首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distributions of kinetic energy (KE) and available potential energy (APE) in the lower and middle atmosphere of the Northern and Southern hemispheres over the period 1992–2003 are investigated. Annual mean values of the amplitude and phase of annual and semiannual oscillations in the zonal and eddy forms of KE and APE are calculated in the height range 0–55 km (1000–0.316 hPa) for the 21st layer. A clearly pronounced annual cycle of the zonal and eddy components of KE and APE with maxima in the winter season are observed in the troposphere of both hemispheres. In the lower stratosphere, the annual-cycle maximum is shifted toward the summer season because of the meridional gradient of the zonal mean temperature. In the stratosphere of both hemispheres, along with annual oscillations, semiannual oscillations are present in all forms of energy. The intensity of these oscillations for the zonal KE and APE at the upper-stratosphere heights is comparable to the intensity of annual oscillations. A local structure of the energy regime of the upper mesosphere-lower thermosphere is investigated against the background of the global energy regime from the data of meteor sounding in Kazan. It is shown that, for both the global and regional regimes, specific features of the phase profiles of energy characteristics can be explained by the presence of barriers during the propagation of wave disturbances along the vertical.  相似文献   

2.
The wind circulations in the mesosphere-lower thermosphere at polar latitudes of the Northern and Southern hemispheres are compared on the basis of long-term monthly-mean data on the prevailing zonal and meridional winds and on the parameters of diurnal and semidiurnal migrating tides obtained from the international network of radar stations. Comparison of the seasonal cycles and vertical profiles of the prevailing winds and tide parameters points to the existence of significant distinctions between the hemispheres. These distinctions are most clearly pronounced, first, in the prevailing meridional winds (for example, the annual mean winds in the polar regions have opposite directions in different hemispheres) and, second, the annual cycles of semidiurnal-tide amplitudes, as well as the character of changes in the tide phase with height, are fundamentally different for the Northern and Southern hemispheres. Along with these, significant distinctions are revealed in the prevailing zonal winds and in the diurnal-tide parameters.  相似文献   

3.
Using the data of the ERA-Interim reanalysis, we have obtained estimates of changes in temperature, the geopotential and its large-scale zonal harmonics, wind velocity, and potential vorticity in the troposphere and stratosphere of the Northern and Southern hemispheres during the 11-year solar cycle. The estimates have been obtained using the method of multiple linear regression. Specific features of response of the indicated atmospheric parameters to the solar cycle have been revealed in particular regions of the atmosphere for a whole year and depending on the season. The results of the analysis indicate the existence of a reliable statistical relationship of large-scale dynamic and thermodynamic processes in the troposphere and stratosphere with the 11-year solar cycle.  相似文献   

4.
A detailed analysis of climatic trends in the longitudinally averaged temperature, zonal wind velocity, and activity of a stationary planetary wave with the zonal wave number 1 (SPW1) is made for January. The results of analysis indicate that marked climatic temperature variations having opposite signs in the low and high latitudes are observed. These variations cause the relevant variations in the intensity and arrangement of maxima of tropospheric jet flows and, thereby, are responsible for changes in SPW1 propagation conditions. SPW1 propagation from the troposphere into the upper atmosphere is calculated with a linearized model by using the distributions of zonal mean flow that are characteristic of the 1960s and the early 21st century. These calculations indicate that, over the past 40 years, the propagation conditions have improved “on average” and the calculated SPW1 amplitude in the stratosphere and mesosphere of the winter hemisphere has increased substantially. Analysis of the amplitudes of the zonal wind velocity for SPW1 that were obtained from the NCEP/NCAR data is consistent with the results of simulation and shows that some enhancement of SPW1 activity in the lower stratosphere has been actually observed in recent years. These variations in the amplitudes are also accompanied by the enhancement of SPW1 interannual variability.  相似文献   

5.
An analysis of spectra of wave disturbances with zonal wave numbers 1 ≤ k ≤ 10 is carried out using winter (November to March) ERA-Interim reanalysis geopotential data in the troposphere and stratosphere for 1979–2016. Contributions of eastward-traveling (E), westward-traveling (W), and stationary (S) waves are estimated. The intensification of wave activity is observed in the tropical troposphere and stratosphere and in the upper stratosphere of the entire Northern Hemisphere. The intensification of wave activity in the tropics and subtropics is noted for waves of all types (E, W, and S), while in the middle and higher latitudes it is related mainly to stationary and eastward waves. Near the subtropical tropopause, the energy of stationary waves has increased in recent decades. In addition, in the tropical and subtropical troposphere and in the subtropical lower stratosphere, the energy of the eastward-traveling waves in El Niño years may be one and a half times or twice the energy in La Niña years. The spectrally weighted zonal wave numbers for waves of all types (E, W, and S) are the largest in the upper subtropical troposphere. The spectrally weighted zonal wave number for W and S waves is correlated with the Atlantic Multidecadal Oscillation index and varies by 15% in 1979–2016 (on an interdecadal time scale). The spectrally weighted wave period is larger in the stratosphere than in the troposphere. It is maximal in the middle extratropical stratosphere. The spectrally weighted wave periods correlate with the activity of sudden stratospheric warmings. The sign of this correlation depends on the latitude, atmospheric layer, and zonal wave number.  相似文献   

6.
Statistical characteristics of major and minor sudden stratospheric warmings (SSWs) in the Northern Hemisphere (NH) for 1958–2015 are analyzed using data of NCEP-NCAR, ERA 40, and ERA-Interim reanalyses. Dependencies of the number of major SSWs with the displacement of the circumpolar stratospheric vortex and the number of minor SSWs on the phase of the quasi-biennial oscillation (QBO) of the equatorial stratospheric wind and on the level of solar activity (SA) in the 11-year solar cycle have been revealed. Major SSWs accompanied by a displacement of the polar vortex occur more often at a high level of SA and at the easterly phase of the QBO in the 50–40 hPa layer, while minor SSWs occur more often at a low SA level and at the westerly phase of the QBO. An analysis of spatiotemporal dynamics of the stratospheric polar vortex at major SSWs is performed. The most probable directions of vortex displacement caused by SSWs have been revealed. Influences of the major SSWs on the total contents of NO2 and ozone, as well as on stratosphere temperature, are analyzed.  相似文献   

7.
Parameterizations of normal atmospheric modes (NAMs) and orographic gravity waves (OGWs) are implemented into the mechanistic general circulation model of the middle and upper atmosphere (MUA). Numerical experiments of sudden stratospheric warming (SSW) events are performed for climatological conditions typical for January and February using meteorological reanalysis data from the UK MET Office in the MUA model averaged over the years 1992–2011 with the easterly phase of quasi-biennial oscillation (QBO). The simulation shows that an increase in the OGW amplitudes occurs at altitudes higher than 30 km in the Northern Hemisphere after SSW. The OGW amplitudes have maximums at altitudes of about 50 km over the North American and European mountain systems before and during SSW, as well as over the Himalayas after SSW. At high latitudes of the Northern Hemisphere, significant (up to 50–70%) variations in the amplitudes of stationary planetary waves (SPWs) are observed during and after the SSW. Westward travelling NAMs have local amplitude maximums not only in the Northern Hemisphere, but also in the Southern Hemisphere, where there are waveguides for the propagation of these modes. Calculated variations of SPW and NAM amplitudes correspond to changes in the mean temperature and wind fields, as well as the Eliassen-Palm flux and atmospheric refractive index for the planetary waves, during SSW. Including OGW thermal and dynamical effects leads to an increase in amplitude (by 30–70%) of almost all SPWs before and during SSW and to a decrease (up to 20–100%) after the SSW at middle and high latitudes of the Northern Hemisphere.  相似文献   

8.
The analysis of asymmetry of probability distribution functions (PDF) is carried out for key atmospheric variables using the JRA-55 reanalysis data in the troposphere of the Northern Hemisphere for 1976–2014. The nonzero asymmetry of the PDF indicates the deviation of the PDF from the normal distribution. The analysis was carried out for two time-scale intervals: synoptic variability (SV) of 2–7 days and low-frequency variability (LV) of 9–30 days. Statistically significant deviations from the normal probability distribution occur in the regions of the most frequent formation of atmospheric baroclinic perturbations, i.e., over the western parts of the oceans in midlatitudes and downstream in the atmosphere. In the SV time-scale interval, a negative asymmetry of the vertical velocity is revealed in isobaric coordinates for the entire thickness of the free troposphere, which agrees with the overall dominance of cyclonic anomalies in this interval of time scales. In the LV interval, the asymmetry of this variable in the entire free troposphere is positive, which indicates the dominance of anticyclonic anomalies at these time scales. For the zonal velocity, temperature, and geopotential, the asymmetry sign of the PDF for variability with time scales of 2–7 days is different for the upper and lower free troposphere. The asymmetry of the PDF for atmospheric variables indicates the important role of the intermode interaction in the formation of baroclinic perturbations. The corresponding deviations of synoptic variability from the normal distribution, which is found in the upper troposphere of the subpolar and polar latitudes, can be related to the interaction of these perturbations with the winter polar vortex. These deviations of PDF from the normal distribution substantially increase the probability of the appearance of large (in absolute value) anomalies as compared to the case of the Gaussian PDF.  相似文献   

9.
1IntroductionThompson and Wallace(1998)first found the AOin1998and according to their definition,the spatialpattern of AO from the first EOF mode for the sea lev-el air-pressure(SLP)was that around the North Poleregion there was an oscillation out-of-phase with thatat the mid-latitudes zone.This oscillation had verywide frequency range from interannual to interdecadaltime scales.The AO is similar to the North Atlantic oscilla-tion(NAO)over the Atlantic.As Wallace said,theNAO could be…  相似文献   

10.
The behavior of the vertical aerosol structure (profiles of the ratio of the coefficients of the backward total and molecular scattering) in the height interval 30–80 km is analyzed from the results of lidar observations in Kamchatka over the period from October 2007 through December 2009. The obtained data revealed a regular two-layer aerosol structure in this height range with the maxima of the ratio of the scattering coefficients in the upper stratosphere at heights 35–50 km and in the mesosphere at heights of 60–75 km, as well as a relation between seasonal variations in the aerosol stratification and the circumpolar vortex affecting dynamic processes in the atmosphere of midlatitudes. The procedure of including the aftereffect of the Hamamatsu-M8259-01 PEM, which influences the error in the calculation of the ratio of scattering coefficients, is described.  相似文献   

11.
The reproduction of dynamic processes in the stratosphere at extratropical latitudes is considered in calculations of the atmospheric module of the global climate model of the Institute of Numerical Mathematics, Russian Academy of Sciences, with an upper boundary of 0.2 hPa (~60 km) for the period from 1979 to 2008 in comparison with the data observational. Changes in temperature, zonal wind, activity of planetary waves, heat fluxes in the lower stratosphere, and sudden stratospheric warmings with the displacement and splitting of the polar vortex, as well as the distribution of associated circulation anomalies in the troposphere, are analyzed.  相似文献   

12.
INTRODUCTIONIt has been pointed out in recent years by Yan et al. (1990 a, b) through analyses of timeand space variations in the different elements in the summer of the Northern Hemisphere during1951 ~ 1980 that climate jump generally occurred in the summer of the Northern Hemisphere during the 1960s, in which geopotential height on 500 hPa in the Northern Hemisphere, the nearsurface air temperature and the SST of the northwestern Pacific appeared in the early of the1960's (Fig. 1).T…  相似文献   

13.
Diurnal and annual variations in the NO2 total content (TC), the effect of its decrease owing to the products of the eruption of Mt. Pinatubo, its variations during an 11-year cycle of solar activity, and its linear trends are analyzed on the basis of data obtained from the ground-based spectrometric measurements of the NO2 TC in stratospheric vertical columns over the stations of the Network for the Detection of Atmospheric Composition Change. Latitudinal dependence of the indicated variations and trends is revealed. The annual estimates of the linear trends of the NO2 TC are found to be mostly positive for the middle and low latitudes of the Southern Hemisphere and negative for the middle and low latitudes of the Northern Hemisphere. The maximum values of the positive and negative trends amount to ~10% per ten years. In the high and polar latitudes of both hemispheres, the annual trend estimates are statistically insignificant. Seasonal estimates of the trends may differ from their annual estimates. The trends and solar-activity effect in the NO2 TC, which were estimated by using the two-dimensional model SOCRATES, as well as the analytical estimates of a zonal mean trend of the NO2 TC, on the whole, significantly differ from the estimates obtained from the measurements.  相似文献   

14.
The spectral aerosol-extinction coefficients (SAECs) obtained from SAGE III measurements are used to study the physical and integral microphysical characteristics of polar stratospheric clouds (PSCs). Different criteria for PSC identification from SAEC measurements are considered and analyzed based on model and field measurements. An intercomparison of them is performed, and the agreement and difference of the results obtained with the use of different criteria are shown. A new criterion is proposed for PSC identification, which is based on the estimate of how close the measured vector of the spectral attenuation coefficient is to a model distribution of the PSC ensemble. On the basis of different criteria, cases of PSCs are isolated from all SAGE III observations (over 30000). All selection criteria lead to a qualitatively and quantitatively similar space-time distribution of the regions of PSC localization. The PSCs observed in the region accessible to SAGE III measurements are localized in the latitudinal zones 65°–80° in the Northern Hemisphere and 45°–60° in the Southern Hemisphere during the winter-spring period. In the Northern Hemisphere, PSCs are observed within the longitudinal zone 120° W–100° E with the maximum frequency of PSC observation in the vicinity of the Greenwich meridian. In the Southern Hemisphere, the region of PSC observation is almost the same in longitude but with a certain shift in the maximum frequency of PSC observation to the west. This maximum is observed in the vicinity of 40°W, and the region of usual PSC observation is the neighborhood of 60° of the maximum’s longitude. The physical parameters of PSCs are estimated: the mean heights of the lower and upper boundaries of PSCs are 19.5 and 21.9 km, respectively, and the mean cloud temperature is 191.8 K. The integral microphysical parameters of PSCs are estimated: the total surface of NAT particles S NAT = 0.41 μm2/cm3; the total volume of NAT particles V NAT = 1.1 μm3/cm3; and, for all aerosol and cloud particles together, S is 2.9 ± 1.5 at a standard deviation of 2.7 μm2/cm3 and V is 2.8 ± 1.5 at a standard deviation of 4.2 μm3/cm3. A high frequency of PSC occurrence and high values of S and V in PSCs both for all particles and for NAT particles have been noted in January–February 2005 as compared to the rest of the period of SAGE III measurements for 2002–2005.  相似文献   

15.
Height-latitude distributions of the prevailing vertical wind for the mesosphere and lower thermosphere (70–110 km) are calculated on the basis of the empirical model of the monthly mean zonal mean prevailing horizontal wind. The presence of cellular structures is the main feature of the obtained vertical and meridional circulations. The ways such structures form and the problems of their modeling in global numerical models of the atmosphere are discussed.  相似文献   

16.
A. S. Kazmin 《Oceanology》2016,56(2):182-187
Global satellite sea surface temperature (SST) measurements and NCEP/NCAR reanalysis wind data for the period of 1982–2009 have been used to study the relationship between long-term variability of oceanic frontal zones (OFZ) and large-scale atmospheric forcing. Statistically significant positive correlations between the maximum magnitude of the meridional gradient of zonally averaged SST and meridional shear of zonal wind (which is an estimate of the Ekman convergence intensity) were found for all subpolar and subtropical OFZ of the World Ocean. Variability of the latitudinal position of OFZ cores may be associated with Ekman advection variability due to zonal wind variations. Strengthening of zonal wind results in a shift of subpolar OFZ cores to the south/north in the Northern/Southern hemispheres.  相似文献   

17.
The paper considers zonal mean (65° S–65° N, with a step of 5°) monthly mean NCEP/DOE reanalysis data on zonal wind and temperature at levels of 20 to 100 mb and the TOMS data of version 8 on total ozone (TO) for the period 1979–2005. The results of calculating linear-trend coefficients, correlation coefficients, and characteristic decay times and the data of spectral analysis are presented. In recent decades, the decrease in TO and the cooling of the lower stratosphere were accompanied by a weakening of the westerly wind. For deseasonalized series, the significance of their linear trends are evaluated with the use of the Monte Carlo method and it is shown that TO trends are significant at a level of 0.99 in extratropical latitudinal zones and that temperature trends are significant everywhere except in a narrow equatorial zone and in latitudes south of 50° S, whereas wind trends are significant only at a 50-mb level in the latitudinal belt 30°–50° in both hemispheres. According to the results of spectral analysis, for the majority of latitudinal zones, a triplet in the range of quasibiennial oscillations and oscillations with periods of about 4–6 and 9–13 years manifest themselves most persistently in the series of temperature, wind, and TO. Maximum correlation coefficients of the series of TO, wind, and temperature are observed over the equator, and, depending on altitude and latitude, TO variations may lag or lead temperature and wind variations in phase. Latitudinal distributions of characteristic decay times show an increase in this parameter in tropical and equatorial zones and its opposite behavior with altitude for temperature and wind fields.  相似文献   

18.
New information about the chemical composition of the stratosphere and mesosphere is reviewed. This information was obtained in different seasons in both hemispheres with the use of the MIPAS (IR limb sounder), Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY; UV-visible and near-IR nadir and limb viewer), and Global Ozone Mapping Spectrometer (GOMOS) instruments installed on the European Envisat satellite launched in 2002. Measurements with the MIPAS instrument make it possible to retrieve information about the composition of the nighttime atmosphere. It should be noted that several powerful solar proton events (SPEs) occurred on the Sun in the period of satellite measurements. As is well known, the ionization of the polar atmosphere by SPEs is responsible for the intense interaction between ionic and neutral constituents below 100 km, which leads to the additional formation of nitrogen oxides and OH radicals destroying the ozone. Therefore, observations of the composition of the middle atmosphere in these periods are of great interest, because such situations serve as a unique test which makes it possible to check our knowledge not only about photochemical processes in the atmosphere but also about its interaction with cosmic plasma. The results of a comparison of model calculations with newly obtained data on the chemical composition, including those for SPE periods, are presented.  相似文献   

19.
Izvestiya, Atmospheric and Oceanic Physics - The Arctic stratosphere winter season of 2020–2021 was characterized by a weakened stratospheric polar vortex as a result of a major sudden...  相似文献   

20.
We have developed a parameterization of the dynamical and thermal effects of stationary orographic waves (SOWs) generated by the earth’s surface topography and included it into the general circulation model of the middle and upper atmosphere. We have analyzed the sensitivity of atmospheric general circulation at tropospheric to thermospheric altitudes to the impact of SOWs propagating from the troposphere. Changes in atmospheric circulation due to variations in the SOW generation and propagation have been considered for different seasons. It has been shown that, during solstices, the main dynamical and thermal impacts the middle atmosphere of winter hemispheres, where the SOW-induced changes in the velocity of zonal circulation can reach 30%. During equinoxes, the SOW impact is distributed more homogeneously between the Northern and Southern hemispheres, and the relative changes in the velocity of zonal circulation of the middle atmosphere may constitute 10%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号