首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对33件采自东太平洋海隆(EPR)13°N附近的玄武岩和火山玻璃样品进行了微量元素分析,以探讨该区域玄武岩的演化过程和物质来源。测试分析结果显示所有样品的微量元素含量比值m(Tb)/m(Lu)(1.74~2.03),m(Sm)/m(Nd)(0.29~0.35)和m(Nd)/m(Y)(0.32~0.48)存在不能忽略的变化,表明它们可能受到了非均一质地幔来源的影响。m(La)/m(Nb),m(La)/m(Sm)和m(La)的线性相关性辨别结果,以及稀土元素分布型式图表现的元素分布特征等均表明东太平洋海隆13°N附近的洋中脊玄武岩可能来自不同的端元组分,也证明研究区域内的玄武岩除N-MORB(常规型MORB)外,还有E-MORB(富集型MORB)。此外,玄武岩m(Ce)/m(Pb)和m(Ce),m(Nb)/m(U)和m(Nb),以及m(Nb)/m(La)和m(La)线性相关性,均显示了这些微量元素比值和微量元素含量的正相关趋势,这可能与双组分地幔熔融有关。m(Nb)/m(Th)和m(Th)线性相关性显示出负相关,显示该区域玄武岩的地幔来源组成可能受到了富集组分的影响。分析显示,样品的Nb*值均大于1,而大部分样品的Ta*值大于1,这表示大部分玄武岩的来源很可能是从俯冲区域循环的物质。  相似文献   

2.
印度洋Carlsberg洋脊玄武岩岩石地球化学特征及其地质意义   总被引:2,自引:0,他引:2  
本文对采自印度洋Carlsberg脊14个站位的新鲜玄武岩样品进行了常量和微量元素组成分析,旨在研究岩浆源区地幔的性质以及岩浆作用过程。研究结果表明:该区玄武岩为典型的源于亏损型地幔的大洋中脊玄武岩,不同样品经历了不同程度的结晶分异作用,演化过程主要受控于橄榄石的结晶分异作用,部分样品中有单斜辉石结晶分异作用的影响,斜长石的结晶分异作用不显著;玄武岩岩浆来源于亏损型尖晶石二辉橄榄岩地幔的熔融,主微量元素组成中尚未见到富集型组分混入的证据;源区地幔不同比例的熔融作用及其后岩浆演化过程的差异是造成不同样品间地球化学性质差异的主要原因,彼此独立的局部岩浆作用过程是岩浆作用差异的主控制因素。Carlsberg脊玄武岩整体与全球标准大洋中脊玄武岩(N-MORB)平均组分相近,不同脊段间岩浆源区地幔的组成、熔融程度(比例)和熔融深度等无明显差异,这种特征向南直到CIR的北段。  相似文献   

3.
翁通爪哇高原、凯尔盖朗高原与沙茨基海隆是全球三大洋底高原, 是大量岩浆喷发到地表的结果, 火山面积分别达1.90×106、1.25×106、0.53×106km2。本文详细分析了该三大洋底高原的地形、剩余地幔布格重力异常(residual mantle Bouguer anomaly, RMBA)与重力反演的相对地壳厚度, 并结合地质与地球化学特征约束进行对比研究。结果显示, 翁通爪哇高原、凯尔盖朗高原与沙茨基海隆分别高出周围海底约4.3、5、4km, 相应的地幔布格重力异常最大变化值分别为250、330、200mGal, 以及相应的相对地壳厚度变化分别为11、13、9km, 表明形成三大洋底高原的岩浆量远远大于正常洋中脊的岩浆量。此外, 三大洋底高原皆形成于洋中脊附近。Nd、Pb、Hf同位素比值分析表明, 翁通爪哇高原的玄武岩组分为洋岛玄武岩; 凯尔盖朗高原大部分类似于洋岛玄武岩, 并含有洋中脊玄武岩组分; 沙茨基海隆的玄武岩组分主要为东太平洋海隆正常洋中脊玄武岩, 却又存在少量位于全球洋岛玄武岩范围内。这些特征揭示了三大洋底高原可能形成于“地幔柱-洋中脊相互作用”。对此本文提出了两种模式: 一为洋中脊被地幔柱拖拽至其上方; 二为洋中脊之下的软流圈受到地幔柱影响, 从而产生超常熔融与超厚地壳。  相似文献   

4.
对采自西南印度洋中脊(SWIR)50°E附近5个站位的玄武岩样品进行了岩石学和元素地球化学研究。样品主量元素、TAS分类图解和AFM图解显示,SWIR研究区样品类型主要为低钾拉斑玄武岩。相对原始地幔SWIR区玄武岩具有Ba、Nb、Sr负异常,K表现为正异常。稀土元素分配模式均为左倾型,具有轻微的Eu、Ce正异常;SWIR区玄武岩都起源于上地幔,SWIR玄武岩则明显向EMⅡ端元偏移。SWIR玄武岩地幔源区相对最为富集,可能为DM和EMⅡ的混合源区,存在少量的陆壳成分。研究区玄武质岩浆起源深度为尖晶石橄榄岩区域处于中度还原环境下,经历了明显的橄榄石+单斜辉石+斜长石的分离结晶。  相似文献   

5.
对采自太平洋洋中脊(277组)、印度洋洋中脊(159组)、马里亚纳海槽(53组)、马里亚纳岛弧(39组)、中南劳海盆(72组)共600组玄武岩数据进行了独立成分分析,从Sr-Nd-Pb五维同位素比值空间提取出占样本方差99%的3个独立成分(IC1,IC2,IC3),并利用这3个独立成分(ICs)与微量元素比值之间的相关性来讨论独立成分的起源。分析结果表明:IC1可以将马里亚纳海槽玄武岩与太平洋洋中脊及马里亚纳岛弧玄武岩区分,并且IC1值与(La/Sm)N比值呈正相关。IC2可以将马里亚纳海槽和马里亚纳岛弧玄武岩区分,而且IC2值与Ba/Th比值呈正相关;IC3可以将弧后盆地和洋中脊玄武岩区分,同时IC3值与Th/Nb呈负相关。分析独立成分的统计特征和微量元素比值特征可知,IC1与印度洋型MORB地幔的富集组分相关,IC2与太平洋板块俯冲产生的含水流体相关,IC3与再循环俯冲沉积物熔体相关。根据ICs地理分布特点,我们认为:1)马里亚纳海槽北部比南部受到更多印度洋型MORB地幔富集组分的影响,表明印度洋型MORB地幔可能从北部置换太平洋型MORB地幔;2)海槽北部地幔源区则是受到再循环沉积物熔体的影响较大,而中部和南部地幔源区可能受到更多俯冲流体的影响。  相似文献   

6.
对东马努斯盆地高镁安山岩做了全岩主微量和Sr-Nd-Pb同位素分析,并结合前人测试数据,探究了岩浆物质来源及演化过程。由主量元素[MgO、CaO、FeOT(全铁)、Al_2O_3、TiO_2和P_2O_5]含量随着硅含量的升高而降低和La/Sm随着La含量的升高而保持不变可知,岩浆在演化过程中只发生了矿物的分离结晶,分离的矿物可能为橄榄石、辉石、斜长石、钛铁矿和磷灰石。东马努斯盆地高镁安山岩的Pb和大离子亲石元素(K,Rb,Sr,Ba和U)的富集、高场强元素(Nb,Th,Ta和Ti)的亏损说明岩浆受到了俯冲板块脱水作用的影响。推测该区高镁安山岩是流体交代的地幔楔部分熔融形成的。由Sr-Nd同位素混合模拟结果可知东马努斯盆地高镁安山岩主要来源于马努斯MORB(洋中脊玄武岩),少量来自于太平洋蚀变洋壳和海底沉积物。根据Sr-Nd-Pb同位素特征推测岩浆混合作用发生在地幔源区,属于源区混染,岩浆在喷发的过程中没有发生同化混染作用,也没有加入其他体系的物质。  相似文献   

7.
西北印度洋中脊玄武岩源区地幔特征   总被引:1,自引:0,他引:1  
利用全球岩石地球化学数据库(Pet DB)中有关卡尔斯伯格洋脊(CR)、北中印度洋脊(NCIR)及南中印度洋脊(SCIR)玄武岩的微量元素及同位素组成数据,分析了玄武岩的元素地球化学特征及其沿脊轴的变化,旨在探讨玄武岩源区地幔的(不)均一性及岩浆作用过程的差异。初步研究结果表明:CR、NCIR及SCIR玄武岩组成相近,仅在个别脊段表现有微量稀土元素和同位素组成上的差异,玄武岩整体与N-MORB组成特征相近,与先前通常认为的典型印度洋中脊玄武岩不同。玄武质岩浆主要源自尖晶石二辉橄榄岩地幔的熔融,岩浆源区主要由两个地幔端元构成,即以亏损型地幔(DMM)为主(69%),其次为富集型地幔(EMⅡ,27%)。富集组分可能源自古老陆壳物质的混染。自CR经NCIR到SCIR整个印度洋中脊西北分支玄武岩的Sr、Nd及Pb同位素组成表现出均一性,表明岩浆源区地幔组成相近。在SCIR 19°S附近脊段岩浆源区地幔存在有不均一性,有EMⅡ型地幔端元混入的迹象。在CR 3.5°N附近脊段,玄武岩明显富集K、Ba、La及U等微量元素,但由于缺少同位素数据,源区地幔特征有待进一步研究。在上述研究成果的基础上,提出了该区大比例尺的调查填图及密集采样和精细室内分析是CR深入研究的基础,同时加强Sr、Nd、Pb及Re、Os、Be等同位素分析测试,可提供揭示CR地幔不均一性的可靠依据,而厘清印度洋型地幔对CR的影响程度则有助于深入认识地幔不均一性的成因及地幔动力学过程。  相似文献   

8.
洋中脊玄武岩(MORB)的微量元素成分和同位素比值具有变化范围大的特点,这些变化很难简单地用地幔部分熔融和结晶分异等岩浆演化过程来解释。传统观点认为洋中脊玄武岩的地球化学成分的多样性是由其下部地幔成分的大尺度不均一性决定的。这种地幔不均一性则是外来物质的加入造成的,如再循环的地壳物质、下大陆岩石圈、交代的岩石圈和外地核等成分加入到上地幔中。在本研究中,我们对大西洋洋中脊的玄武岩展开研究工作,评估了玄武岩源区的温压条件并综合对比了微量元素和同位素比值。靠近地幔柱的洋中脊玄武岩的地球化学和同位素成分具有较大的变化。地幔柱对洋中脊地区的影响范围可以达到1400公里,但并不是每个地幔柱都能够影响其周围1400km范围内的所有洋中脊脊段。未受地幔柱影响的洋中脊玄武岩成分和地幔潜在温度均没有异常表现。我们认为上述现象是由于地幔柱柱头形状不同造成的。地幔柱的流动形状可以分为管状和饼状两种,饼状地幔柱影响其周围的地幔是没有方向性的,而管状地幔柱对其周围地幔的影响在方向上具有选择性。沿着大西洋中脊的玄武岩的元素和同位素比值变化较大,暗示其源区具有较高的不均一性。我们认为该地区地幔不均一性主要是由于上地幔中加入了俯冲板片和拆沉下地壳造成的。另外,地幔柱的活动也不容忽视,它们影响了其周围部分洋脊段的成分变化。  相似文献   

9.
西南印度洋中脊是典型的慢速扩张洋中脊之一。对采自西南印度洋中脊50°E附近的7件玄武岩和蛇纹石化橄榄岩样品所作的分析表明,基性玄武岩类SiO2含量为43.72%~48.40%,TiO2含量较少,为1.14%~1.52%;MgO含量为5.96%~10.98%;TFe2O3含量为4.55%~5.2%;Mg#值为0.53~0.64,里特曼指数σ为2.34~20.10。微量元素Zr/Nb和Y/Nb比值为显示N-MORB的性质,但是其他微量元素的比值(Ba/Nb,Ba/Th,La/Nb,Nb/U,Nb/Pb)均不显示正常洋中脊玄武岩的特征,微量元素原始地幔标准化蛛网图显示强烈富集K和Pb,亏损Nb,稀土元素显示较为平缓的分配模式。超基性蛇纹石化橄榄岩的主量元素特征为SiO2为38.91~45.49;TiO2含量为0.02~0.28;MgO含量很高,为36.87~40.61,TFe2O3含量为2.82~3.91,Mg#值为0.92~0.94。微量元素中Ni,Cr的含量很高,原始地幔标准化蛛网图显示橄榄岩强烈富集K和Pb,Ba,Th,La,Ce,Ti中等程度富集,而亏损Nb,Sr。稀土元素总量较低,标准化曲线显示轻稀土元素富集模式。结合地球化学特征及前人研究资料分析认为,西南印度洋中脊的基性岩和超基性岩属同源性质,其原始地幔物质可能为部分正常洋中脊亏损地幔混染了陆壳或远洋沉积物的结果。  相似文献   

10.
太平洋CC区多金属结核Ce同位素组成——幔源Ce证据   总被引:3,自引:0,他引:3  
利用对太平洋多金属结核资源调查取得的多金属结核样品,对太平洋CC区多金属结核的Ce同位素组成特征进行了研究,结果表明:太平洋CC区多金属结核的Ce同位素组成.138Ce/.142Ce较低,εCe为负值,与大西洋多金属结核的同位素组成正好相反,但与洋中脊玄武岩(MORB)和太平洋0~500 m上层海水的Ce同位素组成相似.Ce、Nd的单一源模式和Ce-Nd同位素体系模式都不能解释太平洋多金属结核的这种负εCe和εNd特征,表明太平洋CC区多金属结核中的Ce、Nd可能具有不同的来源,前者来源于地幔,后者来源于大陆,幔源Ce的光致还原作用是太平洋CC区多金属结核中负εCe形成的又一因素.  相似文献   

11.
本文研究了亚丁-欧文-卡尔斯伯格脊(AOC)三联点邻近洋脊的玄武岩样品在主量、微量元素和Pb-Sr-Nd同位素特征上的差异和联系并分析其原因。结果表明,AOC附近卡尔斯伯格脊和希巴洋脊的玄武岩均为正常型洋脊玄武岩(N-MORB),起源自亏损地幔,其中卡尔斯伯格脊的样品较希巴洋脊样品更亏损;欧文洋脊玄武岩样品为洋岛玄武岩(OIB)特征,其地幔源区可能有残余陆块物质的混染;亚丁洋脊玄武岩样品类型包括N-MORB、E-MORB和可能的大陆玄武岩,与洋壳形成过程中大陆岩石圈物质的贡献程度有关。除了卡尔斯伯格脊外,阿法热点对各洋脊的岩浆均有一定程度的影响。  相似文献   

12.
本文对东太平洋海隆赤道地区北部和南部的9件玄武岩样品进行了详细的岩相学和主量、微量元素及Sr-Nd-Pb同位素分析研究,结果表明:MgO含量为7.32%~10.22%,Na_2O为3.03%~3.59%,K_2O为0.23%~0.57%,CaO为10.96%~12.39%,Al_2O_3为11.40%~13.76%,该区玄武岩均属于亚碱性玄武岩,具有MORB型的稀土及微量元素特点,原始岩浆均经历了橄榄石和斜长石的分离结晶。轻重稀土元素含量均较低,LREE/HREE比值为0.61~0.97,(La/Yb)N比值为0.72~1.76,(La/Sm)N比值为0.60~1.30,(Gd/Yb)N为0.99~1.16。Sr-Nd-Pb同位素特征更接近NMORB,其中,87Sr/86Sr和143 Nd/144 Nd比值更接近DM源区,而Pb的三种同位素比值要明显高于DM源区,更为接近EM源区。研究表明岩浆起源于尖晶石橄榄岩区,来源于较为亏损的地幔,NEPR玄武岩可能混有HIMU源区,SEPR玄武岩除了混合有HIMU成分外,可能还有少量的EMⅡ成分。  相似文献   

13.
认识地幔组成不均一性及其成因对于揭示固体地球的演化规律具有重要意义。简要论述了全球典型大洋玄武岩(洋岛/海山玄武岩(OIB)、洋中脊玄武岩(MORB))源区组成不均一性的化学特征及成因,并分析了国内外对地幔组成不均一性的认识不足之处和原因。30多年以来,玄武岩地球化学研究主要围绕地幔组成端元成分差异性及其成因,包括HIMU(‘μ’=~(238)U/~(204)Pb)、EMI和EMII及FOZO(同位素组成介于HIMU和MORB之间)富集端元,以及DMM亏损地幔端元(包括印度洋型(Indian-type MORB)和太平洋型(Pacific-type MORB)。富集地幔端元通常被认为与板块构造导致的地球化学循环有关,然而,这些端元的成因存在多解性。尽管过去常将亏损地幔作为一个地幔端元,但全球主要地幔库的亏损端元之间的同位素差别也是长期演化的结果,地幔亏损端元组成差异的研究也是至关重要的。地幔端元成因的多解性主要是由于对板块构造导致物质循环的关键环节了解不够,以及对地球早期熔融导致的上地幔亏损过程的认识不足。在总结研究现状和科学问题的基础上,本文指出地幔不均一性成因研究的潜力方向和方法:(1)深化对玄武质洋壳深部地幔压力下的物理化学相变研究,认识再循环洋壳重返浅部地幔的基本理论前提;(2)利用年轻的大陆裂张海盆玄武岩,有效检验大陆富集物质是否拆离进入地幔软流圈;(3)碳酸岩熔体来源及其对碱性玄武岩富集端元组成的贡献;(4)板块俯冲进入地幔过程中化学分异过程。  相似文献   

14.
东南印度洋脊(Southeast Indian Ridge, 简称SEIR)是中速扩张洋中脊, 在其中的108°—134°E区域的全扩张速率为72~76 mm·a -1。但在接近澳大利亚-南极洲不整合带(Australian-Antarctic Discordance, 简称AAD)区内, 海底地貌沿洋中脊的变化强烈, 其变化范围涵盖了从慢速到快速扩张洋中脊上常见的例子, 且出现了明显的地球物理与地球化学异常, 说明洋中脊在AAD区附近的岩浆供应量极不均匀。文章定量分析了高精度多波束测深数据, 计算了洋中脊不同段的地形坡度、断层比例以及平面与剖面的岩浆参数M值, 结合研究区内剩余地幔布格重力异常以及洋中脊轴部地球化学指标Na8.0、Fe8.0等资料, 分析与讨论了研究区的断层构造与岩浆活动特征的关系。研究发现, 东南印度洋脊108°—134°E区域的B区(在AAD区内)及C5段(在AAD区外西侧)发育有大量的海洋核杂岩, 而且B区的海洋核杂岩单体规模更大, 其中最大的位于B3区, 沿洋中脊扩张方向延伸约50km。研究结果首次系统性地显示, 相比东南印度洋的其他区域, B和C5异常区具有偏低的平面与剖面M值、偏高的断层比例、偏正的地幔布格重力异常以及偏高的Na8.0值与偏低的Fe8.0值, 这些异常特征可能反映了B区和C5段的岩浆初始熔融深度较浅以及岩浆熔融程度较低, 因此导致其岩浆供应量异常少, 形成较薄的地壳。研究结果同时表明, 在岩浆供应量极少的洋中脊, 构造伸展作用有利于海洋核杂岩的发育, 导致地壳进一步减薄。  相似文献   

15.
利用X射线荧光法和ICP-MS等方法对取自超慢速扩张的西南印度洋脊(SWIR) 49.6°E热液区的热液产物和玄武岩样品进行元素地球化学特征分析研究,结果表明:(1)与亏损型洋中脊玄武岩(N-MORB)相比,研究区玄武岩样品的主量元素组成显示其偏碱性,而微量元素对比表明该区玄武岩明显富集Pb元素;(2)对热液产物的综合分析表明这些样品多为Fe-Si-Mn氧羟化物且都为热液来源;(3)热液产物的∑REE含量介于玄武岩和海水之间,经球粒陨石标准化的稀土元素(REE)分布模式均表现出Eu正异常和轻稀土(LREE)富集的特征。另外,本研究还表明,利用玄武岩和热液产物地球化学指标不仅能够模拟出以热液喷口为中心的元素地球化学晕,而且能反映出热液活动的影响范围。  相似文献   

16.
在热力学计算的基础上,依据硫化物中矿物组合和热液流体化学组成绘制东太平洋海隆13°N附近热液Fe-S-H2O系统布拜图(Peurbax diagram),阐明了实际情况下东太平洋海隆13°N附近热液流体由高温至低温的过程中,硫化物中优势矿物黄铁矿的稳定场的演化。结合已有的动力学实验和硫同位素分馏的研究成果,揭示了沉淀硫化物的热液活动过程中形成优势矿物黄铁矿的可能的主要化学反应历程。在东太平洋海隆13°N附近海底热液系统中,热液流体由高温(T200℃)演化至低温(25~200℃)过程中黄铁矿的形成机制发生了明显的改变。  相似文献   

17.
按照大洋钻探计划,第147航次是在太平洋东部东太平洋海隆赤道部分的范围内进行的。 本航次的主要目的是在自然对象中核实洋中脊地壳的各种形成和成层模式,以及恢复在上地幔和地幔一地壳过渡区中进行的地质过程。解决这些问题不仅对弄清具有不同扩张速度(据地球物理资料,推测沿扩张轴存在着不同形态和埋藏深度的孤立岩浆层,它影响了海  相似文献   

18.
作为超慢速扩张脊的代表,西南印度洋中脊(SWIR)因其独一无二的地形地貌特征、洋壳结构、洋壳增生机制、岩浆和热液活动以及深部动力学过程,近30年来成为国内外研究的热点区域。基于近年来对SWIR玄武岩、辉长岩及橄榄岩的岩石学和地球化学研究成果总结,重点探讨了沿SWIR轴向(大尺度)以及单个洋脊分段(小尺度)的岩石地球化学变化特征及其影响因素,阐述了SWIR的岩浆供应及洋壳增生模式。其中,在9°~16°E斜向扩张脊,以构造作用为主的洋脊扩张模式导致了更宽的洋壳增生带和显著的地球化学异常;而在50°~51°E脊段,发育了强烈的火山活动,其成因机制包括克洛泽热点与洋中脊相互作用、微热点、古老熔融事件的残留地幔再熔融等几种观点。此外,西南印度洋中脊龙旂热液区(~49.7°E)的最新研究表明,其热液循环路径与拆离断层的发育密不可分,热液流体循环最深可达莫霍面以下6 km。因此,在今后的一段时间,应进一步加强SWIR不同空间尺度地幔源区性质、洋中脊构造与岩浆作用过程、热点-洋中脊相互作用和岩浆-热液活动与成矿等主要科学问题的研究。  相似文献   

19.
与快速扩张的洋中脊相比,主要由超慢速-慢速扩张洋脊组成的印度洋中脊具有独特的热液硫化物成矿模式.运用高精度矿相显微镜、XRD、电子探针和ICP-AES/MS等测试手段,对印度洋中脊的热液硫化物矿床样品开展了矿物成分、结构构造、地球化学等各方面分析.结果表明,来自中印度洋脊(CIR)艾德蒙德(Edmond)热液区的硫化物A主要由黄铁矿、白铁矿以及黄铜矿构成,其成矿期次可划分为白铁矿-黄铁矿阶段(Ⅰ)、闪锌矿-黄铜矿阶段(Ⅱ)以及后期石英阶段(Ⅲ),成矿流体温度经历了低-高-低的变化;同样来自于艾德蒙德热液区的硫化物B主要矿物成分为黄铁矿、白铁矿和硬石膏,成矿期次划分为硬石膏-白铁矿-黄铁矿阶段(Ⅰ)和胶状黄铁矿-石英(Ⅱ) 2个阶段,流体温度经历了低-高的变化;与之相比,来自西南印度洋脊(SWIR)龙旂热液区的硫化物C主要由纤铁矿、黄铜矿、黄铁矿和白铁矿组成,成矿期次划分为纤铁矿-白铁矿-黄铁矿阶段(Ⅰ)和闪锌矿-黄铜矿(Ⅱ)阶段,后期闪锌矿、黄铜矿的出现反映热液流体温度发生了升高.地球化学特征表明,印度洋中脊的热液硫化物总体为富Fe型,并相对富集Co和Ni元素,而Zn和Cu元素的含量相对较低.此外,取自艾德蒙德热液区的硫化物与EPR 21°N热液硫化物组成非常相似,而与慢速扩张脊TAG相比,Pb、Zn、Ag和Sr元素含量较高,Cu和Fe元素含量则较低.  相似文献   

20.
综述了20多年来洋中脊新生玄武岩中铀系不平衡研究成果,分析了铀系不平衡的形成机制和主要影响因素,并探讨了铀系不平衡研究中的一些问题。结果表明:(1)玄武质岩浆中230Th/238U不平衡可能产生于石榴子石稳定的深部源区,也可能来自230Th的"内部增长"(in-growth),过剩230Th更可能形成于含铝单斜辉石;(2)226Ra/230Th不平衡可能来自岩浆的形成过程,也可能来自岩浆迁移过程;(3)铀系不平衡与岩浆滞留时间和上升速率紧密相关,226Ra的大量过剩显示,这个不平衡事件形成于8ka以内,如果不考虑玄武质岩浆迁移过程的事件,则意味着岩浆迁移时间不超过8ka。提出当前亟待解决的问题:①准确模拟地幔部分熔融条件并测定铀系子体在熔体/地幔残留相间的分配系数;②提出更合理的结晶分异模型;③探索流体对226Ra/230Th不平衡的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号