首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Coastal Engineering》2006,53(10):799-815
Using the volume of fluid (VOF) method, a numerical model is developed to estimate the nonlinear dynamics of a pontoon type moored submerged breakwater under wave action and the forces acting on the mooring lines, for both the vertical and inclined mooring alignments. The model is developed for a two-dimensional wave field in a vertical plane. The finite displacements of the breakwater such as sway, heave and roll in a very small time step are considered and the numerical grid cells intersected by the breakwater surfaces for changing its position due to wave action are treated using the concept of porous body model. Also, two-dimensional experimental studies are carried out to investigate the performance of the proposed model. The comparison of the computed and measured results reveals that the developed numerical model can reproduce well the dynamics of the floating body and the mooring line forces.  相似文献   

2.
This paper attempts to provide a better understanding of the hydrodynamic behaviour of a floating multi-resonant oscillating column wave energy device which combines the concept of a floating breakwater and a wave energy device. Experiments were conducted on a 1:20 scale model of the floating wave energy device moored by six mooring lines to study the dynamics of the device under regular waves for various scopes. The effect of non-dimensionalized wave frequency parameter on the motion response and mooring force are reported and discussed in detail in this paper.  相似文献   

3.
Interaction of surface gravity waves with multiple vertically moored surface-piercing membrane breakwaters in finite water depth is analyzed based on the linearized theory of water waves. The study is carried out using least square approximation method to understand the effect of the vertical membrane as effective breakwater. Initially the problem is studied for a single membrane wave barrier but for the case of multiple membrane breakwaters the study is carried out using the method of wide-spacing approximation. In the present study, it is observed that the deflection of the membrane is reduced with the increase in the stiffness parameter of the mooring lines attached to the membrane. In the case of single surface-piercing membrane with moored and fixed edge conditions, the reflection and transmission coefficients are compared and analyzed in detail. The resonating pattern in the reflection coefficients are also observed for multiple floating membrane which can also be referred as Bragg's resonance. In the presence of the porosity constant the wave reflection is also observed to be decreasing and the change in the distance between the vertical floating breakwaters also helps in the attenuation of wave height. It is observed that the presence of multiple floating breakwater helps in the reduction of wave height in the transmitted region.  相似文献   

4.
The two-dimensional problem of wave transformation by, and motions of, moored floating objects is solved numerically as a boundary value problem by direct use of Green's identity formula for a potential function. The cross-sectional shape of the floating object, the bottom configuration and the mooring arrangements may be all arbitrary. For a given incident wave, the three modes of body motion, the wave system and mooring forces are all solved at the same time. A laboratory experiment is conducted to verify the theory. Generally good agreements between the theory and experiments are obtained as long as the viscous damping due to flow separation is small. A numerical experiment indicates that a conventional sluck mooring is to worsen the wave attenuation by a floating breakwater and that a properly arranged elastic mooring can considerably improve the wave attenuation by a floating breakwater.  相似文献   

5.
The simple, yet versatile numerical technique particularly suitable for investigating the problem of the wave attenuation by moored floating breakwater was recently developed by the author. In order to verift the theory, nearly full scale model tests were conducted in a large wave tank (3.6 m wide × 4.5 m high × 106 m long). Both random waves and monochromatic waves were used to compare the results. A breakwater with a rectangular cross-section and a hydrodynamically shaped «three-cycle cylinderå breakwater were tested. Incident wave spectra were successfully decomposed from the multi-reflected sea spectra. Frequency response functions of transmitted wave, sway, heave and roll motions of the breakwater as well as mooring forces were all experimentally determined and compared with the theory. Generally, excellent agreements between the theory, the random wave tests and the monochromatic wave tests were obtained for the hydrodynamically shaped breakwater. Except near the modal frequencies of body motion generally good agreement between theory and experiment was obtained for the rectangular breakwater. Near the modal frequencies, the body motion was damped by the flow separation at the sharp corners of the rectangular breakwater. Generation of higher harmonics in wave, body motion and mooring forces was observed and measured, but was generally small. The slow drift oscillation and its effects on the performance of the spring moored breakwaters were also small. From the comaprisons of the small scale test and the large scale tests, it was found that the scale effects were negligibly small on the performance of the spring-moored breakwaters.  相似文献   

6.
In recent years floating breakwaters are considered for creating calm basin under open sea conditions for short period of time. In this paper, experimental studies on the performance characteristics of a horizontal floating plate breakwater are presented. The results of this two-dimensional model study are for regular waves of shallow and intermediate water depths. Analysis of the results shows that the transmission coefficient is strongly influenced by wave steepness and relative length of breakwater. It is also found to be dependent, to a lesser extent, on the relative depth of draft. Mooring forces are found to increase with increasing wave steepness and relative depth of draft. The performance of this breakwater is compared with other types of breakwater reported by earlier workers.  相似文献   

7.
The overall performance of pile-restrained flexible floating breakwaters is investigated under the action of linear monochromatic incident waves in the frequency domain. The aforementioned floating breakwaters undergo only vertical structural deflections along their length and are held in place by means of vertical piles. The total number of degrees of freedom equals the six conventional body modes, when the breakwater moves as a rigid body, plus the extra bending modes. These bending modes are introduced to represent the structural deflections of the floating breakwater and are described by the Bernoulli–Euler flexible beam equation. The number of bending modes introduced is determined through an appropriate iterative procedure. The hydrostatic coefficients corresponding to the bending modes are also derived. The numerical analysis of the flexible floating breakwaters is based on a three-dimensional hydrodynamic formulation of the floating body. A parametric study is carried out for a wide range of structural stiffness parameters and wave headings, to investigate their effect on the performance of flexible floating breakwaters. Moreover, this performance is compared with that of the corresponding pile-restrained rigid floating breakwater. Results indicated that the degree of structural stiffness and the wave heading strongly affect the performance of flexible floating breakwaters. The existence of an “optimum” value of structural stiffness is demonstrated for the entire wave frequency range.  相似文献   

8.
The application of a Smoothed Particle Hydrodynamics (SPH) model to simulate the nonlinear interaction between waves and a moored floating breakwater is presented. The main aim is to predict and validate the response of the moored floating structure under the action of periodic waves. The Euler equations together with an artificial viscosity are used as the governing equations to describe the flow field. The motion of the moored floating body is described using the Newton’s second law of motion. The interactions between the waves and structures are modeled by setting a series of SPH particles on the boundary of the structure. The hydrodynamic forces acting on the floating body are evaluated by summing up the interacting forces on the boundary particles from the neighboring fluid particles. The water surface elevations, the movements of the floating body and the moored forces are all calculated and compared with the available experimental data. Good agreements are obtained for the dynamic response and hydrodynamic performance of the floating body. The numerical results of different immersion depths of the floating body are compared with that of the corresponding fixed body. The effects of the relative length and the density of the structure on the performance of the floating body are analyzed.  相似文献   

9.
A floating breakwater produces less environmental impact, but is easily destroyed by large waves. In this paper, the spar buoy floating breakwater is introduced with a study on the wave reflection and transmission characteristics and mooring line tension induced by the waves. Mei (The Applied Dynamics of Ocean Surface Waves, Wiley, New York (1983) 740 p) proposed a theoretical solution for the reflection and transmission coefficients as the wave propagates through a one-layer slotted barrier. For a multiple-layer fence system, the analytical solution is proposed linearly. The results show that the theoretical computations agree well with the experimental trends. For a multiple-layer fence system, the transmission coefficients become maximal as the layer spacing to wavelength ratio moves to 1/2. Conversely, the coefficients become minimal, as the ratio moves to 0.3. To estimate the maximum tension of the mooring line, both numerical calculations and laboratory experiments were executed. The numerical calculation results were similar to the experimental results.  相似文献   

10.
The hydrodynamic properties of a dual pontoon floating breakwater consisting of a pair of floating cylinders of rectangular section, connected by a rigid deck, is investigated theoretically. The structure is partially restrained by linear symmetric moorings fore and aft. The fluid motion is idealized as linearized, two-dimensional potential flow and the equation of motion of the breakwater is taken to be that of a two-dimensional rigid body undergoing surge, heave and pitch motions. The solution for the fluid motion is obtained by the boundary integral equation method using an appropriate Green's function. Numerical results are presented which illustrate the effects of the various wave and structural parameters on the efficiency of the breakwater as a barrier to wave action. It is found that the wave reflection properties of the structure depend strongly on the width, draft and spacing of the pontoons and the mooring line stiffness, while the excess buoyancy of the system is of lesser importance.  相似文献   

11.
This paper investigates the hydrodynamic performance of a cylindrical-dual or rectangular-single pontoon floating breakwater using the numerical method and experimental study. The numerical simulation work is based on the multi-physics computational fluid dynamics (CFD) code and an innovative full-structured dynamic grid method applied to update the three-degree-of-freedom (3-DOF) rigid structure motions. As a time-marching scheme, the trapezoid analogue integral method is used to update the time integration combined with remeshing at each time step. The application of full-structured mesh elements can prevent grids distortion or deformation caused by large-scale movement and improve the stability of calculation. In movable regions, each moving zone is specified with particular motion modes (sway, heave and roll). A series of experimental studies are carried out to validate the performance of the floating body and verify the accuracy of the proposed numerical model. The results are systematically assessed in terms of wave coefficients, mooring line forces, velocity streamlines and the 3-DOF motions of the floating breakwater. When compared with the wave coefficient solutions, excellent agreements are achieved between the computed and experimental data, except in the vicinity of resonant frequency. The velocity streamlines and wave profile movement in the fluid field can also be reproduced using this numerical model.  相似文献   

12.
波浪作用下方箱-水平板浮式防波堤时域水动力分析   总被引:1,自引:0,他引:1  
在线性化势流理论范围内求解方箱-水平板浮式防波堤的波浪绕射和辐射问题,从时域角度分析了浮式防波堤的水动力特性.采用格林函数法将速度势定解问题的控制微分方程变换成边界上的积分方程进行数值求解,浮式防波堤的运动方程采用四阶Runge-Kutta方法求解.对不同层数水平板的浮式防波堤的波浪透射系数、运动响应和锚链受力进行了计算分析,结果表明方箱相对宽度对方箱-水平板浮式防波堤的波浪透射作用有重要的影响,透射系数随着方箱相对宽度的增加而减小.对于方箱加二层水平板的浮式防波堤,在本研究的计算条件下,当方箱相对宽度从0.110增加至0.295时,透射系数从0.88减小至0.30.水平板有利于增加浮式防波堤对波浪的衰减作用,但随着水平板层数从0增加至2,这种波浪衰减作用增加的程度趋弱.方箱-水平板的浮式防波堤的运动量小于单一方箱防波堤的运动量.与此对应,方箱-水平板防波堤的锚链受力小于单一方箱防波堤的锚链受力.  相似文献   

13.
By integration of the second-order fluid pressure over the instantaneous wetted surface, the generalized first- and second-order fluid forces used in nonlinear hydroelastic analysis are obtained. The expressions for coefficients of the generalized first- and second-order hydrodynamic forces in irregular waves are also given. The coefficients of the restoring forces of a mooring system acting on a flexible floating body are presented. The linear and nonlinear three-dimensional hydroelastic equations of motion of a moored floating body in frequency domain are established. These equations include the second-order forces, induced by the rigid body rotations of large amplitudes in high waves, the variation of the instantaneous wetted surface and the coupling of the first order wave potentials. The first-order and second-order principal coordinates of the hydrelastic vibration of a moored floating body are calculated. The frequency characteristics of the principal coordinates are discussed. The numerical results indicate that the rigid resonance and the coupling resonance of a moored floating body can occur in low frequency domain while the flexible resonance can occur in high frequency domain. The hydroelastic responses of a moored box-type barge are also given in this paper. The effects of the second-order forces on the modes are investigated in detail.  相似文献   

14.
Dynamic behavior of offshore spar platforms under regular sea waves   总被引:1,自引:0,他引:1  
Many innovative floating offshore structures have been proposed for cost effectiveness of oil and gas exploration and production in water depths exceeding one thousand meters in recent years. One such type of platform is the offshore floating Spar platform. The Spar platform is modelled as a rigid body with six degrees-of-freedom, connected to the sea floor by multi-component catenary mooring lines, which are attached to the Spar platform at the fairleads. The response dependent stiffness matrix consists of two parts (a) the hydrostatics provide restoring force in heave, roll and pitch, (b) the mooring lines provide the restoring force which are represented here by nonlinear horizontal springs. A unidirectional regular wave model is used for computing the incident wave kinematics by Airy’s wave theory and force by Morison’s equation. The response analysis is performed in time domain to solve the dynamic behavior of the moored Spar platform as an integrated system using the iterative incremental Newmark’s Beta approach. Numerical studies are conducted for sea state conditions with and without coupling of degrees-of-freedom.  相似文献   

15.
An analytical method is developed to study the sheltering effects on arc-shaped floating perforated breakwaters. In the process of analysis, the floating breakwater is assumed to be rigid, thin, vertical, and immovable and located in water with constant depth. The fluid domain is divided into two regions by imaginary interface. The velocity potential in each region is expanded by eigenfunction in the context of linear theory. By satisfying continuity of pressure and normal velocity across the imaginary fluid interface, a set of linear algebraic equations can be obtained to determine the unknown coefficients for eigenfunction expansions. The accuracy of the present model was verified by a comparison with existing results for the case of arc-shaped floating breakwater. Numerical results, in the form of contour maps of the non-dimensional wave amplitude around the breakwater and diffracted wave amplitude at typical sections, are presented for a range of wave and breakwater parameters. Results show that the sheltering effects on the arc-shaped floating perforated breakwater are closely related to the incident wavelength, the draft and the porosity of the breakwater.  相似文献   

16.
Zhang  Chong-wei  Zhuang  Qian-ze  Li  Jin-xuan  Huang  Luo-feng  Ning  De-zhi 《中国海洋工程》2022,36(5):667-681

A novel concept of wave attenuator is proposed for the defense of long waves, through integrating a flexible tail to the lee-side surface of a pile breakwater. The flexible tail works as a floating blanket made up of hinged blocks, whose scale and stiffness can be easily adjusted. A two-phase-flow numerical model is established based on the open-source computational fluid dynamics (CFD) code OpenFOAM to investigate its wave attenuation performance. Incompressible Navier—Stokes equations are solved in the fluid domain, where an additional computational solid mechanics (CSM) solver is embedded to describe the elastic deformation of the floating tail. The coupling of fluid dynamics and structural mechanics is solved in a full manner to allow assess of wave variation along the deforming body. The accuracy of the numerical model is validated through comparison with experimental data. Effects of the flexible tail on performance of the pile breakwater are investigated systematically. Dynamic behaviours of the tail are examined, and characteristics of its natural frequency are identified. For safety reasons, the wave loads impacting on the main body of the pile breakwater and the stress distribution over the tail are specially examined. It is found that both the length and stiffness of the tail can affect the wave-attenuation performance of the breakwater. A proper choice of the length and stiffness of the tail can greatly improve the long-wave defending capability of the pile breakwater. The maximum stress over the flexible tail can be restrained through optimising the deformation and stiffness of the tail.

  相似文献   

17.
Many innovative floating offshore structures have been proposed for cost effectiveness of oil and gas exploration and production in water depths exceeding one thousand meters in recent years. One such type of platform is the offshore floating Spar platform. The Spar platform is modelled as a rigid body with six degrees-of-freedom, connected to the sea floor by multi-component catenary mooring lines, which are attached to the Spar platform at the fairleads. The response dependent stiffness matrix consists of two parts (a) the hydrostatics provide restoring force in heave, roll and pitch, (b) the mooring lines provide the restoring force which are represented here by nonlinear horizontal springs. A unidirectional regular wave model is used for computing the incident wave kinematics by Airy’s wave theory and force by Morison’s equation. The response analysis is performed in time domain to solve the dynamic behavior of the moored Spar platform as an integrated system using the iterative incremental Newmark’s Beta approach. Numerical studies are conducted for sea state conditions with and without coupling of degrees-of-freedom.  相似文献   

18.
The ocean wave system in nature is very complicated and physical model studies on floating breakwaters are expensive and time consuming. Till now, there has not been available a simple mathematical model to predict the wave transmission through floating breakwaters by considering all the boundary conditions. This is due to complexity and vagueness associated with many of the governing variables and their effects on the performance of breakwater. In the present paper, Adaptive Neuro-Fuzzy Inference System (ANFIS), an implementation of a representative fuzzy inference system using a back-propagation neural network-like structure, with limited mathematical representation of the system, is developed. An ANFIS is trained on the data set obtained from experimental wave transmission of horizontally interlaced multilayer moored floating pipe breakwater using regular wave flume at Marine Structure Laboratory, National Institute of Technology Karnataka, Surathkal, India. Computer simulations conducted on this data shows the effectiveness of the approach in terms of statistical measures, such as correlation coefficient, root-mean-square error and scatter index. Influence of input parameters is assessed using the principal component analysis. Also results of ANFIS models are compared with that of artificial neural network models.  相似文献   

19.
A simple mathematical model, based on the solution of the two-dimensional problem of a vertical floating plate and on rigid body dynamics, is used to investigate the influence of different characteristics (such as mass, draft and anchoring) on the breakwater performance. The results include information about the transmission coefficient as well as about the plate displacement and anchoring forces, as functions of the plate and incident wave parameters.  相似文献   

20.
Mooring forces and motion responses of pontoon-type floating breakwaters   总被引:3,自引:0,他引:3  
The experimental and theoretical investigations on the behaviour of pontoon-type floating breakwaters are presented. A two-dimensional finite element model is adopted to study the behaviour of pontoon-type floating breakwaters in beam waves. The stiffness coefficients of the slack mooring lines are idealized as the linear stiffness coefficients, which can be derived from the basic catenary equations of the cable. The theoretical model is supported by an experimental programme conducted in a wave flume. The motion responses and mooring forces are measured for three different mooring configurations, and the results are reported and discussed in detail in this paper. The wave attenuation characteristics are presented for the configurations studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号