首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 68 毫秒
1.
《Applied Ocean Research》2005,27(4-5):187-208
In the present paper, the performance of a moored floating breakwater under the action of normal incident waves is investigated in the frequency domain. A three-dimensional hydrodynamic model of the floating body is coupled with a static and dynamic model of the mooring lines, using an iterative procedure. The stiffness coefficients of the mooring lines in six degrees of freedom of the floating breakwater are derived based on the differential changes of mooring lines' tensions caused by the static motions of the floating body. The model of the moored floating system is compared with experimental and numerical results of other investigators. An extensive parametric study is performed to investigate the effect of different configurations (length of mooring lines and draft) on the performance of the moored floating breakwater. The draft of the floating breakwater is changed through the appropriate modification of mooring lines' length. Numerical results demonstrate the effects of the wave characteristics and mooring lines' conditions (slack-taut). The existence of ‘optimum’ configuration of the moored floating breakwater in terms of wave elevation coefficients and mooring lines' forces is clearly demonstrated, through a decision framework.  相似文献   

2.
In this paper, motion response of a moored floating structure interacting with a large amplitude and steep incident wave field is studied using a coupled time domain solution scheme. Solution of the hydrodynamic boundary value problem is achieved using a three-dimensional numerical wave tank (3D NWT) approach based upon a form of Mixed-Eulerian–Lagrangian (MEL) scheme. In the developed method, nonlinearity arising due to incident wave as well as nonlinear hydrostatics is completely captured while the hydrodynamic interactions of radiation and diffraction are determined at every time step based on certain simplifying approximations. Mooring lines are modelled as linear as well as nonlinear springs. The horizontal tension for each individual mooring line is obtained from the nonlinear load-excursion plot of the lines computed using catenary theory, from which the linear and nonlinear line stiffness are determined. Motions of three realistic floating structures with different mooring systems are analyzed considering various combinations of linear and approximate nonlinear hydrodynamic load computations and linear/nonlinear mooring line stiffness. Results are discussed to bring out the influence and need for consideration of nonlinearities in the hydrodynamics and hydrostatics as well as the nonlinear modelling of the line stiffness.  相似文献   

3.
By integration of the second-order fluid pressure over the instantaneous wetted surface, the generalized first- and second-order fluid forces used in nonlinear hydroelastic analysis are obtained. The expressions for coefficients of the generalized first- and second-order hydrodynamic forces in irregular waves are also given. The coefficients of the restoring forces of a mooring system acting on a flexible floating body are presented. The linear and nonlinear three-dimensional hydroelastic equations of motion of a moored floating body in frequency domain are established. These equations include the second-order forces, induced by the rigid body rotations of large amplitudes in high waves, the variation of the instantaneous wetted surface and the coupling of the first order wave potentials. The first-order and second-order principal coordinates of the hydrelastic vibration of a moored floating body are calculated. The frequency characteristics of the principal coordinates are discussed. The numerical results indicate that the rigid resonance and the coupling resonance of a moored floating body can occur in low frequency domain while the flexible resonance can occur in high frequency domain. The hydroelastic responses of a moored box-type barge are also given in this paper. The effects of the second-order forces on the modes are investigated in detail.  相似文献   

4.
The two-dimensional problem of wave transformation by, and motions of, moored floating objects is solved numerically as a boundary value problem by direct use of Green's identity formula for a potential function. The cross-sectional shape of the floating object, the bottom configuration and the mooring arrangements may be all arbitrary. For a given incident wave, the three modes of body motion, the wave system and mooring forces are all solved at the same time. A laboratory experiment is conducted to verify the theory. Generally good agreements between the theory and experiments are obtained as long as the viscous damping due to flow separation is small. A numerical experiment indicates that a conventional sluck mooring is to worsen the wave attenuation by a floating breakwater and that a properly arranged elastic mooring can considerably improve the wave attenuation by a floating breakwater.  相似文献   

5.
《Coastal Engineering》2006,53(10):799-815
Using the volume of fluid (VOF) method, a numerical model is developed to estimate the nonlinear dynamics of a pontoon type moored submerged breakwater under wave action and the forces acting on the mooring lines, for both the vertical and inclined mooring alignments. The model is developed for a two-dimensional wave field in a vertical plane. The finite displacements of the breakwater such as sway, heave and roll in a very small time step are considered and the numerical grid cells intersected by the breakwater surfaces for changing its position due to wave action are treated using the concept of porous body model. Also, two-dimensional experimental studies are carried out to investigate the performance of the proposed model. The comparison of the computed and measured results reveals that the developed numerical model can reproduce well the dynamics of the floating body and the mooring line forces.  相似文献   

6.
—Most terminals for tankers are piers and sea islands,while other types include single pointmoorings and multiple-buoy moorings.The LNG and LPG carrier moored to the jetty is a very commonterminal for transfer of gas in open seas.It is important to estimate the motions and line tensions of theLNG carrier when it moors to a jetty in metocean environment.Normally,the motions of the LNG carrierwould be restricted by the loading arm,which is connected to LNG carrier's manifold.An example of125,000m~3 LNG carrier moored to a jetty exposed to a set of environment conditions is given.Amathematical model which is based on the equations of motion in the time domain is used to the analysisof LNG moored to an offshore jetty exposed to waves,swell,wind and current.By means of a time do-main computer program TERMSIM computations are carried out to determine and optimize the lay-outand/or orientation of the jetty and mooring gear in terms of forces in mooring lines and fenders and theenvelope of motions of the loadi  相似文献   

7.
With the floating structures pushing their activities to the ultra-deep water,model tests have presented a challenge due to the limitation of the existing wave basins.Therefore,the concept of truncated mooring system is implemented to replace the full depth mooring system in the model tests,which aims to have the same dynamic responses as the full depth system.The truncated mooring system plays such a significant role that extra attention should be paid to the mooring systems with large truncation factor.Three different types of large truncation factor mooring system are being employed in the simulations,including the homogenously truncated mooring system,non-homogenously truncated mooring system and simplified truncated mooring system.A catenary moored semi-submersible operating at 1000 m water depth is presented.In addition,truncated mooring systems are proposed at the truncated water depth of 200 m.In order to explore the applicability of these truncated mooring systems,numerical simulations of the platform’s surge free decay interacting with three different styles of truncated mooring systems are studied in calm water.Furthermore,the mooring-induced damping of the truncated mooring systems is simulated in the regular wave.Finally,the platform motion responses and mooring line dynamics are simulated in irregular wave.All these simulations are implemented by employing full time domain coupled dynamic analysis,and the results are compared with those of the full depth simulations in the same cases.The results show that the mooring-induced damping plays a significant role in platform motion responses,and all truncated mooring systems are suitable for model tests with appropriate truncated mooring line diameters.However,a large diameter is needed for simplified truncated mooring lines.The suggestions are given to the selection of truncated mooring system for different situations as well as to the truncated mooring design criteria.  相似文献   

8.
深海锚泊浮标的二阶动力分析   总被引:3,自引:0,他引:3  
计算了规则波上深海锚泊浮标的运动响应和锚泊线的动力响应。在对浮标的二阶漂移力计算时考虑了锚系的影响,并将浮标平均漂移的计算结果与不考虑锚系影响的结果进行了比较。本文计算所用浮标为单点系泊浮标,锚链由不同重量的分段组成。  相似文献   

9.
The motion response prediction of offshore structures may be carried out using time domain or frequency domain models or model tests. The frequency domain analysis uses the simplified, linearised form of the motion equations and it is very economical. The time domain analysis, unlike frequency domain models, is adequate to deal with non-linearities such as viscous damping and mooring forces, but it requires sophisticated solution techniques and it is expensive to employ. For moored semisubmersibles time domain techniques must be employed since there are strong nonlinearities in the system due to mooring line stiffness and damping and viscous drag forces. In the first part of this paper a time domain model to predict the dynamic response of a semi-submersibles are developed and the effect of thrusters and mooring line damping are incorporated into the time domain model. In the second part time domain simulations are carried out to find the total extreme motions and mooring forces.  相似文献   

10.
LI  Wen-long 《中国海洋工程》2003,17(4):541-550
The floating oil storage system has been proposed as a new facility for Strategic Petroleum Reserve (SPR) in China. Mooring is one of the key technologies to ensure the safety, reliability, and performance of the oil storage system. This paper describes the concept, analysis, design and reliability of the mooring system. For mooring system design of these oil vessels, analysis is essential of the behavior of the vessel in connection with mooring facilities of nonlinear resilience. A nonlinear mathematical model for analyzing a moored vessel is established and solved. Some results of numerical simulations are presented. Assessment of the safety regarding the mooring system in terms of failure probability is carried out. Another simulation model for calculating the failure probability of the mooring system is proposed. The design parameters that have an influence on the characteristics of the failure probability have been identified. The simulation results show that the mooring system has an annual reliab  相似文献   

11.
波浪能是一种清洁、可再生的新型能源,波浪能发电装置在海上作业时会受到变化的风、浪、流载荷作用,需要系泊系统保证其稳性和安全性。以适用于中国南海500 m水深的振荡双浮体式波浪能发电装置为研究对象,运用频域计算与时域计算结合的方法对双浮体及其系泊系统的运动响应和动力载荷进行计算,获取极端海况与工作海况下浮体运动和系泊缆索张力的时历数据。参照BV船级社NR-493规定的海上浮式结构物系泊安全系数规范,对3种系泊方案进行安全校核和对比分析。选定其中一种系泊方案,通过改变系泊系统以及能量转换器(PTO)的参数,探究参数变化对双体波浪能装置运动响应以及系泊系统特性的影响,为类似应用于深水的双体波浪能装置系泊系统的设计提供参考。  相似文献   

12.
港口中系泊船在波浪作用下运动问题的本质是浅水波浪与浮体的相互作用。与深水情况不同,浅水问题应当考虑水底、水域边界的影响及浅水波浪自身的特性,单一模型很难实现该模拟过程。为此,建立了Boussinesq方程计算入射波和Laplace方程计算散射波的全时域组合计算模型。有限元法求解的Boussinesq方程能使入射波充分考虑到水底、水域边界的影响和浅水波浪的特性;散射波被线性化,采用边界元法求解,并以浮体运动时的物面条件为入射波和散射波求解的匹配条件。该方法为完全的时域方法,计算网格不随时间变动,计算过程较为方便。通过与实验及其他数值方法的结果进行比较,验证了本模型对非线性波面、浮体的运动都有比较理想的计算结果,显示了本模型对非线性问题具有较好的计算能力。  相似文献   

13.
The three-dimensional problem of the dynamics of a moored floating object under the action of regular waves is solved numerically as a boundary value problem by use of the finite-infinite element method. The cross-sectional shape of the floating body and the mooring arrangements may all be arbitrary. The mathematical formulations of the problem and procedures of the numerical method are presented in this paper. A corresponding computer program WALOAD has been developed, which is capable of computing wave forces on fixed and floating structures. Numerical computations using this program could give very accurate results, even though rather coarse meshes were used. The program is easy to use and is readily applicable in many practical situations.  相似文献   

14.
Dynamic behavior of offshore spar platforms under regular sea waves   总被引:1,自引:0,他引:1  
Many innovative floating offshore structures have been proposed for cost effectiveness of oil and gas exploration and production in water depths exceeding one thousand meters in recent years. One such type of platform is the offshore floating Spar platform. The Spar platform is modelled as a rigid body with six degrees-of-freedom, connected to the sea floor by multi-component catenary mooring lines, which are attached to the Spar platform at the fairleads. The response dependent stiffness matrix consists of two parts (a) the hydrostatics provide restoring force in heave, roll and pitch, (b) the mooring lines provide the restoring force which are represented here by nonlinear horizontal springs. A unidirectional regular wave model is used for computing the incident wave kinematics by Airy’s wave theory and force by Morison’s equation. The response analysis is performed in time domain to solve the dynamic behavior of the moored Spar platform as an integrated system using the iterative incremental Newmark’s Beta approach. Numerical studies are conducted for sea state conditions with and without coupling of degrees-of-freedom.  相似文献   

15.
作为浮式结构最常采用的两种系泊方式,悬链式系泊和张紧式系泊皆存在不足。本文提出了一种新型系泊系统,并以一深水FPSO为例,采用完全时域耦合分析方法,对不同工作水深情况下的浮体及新型系泊系统的运动性能进行了数值模拟,并将该新型系泊系统的仿真结果与传统的张紧式系泊系统进行了比较,分析了新型系泊系统在浮体运动性能、缆索张力等方面的改善,同时探讨了该新型系泊系统的最佳工作水深。  相似文献   

16.
The dynamic analysis of a deepwater floating structure is complicated by the fact that there can be significant coupling between the dynamics of the floating vessel and the attached risers and mooring lines. Furthermore, there are significant nonlinear effects, such as geometric nonlinearities, drag forces, and second order (slow drift) forces on the vessel, and for this reason the governing equations of motion are normally solved in the time domain. This approach is computationally intensive, and the aim of the present work is to develop and validate a more efficient linearized frequency domain approach. To this end, both time and frequency domain models of a coupled vessel/riser/mooring system are developed, which each incorporate both first and second order motions. It is shown that the frequency domain approach yields very good predictions of the system response when benchmarked against the time domain analysis, and the reasons for this are discussed. It is found that the linearization scheme employed for the drag forces on the risers and mooring lines yields a very good estimate of the resulting contribution to slow drift damping.  相似文献   

17.
应用数值模拟与模型试验相结合的方法研究半潜式生产平台系泊状态下的耦合动力特性。建立耦合分析模型,时域内计算求解平台的动力响应,选取缩尺比为1∶60,采用等效截断模型方法对数值模拟结果进行验证。通过对比模型试验与数值模拟结果发现:等效截断系泊系统可以较好地模拟平台的位移响应,但在系泊张力方面却差异较大,此外极端海况下平台的甲板上浪问题也必须得到充分重视。  相似文献   

18.
Developments in the study of wave forces and construction techniques in deep water by the offshore oil industry have increased the use of marine terminals at deep water locations. A thorough understanding of moored ship dynamics when subjected to waves, wind and current combined with the use of flexible mooring lines would help to design berthing terminals for exposed areas. In this paper, the three dimensional problem of wave interactions with a barge moored to a single point is dealt with, based on the finite element method. The effect of flexibility of the mooring line and the point of mooring on the response of the barge as well as the mooring line tension is investigated. The paper compares the numerical results with model tests carried out on a barge moored to a fixed support under regular and random waves in head sea. The effect of stiffness of the mooring line on the barge response for different mooring points is discussed, which would be useful for the designers. The effect of viscous damping is also considered. The analytical results are in good agreement with the experimental results in both regular and random waves.  相似文献   

19.
This paper investigates the intact and damage survivability of a floating–moored Oscillating Water Column (OWC) device using physical model experiments and Computational Fluid Dynamics (CFD) simulations. Different extreme wave conditions have been tested using irregular and regular wave conditions. The device was moored to the tank floor via four vertical taut lines and the effect of the mooring line pre–tension on the device response was studied. It was found that the instantaneous position of the floating device was a key factor in the survivability analysis such that a certain irregular wave train that might not include the largest wave could induce the maximum response. Reducing the pre–tension minimized the maximum surge, but significantly increased the maximum tension due to mooring slack events causing snatch loads. A design regular wave with a period equal to the peak period and a height of 1.9–2.0 times the significant wave height could reasonably predict the same maximum line tension as the irregular sea state, but a smaller wave height was required to achieve the maximum surge. A single failure in the mooring system increased the maximum tension by 1.55 times the intact tension. For a damaged mooring system, using the same design regular wave condition derived from the survivability analysis with an intact mooring system could result in overestimating the maximum tension by more than 20% in comparison to the tension from the irregular sea state, but a smaller regular wave height or a different regular wave condition representing another sea state could lead to the same maximum tension. This highlighted the importance of investigating survival conditions with a damaged mooring system instead of simply using the same conditions derived for the intact mooring system.  相似文献   

20.
This paper aims to investigate the basic interaction characteristics of side-by-side moored vessels both numerically and experimentally. A higher-order boundary element method (HOBEM) combined with generalized mode approach is applied to analysis of motion and drift force of side-by-side moored multiple vessels (LNG FPSO, LNGC and shuttle tankers). Model tests were carried out for the same floating bodies investigated in the numerical study in regular and irregular waves. Global and local motion responses and drift forces of three vessels are compared with those of calculations. Discussions is highlighted on applicability of numerical method to prediction of sophisticated multi-body interaction problem of which motion behavior is very important to analysis of mooring dynamics of deep sea floating bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号