首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetic and bathymetric studies on the Konkan basin of the southwestern continental margin of India reveal prominent NNW-SSE, NW-SE, ENE-WSW, and WNW-ESE structural trends. The crystalline basement occurs at about 5–6 km below the mean sea level. A mid-shelf basement ridge, a shelf margin basin, and the northern extension of the Prathap Ridge complex are also inferred. The forces created by the sea-floor spreading at Carlsberg Ridge since late Cretaceous appears to shape the present-day southwestern continental margin of India and caused the offsets in the structural features along the preexisting faults.  相似文献   

2.
Analysis of the multi-channel seismic reflection, magnetic and bathymetric data collected along a transect, 1110 km long parallel to 13° N latitude across the Bay of Bengal was made. The transect is from the continental shelf off Madras to the continental slope off Andaman Island in water depths of 525 m to 3350 m and across the Western Basin (bounded by foot of the continental slope of Madras and 85° E Ridge), the 85° E Ridge, the Central Basin (between the 85° E Ridge and the Ninetyeast Ridge), the Ninetyeast Ridge and the Sunda Arc. The study revealed eight seismic sequences, H1 to H8 of parallel continuous to discontinuous reflectors. Considering especially depth to the horizons, nature of reflection and on comparison with the published seismic reflection results of Currayet al. (1982), the early Eocene (P) and Miocene (M) unconformities and the base of the Quaternary sediments (Q) are identified on the seismic section. Marked changes in velocities also occur at their boundaries.In the Western Basin the acoustic basement deepening landward is inferred as a crystalline basement overlain by about 6.7 km of sediment. In the Central Basin possibly thicker sediments than in the Western Basin are estimated. The sediments in the Sunda Arc area are relatively thick and appears to have no distinct horizons. But the entire sedimentary section appears to be consisting of folded and possibly faulted layers.The comparatively broader wavelength magnetic anomalies of the Central Basin also indicate deeper depth of their origin. Very prominent double humped feature of the 85° E Ridge and broad basement swell of the Ninetyeast Ridge are buried under about 2.8 km thick sediments except over the prominent basement high near 92° E longitude. The positive structural relief of the buried 85° E Ridge in the area is reflected in magnetic signature of about 450 nT amplitude. Flexural bulge of the 85° E Ridge and subsidence of the Ninetyeast Ridge about 24 cm my–1 rate since early Eocene period have been inferred from the seismic sequence analysis.  相似文献   

3.
The location of the India-Arabia plate boundary prior to the formation of the Sheba ridge in the Gulf of Aden is a matter of debate. A seismic dataset crossing the Owen Fracture Zone, the Owen Basin, and the Oman Margin was acquired to track the past locations of the India-Arabia plate boundary. We highlight the composite age of the Owen Basin basement, made of Paleocene oceanic crust drilled on its eastern part, and composed of pre-Maastrichtian continental and oceanic crust overlaid by ophiolites emplaced in Early Paleocene on its western side. A major fossil transform fault system crossing the Owen Basin juxtaposed these two slivers of lithosphere of different ages, and controlled the uplift of marginal ridges along the Oman Margin. This transform system deactivated ∼40 Myrs ago, coeval with the onset of ultra-slow spreading at the Carlsberg Ridge. The transform boundary then jumped to the edge of the present-day Owen Ridge during the Late Eocene-Oligocene period, before seafloor spreading began at the Sheba Ridge. This migration of the plate boundary involved the transfer of a part of the Indian oceanic lithosphere formed at the Carlsberg Ridge to Arabia. This Late Eocene-Oligocene tectonic episode at the India-Arabia plate boundary is synchronous with a global plate reorganization event corresponding to geological events at the Zagros and Himalaya belts. The Owen Ridge uplifted later, in Late Miocene times, and is unrelated to any major migration of the India-Arabia boundary.  相似文献   

4.
《Marine Geology》2006,225(1-4):265-278
The first seismic reflection data from the shallowest part of the submarine Lomonosov Ridge north of Arctic Canada and North Greenland comprise two parallel single channel lines (62 and 25 km long, offset 580 m) acquired from a 10 day camp on drifting sea ice. The top of southern Lomonosov Ridge is bevelled (550 m water depth) and only thin sediments (< 50 ms) cover acoustic basement. We suggest erosion of a former sediment drape over the ridge crest was either by a grounded marine ice sheet extending north from Ellesmere Island and/or deep draft icebergs. More than 1 km of sediments are present at the western entrance to the deep passage between southern Lomonosov Ridge and the Lincoln Sea continental margin. Here, the uppermost part (+ 0.3 s thick) of the section reflects increased sediment input during the Plio–Pleistocene. The underlying 0.7 s thick succession onlaps the slope of a subsiding Lomonosov Ridge. An unconformity at the base of the sedimentary section caps a series of NW–SE grabens and mark the end of tectonic extension and block faulting of an acoustic basement represented by older margin sediments possibly followed by minor block movements in a compressional regime. The unconformity may relate to termination of Late Cretaceous deformation between Lomonosov Ridge and Alpha Ridge or be equivalent to the Hauterivian break-up unconformity associated with the opening of the Amerasia Basin. A flexure in the stratigraphic succession above the unconformity is most likely related to differential compaction, although intraplate earthquakes do occur in the area.  相似文献   

5.
A sonic well log was obtained within the basement complex of the Walvis Ridge during Deep Sea Drilling Project Leg 74. The top of the basement complex is characterized by smooth acoustic reflectors. The rocks recovered within the basement complex consist of basalts with intercalated sediments. According to the log ~-50% of the upper 75 m of basement are igneous rocks and the other 50% sedimentary. Sonobuoy results indicate that the ratio of sediments to basalt increases with depth for an additional 225 m until a typical oceanic velocity structure is observed. Paleontological results suggest that the processes forming this upper 300 m of the basement complex was accomplished within a short time interval.  相似文献   

6.
Eleven seismic reflection profiles across Shirshov Ridge and the adjacent deep-water sedimentary basins (Komandorsky and Aleutian Basins) are presented to illustrate the sediment distribution in the western Bering Sea. A prominent seismic reflecting horizon, Reflector P (Middle—Late Miocene in age), is observed throughout both the Aleutian and Komandorsky Basins at an approximate subbottom depth of 1 km. This reflector is also present, in places, on the flanks and along the crest of Shirshov Ridge. The thickness of sediments beneath Reflector P is significantly different within the two abyssal basins. In the Aleutian Basin, the total subbottom depth to acoustic basement (basalt?) is about 4 km, while in the Komandorsky Basin the depth is about 2 km.Shirshov Ridge, a Cenozoic volcanic feature that separates the Aleutian and Komandorsky Basins, is an asymmetric bathymetric ridge characterized by thick sediments along its eastern flank and steep scarps on its western side. The southern portion of the ridge has more structural relief that includes several deep, sediment-filled basins along its summit.Velocity data from sonobuoy measurements indicate that acoustic basement in the Komandorsky Basin has an average compressional wave velocity of 5.90 km/sec. This value is considerably larger than the velocities measured for acoustic basement in the northwestern Aleutian Basin (about 5.00 km/sec) and in the central Aleutian Basin (5.40–5.57 km/sec). In the northwestern Aleutian Basin, the low-velocity acoustic basement may be volcaniclastic sediments or other indurated sediments that are overlying true basaltic basement. A refracting horizon with similar velocities (4.6–5.0 km/sec) as acoustic basement dips steeply beneath the Siberian continental margin, reaching a maximum subbottom depth of about 8 km. The thick welt of sediment at the base of the Siberian margin may be the result of sediment loading or tectonic depression prior to Late Cenozoic time.  相似文献   

7.
A sonic well log was obtained within the basement complex of the Walvis Ridge during Deep Sea Drilling Project Leg 74. The top of the basement complex is characterized by smooth acoustic reflectors. The rocks recovered within the basement complex consist of basalts with intercalated sediments. According to the log ∼-50% of the upper 75 m of basement are igneous rocks and the other 50% sedimentary. Sonobuoy results indicate that the ratio of sediments to basalt increases with depth for an additional 225 m until a typical oceanic velocity structure is observed. Paleontological results suggest that the processes forming this upper 300 m of the basement complex was accomplished within a short time interval.  相似文献   

8.
This study presents the modelling of 2-D and 3-D wide-angle seismic data acquired on the complex, volcanic passive margin of the Vøring Plateau, off Norway. Three wide-angle seismic profiles were shot and recorded simultaneously by 21 Ocean Bottom Seismometers, yielding a comprehensive 3-D data set, in addition to the three in-line profiles. Coincident multi-channel seismic profiles are used to better constrain the modelling, but the Mesozoic and deeper structures are poorly imaged due to the presence of flood basalts and sills. Velocity modelling reveals an unexpectedly large 30 km basement high hidden below the flood basalt. When interpreted as a 2-D structure, this basement high produces a modelled gravity anomaly in disagreement with the observed gravity. However, both the gravity and the seismic data suggest that the structure varies in all three directions. The modelling of the entire 3-D set of travel times leads to a coherent velocity structure that confirms the basement high; it also shows that the abrupt transition to the slower Cretaceous basin coincides in position and orientation with the fault system forming the Rån Ridge. The positive gravity anomaly over the Rån Ridge originates from the focussed and coincident elevation of the high velocity lower crust and pre-Cretaceous basement. Although the Moho is not constrained by the seismic data, the gravity modelled from the 3-D velocity model shows a better fit along the profiles. This study illustrates the interest of a 3-D acquisition of wide-angle seismic over complex structures and the benefit of the subsequent integrated interpretation of the seismic and gravity data.  相似文献   

9.
On the basis of bathymetric data and other geological and geophysical data obtained during the first survey conducted by Chinese Mainland in the area off eastern Taiwan Island from May to June in 2000, the morphological features of the region, the tectonic control to the seafloor topography and their tectonic implication are studied and discussed. The results have revealed that both the slope zone of the Ryukyu arc and the Ryukyu Trench present a typical morphotectonic characteristics controlled by the trench-arc system in the West Pacific Ocean. At the slope of eastern Taiwan Island the isobathic lines parallel to the coastline and distribute densely in nearly N-S direction and the slope gradient of topography is large. Such a unique feature is attributed to the collision of the Luzon arc and Eurasia continent. In the Huatung Basin, turbidity fans and submarine canyons are well developed, the formations of which are mainly related to the steep topography of the slope of the Luzon arc and the abundant s  相似文献   

10.
基于2000年5~6月在台湾岛以东海域调查获得的多波束全覆盖测深等地质和地球物理资料,对该海域海底地形特征进行了研究,探讨了构造对海底地形的控制作用及其构造地质意义.研究表明,琉球岛弧岛坡区和琉球海沟表现为典型的西太平洋沟-弧-盆体系控制下的构造地形;台湾岛东部岛坡等深线近南北向平行密集排列,地形坡度大,弧陆碰撞造就了该区独特的地形特征;花东盆地海底峡谷发育,其形成主要受基底起伏和走滑断裂的控制;加瓜海脊东西两侧水深和地形特征明显不同,但其基底可能属于花东盆地,加瓜海脊的东侧对应了两个不同性质板块的边界;西菲律宾海盆表现为北西向线状脊-槽相间排列,并遭受北东向转换断层的切割,根据海底地形、转换断层和磁异常条带的方向推测,研究区海底形成于距今60~45Ma的西菲律宾海盆北东-南西向扩张期.  相似文献   

11.
Seismic reflection profiles from the northern end of Juan de Fuca Ridge reveal three axial valleys having a basement relief of as much as 2 sec (two-way travel time). A thick sequence, presumably of turbidites, mainly less than 0.7 m.y. old, covers much of the area. The oldest turbidites form the upper part of the fill of a possible Tertiary trench between the ridge and North America. The second turbidite unit extends beyond the trench and once formed an abyssal plain over most of northern Juan de Fuca Ridge and the area west to Explorer Ridge. Following formation of the plain, vertical movements began that broadly uplifted the crest of Juan de Fuca Ridge, block-faulted its northern end, produced faulting along Sovanco Fracture Zone, and upwarped the basement north of the ridge. Younger turbidites have filled the lowlands created by the vertical movements. The present sea floor topography and seismic activity show evidence of continued movements.  相似文献   

12.
Multichannel seismic reflection profile data have been used to determine the internal structure of Mesozoic oceanic crust in the vicinity of the Cape Verde islands. The data show the oceanic crust to be characterized by both dipping and sub-horizontal reflectors. Several lines of evidence argue against the reflectors being scattering artifacts arising, for example, from rough basement topography. Instead, the reflectors are attributed to tectonic and magmatic processes associated with the accretion of oceanic crust at the Mid-Atlantic Ridge. The upper crust shows variable reflectivity due to both dipping and sub-horizontal events. We interpret the dipping reflectors, which have been identified on both ridge-normal and ridge-parallel profiles, as sub-surface expressions of normal faults that formed at or near the Mid-Atlantic Ridge. There is no evidence that the faults are caused by loading of the oceanic crust by either the Cape Verde islands or their associated topographic swell. Some faults, however, can be traced into the overlying sediments suggesting they may have been re-activated since their formation at the ridge. The origin of the sub-horizontal reflectors is not as clear. We believe them to be boundaries of different igneous lithologies, such as that between basalts and gabbros. The lower crust is highly reflective in some areas, whereas in others only a few dipping and sub-horizontal reflectors are observed. Some of the dipping reflectors can be traced into the upper crust, suggesting they are also normal faults. Others, however, appear to be confined to the lower crust. The sub-horizontal, discontinuous, reflectors about 2.0–2.5 seconds two-way travel time below the top of oceanic basement are attributed to the Moho.  相似文献   

13.
The nannofossils of an hydraulic piston core from the steep scarp between the St. Croix Ridge and Virgin Islands Basin were restudied. Formerly thought to represent a Pliocene debris flow, we interpret it as an early Miocene (NN1/2) hemipelagic deposit. We correlate the seismic unit sampled by piston core with the Kingshill-Jealousy Formation present on St. Croix. These sediments likely belong to an extensive, thick, deep marine cover of the St. Croix Ridge, deposited on a metamorphic—igneous basement between early Eocene and early Miocene time. Faulting did not evidently affect this sediment cover until the late Neogene.  相似文献   

14.
Compilation of currently-available gravity data permits the construction of a free-air anomaly contour map of the continental margin west of Ireland (51–54 N). Major elements in the structure of the margin, previously delineated on the basis of seismic reflection and magnetic surveys, are clearly seen on the FAA contour map, notably the Porcupine Seabight Trough, and Porcupine Ridge. However, contrary to earlier ideas, the gravity data imply that the Seabight Trough extends northwards onto the Slyne Ridge; and the Slyne Trough, formerly regarded as northeasterly prolongation of the Seabight Trough, appears to be a discrete, fault-bounded, feature separated from the latter by a basement ridge. East-west gravity profiles are modelled in terms of thinned crust with the Moho at a minimum depth of 15 km beneath the axis of the Seabight Trough. The models tend to support hypotheses invoking formation of the Seabight Trough by simple westward translation of Porcupine Ridge with respect to the Irish Mainland.  相似文献   

15.
This study investigates the magnetic and gravity signatures and associated seismic character of hyper-extended, exhumed and embryonic oceanic domains along the conjugate Iberia–Newfoundland rifted margins. As these margins have been drilled down to basement along their distal parts, it is possible to explore and test different geophysical techniques and interpretations. The aims of this work are twofold: (1) to investigate the location and nature of the two main marginal boundaries—the necking zone and the J Anomaly, which define the limits of major domains; and (2) to map the lateral variations of gravity and magnetic signatures and their detailed correlation with seismic data, from the proximal margin until the first unequivocal oceanic magnetic anomaly (e.g. C34 Anomaly). The results point out that the J Anomaly corresponds to a first-order tectono-magmatic boundary, with a basement formed by polyphase magmatism. It marks the boundary between the exhumed mantle domain, with little magmatic additions, from a domain oceanwards that reveals comparable trends, frequencies and a general magnetic pattern at both sides of the Atlantic, suggesting a coeval evolution. We propose that the domain between the J and the C34 Anomalies was formed by an embryonic spreading system, with intermittent budgets of magma, similar to those observed at very slow spreading systems. The J Anomaly may thus correspond to the location of lithospheric breakup though its origin and the nature of the domain oceanwards remains to be constrained.  相似文献   

16.
《Marine Geology》2005,216(4):205-219
Offshore Ecuador, the Carnegie Ridge is a volcanic ridge with a carbonate sediment drape. During the SALIERI Cruise, multibeam bathymetry was collected across Carnegie Ridge with the Simrad EM120 of the R/V SONNE. The most conspicuous features discovered on the Carnegie Ridge are fields of circular closed depressions widely distributed along the mid-slope of the northern and southern flanks of the ridge between 1500 and 2600 m water depth. These circular depressions are 1–4 km wide and typically 100–400 m deep. Most are flat floored and some are so densely packed that they form a honeycomb pattern. The depressions were carved into the ridge sedimentary blanket, which consists of carbonate sediment and has been dated from upper Miocene to upper Pleistocene. Several hypotheses including pockmark origin, sediment creeping, paleo-topography of the volcanic basement, effects of subbottom currents, and both marine and subaerial karstic origins are discussed. We believe that underwater dissolution process merits the most serious consideration regarding the origin of the closed depression.  相似文献   

17.
The tectonic mechanisms controlling how volcanic arcs migrate through space and geologic time within dynamic subduction environments is a fundamental tectonic process that remains poorly understood. This paper presents an integrated stratigraphic and tectonic evolution of Late Cretaceous to Recent volcanic arcs and associated basins in the southeastern Caribbean Sea using seismic reflection data, wide-angle seismic refraction data, well data, and onland geologic data. We propose a new tectonic model for the opening of the Grenada and Tobago basins and the 50-250-km eastward jump of arc volcanism from the Late Cretaceous Aves Ridge to the Miocene to Recent Lesser Antilles arc in the southeast Caribbean based on the mapping of three seismic megasequences. The striking similarity of the half-graben structure of the Grenada and Tobago basins that flank the Lesser Antilles arc, their similar smooth basement character, their similar deep-marine seismic facies, and their similar Paleogene sediment thickness mapped on a regional grid of seismic data suggest that the two basins formed as a single, saucer-shaped, oceanic crust Paleogene forearc basin adjacent to the now dormant Aves Ridge. This single forearc basin continued to extend and widen through flexural subsidence during the early to middle Eocene probably because of slow rollback of the subducting Atlantic oceanic slab. Rollback may have been accelerated by oblique collision of the southern Aves Ridge and southern Lesser Antilles arc with the South American continent. Uplift and growth of the southern Lesser Antilles arc divided the Grenada and Tobago basins by early to middle Miocene time. Inversion of normal faults and uplift effects along both edges of the Lesser Antilles arc are most pronounced in its southern zone of arc collision with the South American continent. The late Miocene to Recent depositional histories of the Grenada and Tobago basins are distinct because of isolation of the Grenada basin by growth and uplift of the Neogene Lesser Antilles volcanic ridge.  相似文献   

18.
A south-dipping Subduction system which underlies the Trobriand Trough and 149° Embayment, on the southern margin of the Solomon Sea, is active or was recently active. Oceanic basement is overlain by 2.5 s, two-way travel time (TWTT), of sediment that shows at least two stages of deformation: early thrusts (inner wall) and normal faults (outer wall), and later normal faults that have elevated the outer trench margin. Thrust anticlines and slope basins are developed on the inner wall. The floor of the Solomon Sea Basin arches upward between the Trobriand Trough and the New Britain Trench to form isolated peaks and ridges in the east (152° Peaks) and an east-west Central Ridge in the west. Structures in the subduction system, and in the Solomon Sea Basin, plunge westward towards the point of collision with the New Britain Trench.  相似文献   

19.
The structural framework of the southern part of the Shackleton Fracture Zone has been investigated through the analysis of a 130-km-long multichannel seismic reflection profile acquired orthogonally to the fracture zone near 60° S. The Shackleton Fracture Zone is a 800-km-long, mostly rectilinear and pronounced bathymetric lineation joining the westernmost South Scotia Ridge to southern South America south of Cape Horn, separating the western Scotia Sea plate from the Antarctic plate. Conventional processing applied to the seismic data outlines the main structures of the Shackleton Fracture Zone, but only the use of enhanced techniques, such as accurate velocity analyses and pre-stack depth migration, provides a good definition of the acoustic basement and the architecture of the sedimentary sequences. In particular, a strong and mostly continuous reflector found at about 8.0 s two-way traveltime is very clear across the entire section and is interpreted as the Moho discontinuity. Data show a complex system of troughs developed along the eastern flank of the crustal ridge, containing tilted and rotated blocks, and the presence of a prominent listric normal fault developed within the oceanic crust. Positive flower structures developed within the oceanic basement indicate strike-slip tectonism and partial reactivation of pre-existing faults. Present-day tectonic activity is found mostly in correspondence to the relief, whereas fault-induced deformation is negligible across the entire trough system. This indicates that the E–W-directed stress regime present in the Drake Passage region is mainly dissipated along a narrow zone within the Shackleton Ridge axis. A reappraisal of all available magnetic anomaly identifications in the western Scotia Sea and in the former Phoenix plate, in conjunction with new magnetic profiles acquired to the east of the Shackleton Fracture Zone off the Tierra del Fuego continental margin, has allowed us to propose a simple reconstruction of Shackleton Fracture Zone development in the general context of the Drake Passage opening.  相似文献   

20.
The first high resolution multichannel seismic data from the Mendeleev and Alpha Ridges in the Arctic Ocean have been used to investigate the depositional history, and compare acoustic stratigraphies of the three main sub-marine ridges (Mendeleev, Alpha and Lomonosov) in the polar ocean. Acoustic basement on the Mendeleev Ridge is covered by a ~0.6–0.8 s thick sediment drape over highs and up to 1.8 s within grabens. A pronounced angular discordance at 0.18–0.23 s below the seafloor along the middle to upper slopes divides the succession into an upper, undisturbed, uniformly thick, hemipelagic drape (Unit M1) and a partially truncated lower unit (Unit M2) characterized by strong reflection bands. Unit M2 is thicker in intra-ridge grabens and includes three sub-units with abundant debris flows in the uppermost subunit (M2a). The discordance between Units M1 and M2 most likely relates to instability along the middle to upper slopes and mass wasting, triggered by tectonic activity. The scars were further smoothed by bottom current erosion. We observe comparable acoustic stratigraphy and discordant relationships on the investigated northwestern part of Alpha Ridge. Similarly, on the central Lomonosov Ridge, Paleocene and younger sediments sampled by scientific drilling include an uppermost ~0.2 s thick drape overlying, highly reflective deposits with an angular unconformity confined to the upper slope on both sides of the ridge. Sediment instability on the three main ridges was most likely generated by a brief phase of tectonic activity (~14.5–22 Ma), coinciding with enhanced bottom circulation. These events are coeval with the initial opening of the Fram Strait. The age of the oldest sediments above acoustic basement on the Mendeleev- and west-central Alpha Ridges is estimated to be 70–75 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号