首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
半潜浮式风机逐渐在深海风电开发中受到关注,建立风机、平台与系泊结构耦合数值计算模型,通过FAST与AQWA链接进行风机塔基荷载及平台运动响应相互耦合传递,基于随机波与极限波组合模型生成畸形波时程序列,进行半潜浮式风机系泊失效全过程时域模拟计算分析,得出系泊锚链张力、风机、塔筒和平台运动时程响应,探究系泊失效、风机停机和叶片变桨速率对浮式风机平台系泊结构动力响应的影响。结果表明:畸形波作用下浮式平台和系泊结构动力响应显著,系泊失效导致塔基剪力增加,平台纵荡和纵摇运动响应显著增大;风机停机会引起系泊锚链张力显著减小,转子推力、塔基剪力和叶尖挥舞位移响应逐渐衰减,平台纵荡、纵摇和横摇运动响应显著减小;随着叶片变桨速率增加,风机转子推力和塔基剪力波动幅值增大。  相似文献   

2.
Offshore wind farm construction is nowadays state of the art in the wind power generation technology.However,deep water areas with huge amount of wind energy require innovative floating platforms to arrange and install wind turbines in order to harness wind energy and generate electricity.The conventional floating offshore wind turbine system is typically in the state of force imbalance due to the unique sway characteristics caused by the unfixed foundation and the high center of gravity of the platform.Therefore,a floating wind farm for 3×3 barge array platforms with shared mooring system is presented here to increase stability for floating platform.The NREL 5 MW wind turbine and ITI Energy barge reference model is taken as a basis for this work.Furthermore,the unsteady aerodynamic load solution model of the floating wind turbine is established considering the tip loss,hub loss and dynamic stall correction based on the blade element momentum(BEM)theory.The second development of AQWA is realized by FORTRAN programming language,and aerodynamic-hydrodynamic-Mooring coupled dynamics model is established to realize the algorithm solution of the model.Finally,the 6 degrees of freedom(DOF)dynamic response of single barge platform and barge array under extreme sea condition considering the coupling effect of wind and wave were observed and investigated in detail.The research results validate the feasibility of establishing barge array floating wind farm,and provide theoretical basis for further research on new floating wind farm.  相似文献   

3.
参考英国的Kincardine风机采用的新式的Semi-Spar概念,结合spar式基础和半潜式基础的特点,提出了一种新式海上浮式风机平台模型,并基于三维势流理论,利用AQWA软件进行水动力计算,验证新式平台可靠性。分析了在风、浪、流荷载联合作用下,锚链竖向夹角、系缆数量对风机浮式平台运动性能和系泊张力的影响,对系泊系统进行优化,并验证极端工况下的可靠性。结果证明风机平台水平运动和纵摇运动幅值较小,但垂荡幅值略大,而通过减小锚链竖向夹角可以控制平台运动响应幅值,增加系缆数量可以同时减小系泊张力大小。计算结果证明了新型Semi-Spar式海上风机平台可行性,为浮式风机平台及系泊系统的设计提供参考。  相似文献   

4.
In this study a typical tension-leg type of floating platform incorporated with the tuned liquid column damper (TLCD) device is studied. The purpose is to find an effective and economic means to reduce the wave induced vibrations of the floating offshore platform system. The floating offshore platform has been widely applied for the offshore exploitation such as operation station, cross-strait bridges, floating breakwater and complex of the entertainment facilities. For offshore platform being employed as a public complex the stability and comfort to stay will be the major concern besides the safety requirement. Therefore, how to mitigate the vibration induced from waves and similar environmental loading becomes an important issue. The TLCD system utilizing the water sloshing power to reduce the vibration of the main structure, a newly developed device that could effectively reduce the vibrations for many kinds of structure is the first-time employed in the floating platform system. In both the analytical and experimental results it is found that the accurately tuned TLCD system could effectively reduce the dynamic response of the offshore platform system in terms of the vibration amplitude and the resonant frequency.  相似文献   

5.
海洋石油平台TMD振动控制及参数优化   总被引:2,自引:1,他引:1  
研究了随机波浪载荷作用下调谐质量阻尼器(TMD)对桩基钢结构海洋平台的减振效果,采用谱分析法对TMD参数进行优化,优化TMD 使平台的位移响应标准偏差比无TMD下降12.4% 。并研究了TMD参数在优化域内的失调对响应的影响,TMD刚度失调比阻尼失调要敏感,欠阻尼失调比过阻尼失调要敏感。从振害累积概念出发,对谐激励下SDOF- TMD的Randall参数优化方法提出了改进。  相似文献   

6.
Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed for a 6-MW Spar-type floating offshore wind turbine (FOWT) under operating conditions and parked conditions respectively. Comparison with a platform-fixed system (land-based system) of a 6-MW wind turbine is carried out as well. Results demonstrate that the maximal out-of-plane deflection of the blade of a Spar-type system is 3.1% larger than that of a land-based system; the maximum response value of the nacelle acceleration is 215% larger for all the designed load cases being considered; the ultimate tower base fore-aft bending moment of the Spar-type system is 92% larger than that of the land-based system in all of the Design Load Cases (DLCs) being considered; the fluctuations of the mooring tension is mainly wave-induced, and the safety factor of the mooring tension is adequate for the 6-MW FOWT. The results can provide relevant modifications to the initial design for the Spar-type system, the detailed design and model basin test of the 6-MW Spar-type system.  相似文献   

7.
DING Qin-wei  LI Chun 《海洋工程》2017,31(2):131-140
The stability of platform structure is the paramount guarantee of the safe operation of the offshore floating wind turbine. The NREL 5MW floating wind turbine is established based on the OC3-Hywind Spar Buoy platform with the supplement of helical strakes for the purpose to analyze the impact of helical strakes on the dynamic response of the floating wind turbine Spar platform. The dynamic response of floating wind turbine Spar platform under wind, wave and current loading from the impact of number, height and pitch ratio of the helical strakes is analysed by the radiation and diffraction theory, the finite element method and orthogonal design method. The result reveals that the helical strakes can effectively inhibit the dynamic response of the platform but enlarge the wave exciting force; the best parameter combination is two pieces of helical strakes with the height of 15%D (D is the diameter of the platform) and the pitch ratio of 5; the height of the helical strake and its pitch ratio have significant influence on pitch response.  相似文献   

8.
Meng  Long  He  Yan-ping  Zhao  Yong-sheng  Yang  Jie  Yang  He  Han  Zhao-long  Yu  Long  Mao  Wen-gang  Du  Wei-kang 《中国海洋工程》2020,34(5):608-620
China Ocean Engineering - The floating offshore wind turbine (FOWT) is widely used for harvesting marine wind energy. Its dynamic responses under offshore wind and wave environment provide...  相似文献   

9.
借助FAST软件对OC4半潜式浮式风机平台进行数值计算,分析了影响海上浮式风机平台首摇运动的一系列重要因素及其变化规律(如风向变化、浪向变化、陀螺力矩等)。研究了平台首摇运动所诱导的风机系统动力响应,发现浮式风机首摇运动不仅会加剧平台耦合运动响应,而且还会影响风机的气动性能和加剧锚泊张力波动。提出并探讨了几种减小海上浮式风机支撑平台首摇运动的方法。  相似文献   

10.
调谐质量阻尼器对海洋平台的减振效果分析   总被引:3,自引:0,他引:3  
目前调谐质量阻尼器(TMD)的研究和设计多数是依据结构的第一阶模态进行的,忽略了TMD对结构其它模态的影响。为了明确TMD是否会对结构的高阶模态造成不利的影响以及影响的程度,论文采用模态分析法将海洋平台-TMD系统进行模态分解,推导出系统各阶模态的状态空间方程。并以一海洋平台为算例,讨论TMD针对结构的某一摸态进行设计时对各阶模态响应的减振效果,仿真的结果表明TMD对设计的模态有较好的减振效果,但对平台的其它模态响应的减振幅度有限,甚至产生不利影响,使某些模态的振动响应增幅较大。  相似文献   

11.
Compared with bottom-fixed wind turbines,the supporting platform of a floating offshore wind turbine has a larger range of motion,so the gyroscopic effects of the system will be more obvious.In this paper,the mathematical analytic expression of the gyroscopic moment of a floating offshore wind turbine is derived firstly.Then,FAST software is utilized to perform a numerical analysis on the model of a spar-type horizontal axis floating offshore wind turbine,OC3-Hywind,so as to verify the correctness of the theoretical analytical formula and take an investigation on the characteristics of gyroscopic effect.It is found that the gyroscopic moment of the horizontal axis floating offshore wind turbine is essentially caused by the vector change of the rotating rotor,which may be due to the pitch or yaw motion of the floating platform or the yawing motion of the nacelle.When the rotor is rotating,the pitch motion of the platform mainly excites the gyroscopic moment in the rotor’s yaw direction,and the yaw motion of the platform largely excites the rotor’s gyroscopic moment in pitch direction,accordingly.The results show that the gyroscopic moment of the FOWT is roughly linearly related to the rotor’s inertia,the rotor speed,and the angular velocity of the platform motion.  相似文献   

12.
黄扬  赵伟文  万德成 《海洋工程》2022,40(4):88-101
随着海上风电产业的快速发展,大型浮式风机逐渐从概念设计走向工程应用,但仍面临较大的挑战。一方面,在风、浪等环境载荷的作用下,浮式风机的气动载荷和水动力响应之间存在明显的相互干扰作用;另一方面,风力机大型化使得叶片细、长、薄的特点愈发突出,叶片柔性变形十分显著,这会影响到浮式风机的耦合性能。基于两相流CFD求解器naoe-FOAM-SJTU,结合弹性致动线模型和等效梁理论,建立了浮式风机气动—水动—气弹性耦合响应计算模型,并对规则波和剪切风作用下Spar型浮式风机的气动—水动—气弹性耦合响应进行了数值模拟分析。结果表明,风力机气动载荷使得叶片挥舞变形十分显著,而叶片的扭转变形会明显降低风力机的气动载荷。此外,风力机气动载荷会增大浮式平台的纵荡位移和纵摇角,同时,浮式平台运动响应会导致风力机气动载荷产生大幅度周期性变化。进一步地,叶片结构变形响应会使得浮式风机尾流场的速度损失和湍动能有所降低。  相似文献   

13.
对于海上浮式风机而言,由于受到剪切风、塔影效应、浮式基础运动等因素的共同影响,其气动载荷会更加复杂,因此如何准确快速地对海上风力机的气动性能进行预估显得尤为重要。基于速度势的非定常面元法理论,研究海上浮式风机气动载荷特性,编制了相关的计算程序。以NREL 5 MW风机为例,建立了叶片和尾流的三维数值模型,计算得到了不同风速下风机的输出功率以及叶片表面的压力分布,对比数据结果分析了该方法的可靠性。针对非定常流动,模拟了剪切风和塔影效应的作用,并重点分析了浮式基础运动对风机气动载荷的影响。研究表明,浮式基础的纵荡和纵摇会增加输出功率的波动幅值,艏摇运动会导致单个叶片上的气动载荷产生较大的波动,为浮式风机叶片控制提供了参考。  相似文献   

14.
概念性地设计了一种新型半潜式海上风力机基础,确定了结构的型式和尺寸,对风浪联合作用下不同工况的风力机基础稳性进行了校核.考虑黏性阻尼和二阶波浪力的作用,计算分析了风力机基础的水动力系数、幅频运动以及动力响应特性.结果表明,经过改进的新型风力机基础具有良好的稳性和水动力性能,特别是在垂荡性能上有大幅的提升.波浪入射角度对垂荡的影响不大,但对其他自由度RAOs影响较大.垂荡、横摇和纵摇RAOs均存在一个主峰值和次峰值,但峰值周期均远离波能集中区.此外还发现,不同工况下风浪入射角对风机系统的动力响应和系泊力均有较大影响,相对于工作工况,极端工况下所受风荷载较小,但是系泊力更大.  相似文献   

15.
The dynamics of jacket supported offshore wind turbine (OWT) in earthquake environment is one of the progressing focuses in the renewable energy field. Soil-structure interaction (SSI) is a fundamental principle to analyze stability and safety of the structure. This study focuses on the performance of the multiple tuned mass damper (MTMD) in minimizing the dynamic responses of the structures objected to seismic loads combined with static wind and wave loads. Response surface methodology (RSM) has been applied to design the MTMD parameters. The analyses have been performed under two different boundary conditions: fixed base (without SSI) and flexible base (with SSI). Two vibration modes of the structure have been suppressed by multi-mode vibration control principle in both cases. The effectiveness of the MTMD in reducing the dynamic response of the structure is presented. The dynamic SSI plays an important role in the seismic behavior of the jacket supported OWT, especially resting on the soft soil deposit. Finally, it shows that excluding the SSI effect could be the reason of overestimating the MTMD performance.  相似文献   

16.
赵志新  李昕  王文华  施伟 《海洋工程》2020,38(2):101-110
以超大型风力机(DTU 10 MW)为研究对象,对现有的大型(NREL 5 MW)无撑杆半潜浮式风力机支撑平台进行放大设计,用于支撑超大型风力机,基于气动-水动-伺服-弹性全耦合计算模型,根据设定的典型工况,使用FAST软件对超大型和大型无撑杆的半潜浮式风力机系统进行时域耦合分析,并依据计算结果对超大型和大型浮式风力机系统的运动响应和结构动力反应等特性进行对比分析。研究发现:半潜浮式风力机大型化后,气动荷载效应对风力机系统的激励作用更为突出,使得浮式平台运动由风荷载激励的低频共振反应比例增大,波频运动比例减小,这也导致由浮式平台低频运动激励的锚链张力反应增大。此外,高倍的飞轮转动频率对大型半潜浮式风力机叶片、塔架结构的激励作用较超大型半潜浮式风力机更为显著。  相似文献   

17.
Optimal Design of TMD Under Long-Term Nonstationary Wave Loading   总被引:3,自引:0,他引:3  
—Traditionally,the use of a tuned mass damper(TMD)is to improve the surviability of the pri-mary structure under extraordinary loading environment while the design loading condition is describedby either a harmonic function or a stationary random process that can be fully characterized by a powerspectral density(PSD)function.Aiming at prolonging the fatigue life of an offshore platform,this studyconsiders an optimal design of TMD for the platform under long-term nonstationary loading due tolong-term random sea waves characterized by a probabilistic power spectral density(PPSD)function.Inprinciple,a PPSD could be derived based on numerous ordinary PSD functions;and each of them is treat-ed as realization of the corresponding PPSD.This study provides a theoretical development for theoptimal TMD design by minimizing the cost function to be the mean square value of the expectedlong-term response.A numerical example is presented to illustrate the developed design procedure.  相似文献   

18.
The dynamics of jacket supported offshore wind turbine(OWT) in earthquake environment is one of the progressing focuses in the renewable energy field. Soil–structure interaction(SSI) is a fundamental principle to analyze stability and safety of the structure. This study focuses on the performance of the multiple tuned mass damper(MTMD) in minimizing the dynamic responses of the structures objected to seismic loads combined with static wind and wave loads. Response surface methodology(RSM) has been applied to design the MTMD parameters. The analyses have been performed under two different boundary conditions: fixed base(without SSI) and flexible base(with SSI). Two vibration modes of the structure have been suppressed by multi-mode vibration control principle in both cases. The effectiveness of the MTMD in reducing the dynamic response of the structure is presented. The dynamic SSI plays an important role in the seismic behavior of the jacket supported OWT, especially resting on the soft soil deposit.Finally, it shows that excluding the SSI effect could be the reason of overestimating the MTMD performance.  相似文献   

19.
Tension leg platform (TLP) for offshore wind turbine support is a new type structure in wind energy utilization.The strong-interaction method is used in analyzing the coupled model,and the dynamic characteristics of the TLP for offshore wind turbine support are recognized.As shown by the calculated results:for the lower modes,the shapes are water’s vibration,and the vibration of water induces the structure’s swing;the mode shapes of the structure are complex,and can largely change among different members;the mode shapes of the platform are related to the tower’s.The frequencies of the structure do not change much after adjusting the length of the tension cables and the depth of the platform;the TLP has good adaptability for the water depths and the environment loads.The change of the size and parameters of TLP can improve the dynamic characteristics,which can reduce the vibration of the TLP caused by the loads.Through the vibration analysis,the natural vibration frequencies of TLP can be distinguished from the frequencies of condition loads,and thus the resonance vibration can be avoided,therefore the offshore wind turbine can work normally in the complex conditions.  相似文献   

20.
Ding  Qin-wei  Li  Chun  Cheng  Shan-shan  Hao  Wen-xing  Huang  Zhi-qian  Yu  Wan 《中国海洋工程》2019,33(3):309-321
China Ocean Engineering - A floating offshore wind turbine (FOWT) has a great potential in producing renewable energy as offshore wind resource is rich in deep sea area (water deeper than 60 m)...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号