eulerian coordinates can introduce large artificial diffusion in the model. It is shown that GPE source/sink in isopycnal coordinates is closely linked to physical property distribution, such as temperature, salinity and velocity. In comparison with z-coordinates, GPE source/sink due to stir ring/cabbeling associated with isopycnal diffusion/advection is much smaller. Although isopycnal coordi nates may be a better choice in terms of handling lateral diffusion, advection terms in the traditional Eule rian coordinates can produce artificial source of GPE due to cabbeling associated with advection. Reducing such numerical errors remains a grand challenge.  相似文献   

18.
南海北部中尺度反气旋涡的湍流混合空间分布特征   总被引:2,自引:0,他引:2  
文章利用GHP细结构参数化方法和Thorpe-scale方法,分析水下滑翔机于2015年5月在南海北部采集的数据,估算了南海北部中尺度反气旋涡的湍流混合空间分布特征。结果显示该反气旋涡的混合具有明显的空间非对称性,混合率在其运动方向的后侧边缘明显增强达到O(10-3 m2/s)量级;而在其运动方向的前侧边缘,平均混合率要小一个量级。这一混合非对称特征与中尺度的涡动能密切相关性。中尺度涡后侧边缘处存在高流速剪切,容易引起垂向剪切不稳定,可能是引起该处混合增强的主要因素。另外,中尺度涡后侧边缘发展的次中尺度过程同样导致了该处强混合。本研究结果有助于人们进一步认识南海北部的混合过程。  相似文献   

19.
INTRODUCTIONInearly 1 96 0’s,thetideandtidalcurrentintheBeibuGulfwereobservedandanalysedbyChinaincooperationwithVietnam1) .ThesystematicstudiesoftideandtidalcurrentintheBeibuGulfwerefirstcarriedoutbyFang (1 986 ) .Thehistoryofnumericalstudyoftideandtidalcurrent…  相似文献   

20.
This paper illustrates the modulation of the eddy scale distribution due to superimposition of surface wave on only current flow. Time series data of three-dimensional velocity components were measured in a laboratory flume by a three-dimensional (3D) 16-MHz micro-acoustic Doppler velocimeter (Micro-ADV). The velocity time series of only current case and waves following the current were analysed to obtain the phase-averaged mean velocities, turbulent intensities, and Reynolds stress. The probability density function of phase-averaged stream-wise and vertical velocity fluctuations showed bimodal oscillations towards the free surface for higher frequency surface waves. It was revealed that surface waves along the current effectively decrease the intermittency of turbulence of the only current flow. Surface wave changed the intermittent structure of only current flow by modulation of the energy cascade mechanism of the only current flow by introduction of wave induced length scales. Also the scale of the finer dissipative eddies were prominently enhanced by the increase in surface wave frequency. Wavelet analysis of time series of velocity signals provided information on the eddy scale and their frequency of occurrence. It was found that the large eddies are carried by the crest regions of the progressive wave while the small scale eddies are carried by the trough regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号