首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
大洋和大陆边缘岩石圈有效弹性厚度的研究意义   总被引:4,自引:1,他引:4  
大洋岩石圈有效弹性厚度分布在 (45 0± 15 0 )℃等温面内 ,并且随着加载时岩石圈年龄的增加而增加。因此 ,大洋岩石圈的挠曲刚度强烈地依赖岩石圈的热结构。一些海隆下岩石圈有效弹性厚度的降低 ,可能是岩石圈经历过热活化 ,岩石圈热年龄降低的结果。大西洋一些群岛的岩石圈有效弹性厚度小于理论值 ,则反映了岩石圈结构的不同。在海沟 ,板块的挠曲也是影响岩石圈有效弹性厚度的因素 ,它降低了岩石圈的强度。在被动大陆边缘海陆岩石圈交界处 ,向陆的方向 ,岩石圈弹性厚度比同年龄的大陆或大洋岩石圈的小 ,表明强度明显降低 ;向大洋方向 ,岩石圈的弹性厚度与正常的大洋岩石圈弹性厚度吻合。在活动大陆边缘的挠曲前陆盆地和造山带 ,岩石圈有效弹性厚度变化较大 ,部分地区受先前的岩石圈低强度影响 ,而表现出岩石圈强度的弱化。同时 ,这种方法还广泛地用于大洋中脊岩浆侵位、地幔流动、南太平洋超级海隆的动力学机制、大陆边缘的变形和构造演化、新生岩石圈的力学性质和流变学性质的研究  相似文献   

2.
本文在未将Stokes波的势函数参数β的前提下使用近似解迭代方法重新推导了Stokes波的水质点的轨迹方程。在具体推导中发现水平位移与垂向位移在作近似解迭代时,收敛于精确解的速度是不相同的,垂向位移在一次迭代后即与精确解非常近似,而对于水平位移必须做二次迭代才能达到较好的精度。由二次迭代的水平位移方程即可获得Stokes漂流公式的一种新式,该形式表明,在三阶精度下Stokes漂流与所在深度的水质点的振幅A的平方成正比。运用由垂向位移方程解得的振幅与参数β的关系式可证明经典Stokes漂流公式可以看作是新漂流公式在特定坐标系下的特定垂直断面处的结果。  相似文献   

3.
对基于大挠度柔性梁理论的立管动力分析程序CABLE 3D改编,将原程序中立管受到线性海床的弹性支撑力扩充为立管受到的海床垂向力充分考虑管土非线性相互作用,使新程序中立管与海床土的相互作用遵循p-y曲线。采用伽辽金方法在空间内离散立管的动态方程,最终采用Newmark-β法进行时域内迭代求解。利用改编后的新程序分别研究了立管与线性海床土和非线性海床土相互作用的对比以及不同垂荡幅值情况下立管的动态响应。研究表明,非线性海床土能够更加准确地模拟真实的管土相互作用,触地点区域的节点会经历不同的管土相互作用过程。  相似文献   

4.
通过对比实际观测与弹塑性变形模型,研究了沿着汤加、日本、伊豆-小笠原、马里亚纳海沟的板块挠曲与正断层特征。观测表明,平均海沟挠曲量在日本海沟最小(3公里),马里亚纳海沟最大(4.9公里),而平均正断层垂直断距在日本海沟最小(113米),汤加海沟最大(284米)。模拟了俯冲板块在三种构造加载的作用下发生弯曲变形并产生正断层的过程:垂向加载(V0)、弯矩(M0)和水平拉张力(F0)。在板块挠曲与正断层特征的双重约束下,反演得到了四个海沟的最佳模型解。结果显示,日本海沟的水平张力分别比马里亚纳、汤加和伊豆-小笠原海沟小33%、50%和60%。汤加、日本、伊豆-小笠原、马里亚纳海沟的正断层最深可达海底以下29,23,32和32公里,这与重新定位后的日本与伊豆-小笠原地震深度一致。此外,反演得到的水平张拉力与观测到的平均垂直断距呈一定正相关性,而计算得到的有效弹性厚度减少量与观测到的海沟挠曲量也相关。这些结果表明,水平张拉力在正断层发展过程中起着关键控制作用,板块弱化可导致板块挠曲量的显著增加。  相似文献   

5.
钢悬链线立管(SCR)在上部浮体运动和波流荷载激励下会与海床土相互作用,传统的线性海床模型假定荷载位移关系是线性的,没有考虑管土相互作用的非线性过程和海床土吸力的影响,本文基于大挠度柔性索理论的钢悬链式立管动力分析程序CABLE3D,将立管受到线性海床的弹性支撑力扩充为立管受到的海床垂向力,充分考虑管土非线性相互作用,并考虑海床土吸力对钢悬链式立管触地点区域的影响,开发出新的动力分析程序。程序采用非线性有限元方法对控制方程进行离散,时域内采用Newmark-β法,求解给定上部浮体运动条件下,SCR的动力响应,通过算例对线性刚度海床和非线性刚度海床进行对比,并分析了不同海床刚度对SCR触地点动力响应和疲劳损伤的影响。结果表明:非线性海床刚度模型比线性海床刚度模型更接近真实的管土作用过程;在非线性海床刚度模型下,海床土刚度越大,SCR触地点区域垂向位移响应越小,应力幅值越大,疲劳损伤越严重。  相似文献   

6.
以两模块平台集成化箱体式连接器为研究对象,研究此类连接器的力学特性,探究箱体式连接器的应力分布状态以及重要力学参数。以弹性接触方程为基础,采用罚函数方法,建立连接器本体、钢轴与轴承座之间的接触关系,结合模型试验,验证所提出接触计算方法准确性,并进一步对连接器半对称结构进行极限强度分析。分析结果表明:连接器的纵向和垂向的极限承载力约为40 000 k N,其纵向弹性刚度约为3×109N/m,垂向弹性刚度约为1.5×109N/m。对连接器应力分布进一步分析表明,连接器主体结构的水密舱壁为主要承力构件,其轴承孔周边区域为应力集中的主要区域,当荷载较大时,轴承孔周围会率先发生屈服破坏,因此,连接器带孔水密舱壁的材料强度是影响连接器整体极限强度的主要因素。  相似文献   

7.
基于二阶斯托克斯波理论推导了辐射应力的垂向分布表达式,通过算例讨论了辐射应力在深水和有限水深条件下的垂向分布规律,并与基于微幅波理论的辐射应力进行了比较.结果表明,在波浪非线性不强时,基于二阶斯托克斯波理论的辐射应力与基于微幅波理论的辐射应力表达式计算结果接近;而当水深较浅波浪非线性较强时,基于二阶斯托克斯波理论的辐射应力在近表面处明显大于基于微幅波理论的辐射应力.采用二阶斯托克斯波理论推导的波浪辐射应力更为合理地反映了波浪非线性效应.  相似文献   

8.
一种推导Timoshenko梁频率方程的新方法   总被引:1,自引:0,他引:1  
在Timoshenko梁横向弯曲自由振动方程的基础上,首次推导建立两端受弹性约束梁的频率方程,通过此方程,研究两端受弹性约束梁的性质,并通过简支梁模型,初步估计剪切变形与转动惯量对Timoshenko梁频率的影响,估算Timoshenko梁与Euler梁频率之间的关系,给出估算公式,并用数值算例进行验证,结果表明数值法解Timoshenko频率方程的可靠性.  相似文献   

9.
西太平洋中部地区是西太平洋板块边缘沟-弧-盆体系构造演化的关键区域,其地质特征与构造演化一直是地学家关注的焦点问题之一。开展岩石圈有效弹性厚度的研究对于认识该区域的形成演化具有重要的科学意义。本文采用滑动窗口导纳技术,并在挠曲模型中考虑了表面荷载和内部荷载同时存在的情况,计算得到该区域的岩石圈有效弹性厚度(Te)。计算结果显示,研究区的Te值整体上为0~50 km,其变化基本上与构造单元相吻合,且与主要的构造边界密切相关。除海底火山具有相对较小的Te值(15~20 km)外,太平洋板块整体上具有较强的岩石圈强度(25~30 km)。马里亚纳海沟和菲律宾海沟的岩石圈强度从外隆起到海沟方向表现为明显的减弱,表明岩石圈由外隆起向海沟发生了弱化。帕里西维拉海盆西部相较于东部具有较弱的岩石圈强度,这可能与海盆的非对称扩张有关。卡罗琳板块的岩石圈整体上表现为相对均一的低Te值特征(<15 km)。欧里皮克海隆、卡罗琳海岭和索罗尔海槽的Te值为3 km,这可能是强烈的火山作用所导致的结果。  相似文献   

10.
为建立海洋电缆弯曲加强器参数化设计方法,使用有限元模型进行了弯曲加强器设计参数研究。基于海缆及其弯曲加强器的几何结构及受力特点,建立了基于多相耦合梁单元的平面有限元模型,可以计算并分析海缆及其弯曲加强器在一定角度的张力作用下的形变与等效应力分布。通过多个案例系统性地分析了弯曲加强器的主要设计参数,即根部直径、锥体段长度及材料弹性模量,对海缆弯曲挠度、曲率及等效应力分布的影响。文中原创性地提出了弯曲加强器组合设计参数φ(t, L, E)。通过定量分析确定了其与海缆最大曲率之间的近似线性关系,并由此设计了参数化的弯曲加强器设计流程。通过设计实例验证了组合参数与海缆最大曲率之间关系的准确性和参数化设计流程的有效性。  相似文献   

11.
The results are presented of a two-dimensional flexural modelling study of the lithosphere underlying the southern Pyrenees and the Ebro Basin. The modelling is based on a crustal-scale balanced cross-section along a profile through the north-eastern part of the Iberian plate. Two time slices of the structural evolutions of the mountain chain are modelled: the present day configuration and the configuration at Middle Lutetian time (47 Ma), where important structural and sedimentological changes are observed. The flexure model incorporates lateral variations in the effective elastic thickness (EET) of the lithosphere. The present day deflection in the profile is simulated using boundary forces and a northward decreasing EET that varies from 30 to 11 km. Models for Middle Lutetian times indicate EET values of 26-18 km in the northern part of the profile, assuming that the EET at the distal margin of the Ebro Basin has not significantly changed since Middle Lutetian times. These higher values for the EET at Middle Lutetian times suggest that the effect of the Cretaceous extensional phase on the present day flexural rigidity is small and, therfore, the inferred northward decreasing rigidity is predominantly related to the Pyrenean collision. Flexural modelling provides also constraints for the palaeo-elevation of the inner part of the chain. Including the assumption that the EET at the distal margin of the Ebro Basin has not significantly changed since Middle Lutetian times, the model predicts a maximum palaeo-elevation of 2000 m, which is in agreement with geological observations concerning the relation between basin-fill and palaeo-elevation.  相似文献   

12.
线弹性土壤中埋设悬跨管道的弯曲和振动特性   总被引:1,自引:0,他引:1  
利用细长梁小挠度理论,研究给出了两端埋设在线弹性土壤中的悬跨段管道和埋设段管道在自重作用下的变形和内力公式。基于静挠度公式,用能量法给出了第一阶弯曲振动的固有频率公式。讨论了不同土壤刚度条件下悬跨段管道的变形和内力特征,以及第一阶弯曲振动固有频率,并和工程上推荐使用的简支梁和两端固支梁的静动态特性进行比较。研究表明在跨度大、土壤刚度大、管道弯曲刚度较小时无量纲土壤刚度系数较大,埋设段管道对悬跨段管道的刚度约束比较大,悬跨段管道可以近似按两端固支梁模型来模拟;反之,只有在土壤刚度系数较小的几个参数点上,悬跨管道的静动力特性等价于简支梁模型。  相似文献   

13.
By applying a kinematic and flexural model for the extensional deformation of the lithosphere, and using a recently available EROS Data Center topography DEM of Africa in conjunction with new and previous gravity data from Lakes Albert, Edward and George, we have determined the distribution, amplitude, and style of deformation responsible for the formation of the Albertine rift system, East Africa. Further, we have been able to approximate the three-dimensional architecture of the Albertine rift basin by analyzing a series of profiles across and along the rift system for which we also estimate the flexural strength of the rifted continental lithosphere and its along-strike variation. Previous modeling studies of the Lake Albert basin either overestimated the flexural strength of the extended lithosphere and/or underestimated the crustal extension. The single most important factor that compromised the success of these modeling efforts was the assumption that crustal extension was limited to the present-day distribution of the rift lakes. The style of deformation appears to have changed with time, beginning with a regionally distributed brittle deformation across the region that lead progressively to the preferential growth and development of the major border faults and antithetic/synthetic faults within the collapsed hangingwall block. Minor fault reactivation within the footwall block appears to be related to the release of bending stresses associated by the flexural uplift of the rift flank topography. By simultaneously matching the observed and modeled topography and free-air gravity across the Albertine rift system, we have determined a cumulative extension ranging from 6 to 16 km with the maximum extension occurring in the central and northern segments of the basin. Crustal extension is not constrained to the lake proper, but extends significantly to the east within the hangingwall block. Effective elastic thickness, Te, varies between 24 and 30 km and is unrelated to either the amount of extension or the maximum sediment thickness. The variation of Te relates possibly to small changes in crustal thickness, heterogeneities in crustal composition, and/or variations in radiogenic crustal heat production. Maximum sediment thickness is predicted to be 4.6 km and occurs within the central region of Lake Albert. Low bulk sediment densities, correlating with the location of major lake deltas, may be indicative of present-day sediment overpressures. Our results show that basin geometry is strongly dependent on the cumulative (and distribution) of lithospheric extension and the flexural rigidity of the lithosphere. Thus, in order to determine the total amount of extension responsible for the formation of a basin system, it is necessary to independently constrain the flexural strength of the lithosphere both during and after extension. Conversely, in order to determine the rigidity of extended lithosphere using the stratigraphy and/or geometry of rift basins and passive margins, it is necessary to independently constrain the cumulative extension of the lithosphere.  相似文献   

14.
The principal factors that control the extent of seas through geological time are vertical movements of the lithosphere and global changes in sea level. The relative height of the sea surface determines the facies and the thickness of sediments that can accumulate in a sedimentary basin. Backstripping studies show that the primary factors affecting the subsidence of rifted sedimentary basins are thermal contraction, following heating and thinning of the lithosphere at the time of rifting, and sedimentary loading. Factors such as compaction, palaeobathymetry, erosion and global sea level changes also contribute, but their combined affects are small compared to those of thermal contraction and sedimentary loading. Simple models have been constructed which combine the effects of sedimentary loading and thermal contraction with those of compaction, sub-aerial erosion and global changes in sea level. In the models it was assumed that the lithosphere was heated and thinned by stretching at the time of rifting, sedimentary loading occurs by flexure of a lithosphere that progressively increases its flexural rigidity with age following rifting and, that sediment compaction and bathymetry change across a basin but do not vary significantly with gwological time. Furthermore, different assumptions were made on the magnitude of curves of global sea level changes and the relationship between denudation rate and regional elevation. The models show that tectonics, in the form of thermal contraction of the lithosphere and flexure and slowly varying global changes in sea level, can explain a number of the stratigraphic features of the US Atlantic continental margin. In this Paper some of the implications of these results are examined for studies of (a) sea level changes through geological time; and (b) the maturation history of continental margin basins.  相似文献   

15.
In the present paper, a hydroelastic model is developed to deal with surface gravity wave interaction with an elastic bed based on the small amplitude water wave theory and plate deflection in finite water depth. The elastic bottom bed is modelled as a thin elastic plate and is based on the Euler-Bernoulli beam equation. The wave characteristics in the presence of the elastic bed is analyzed in both the cases of deep and shallow water waves. Further, the linearized long wave equation is generalized to include bottom flexibility. A generalized expansion formula for the velocity potential is derived to deal with the boundary value problems associated with surface gravity waves having an elastic bed. The utility of the expansion formula is illustrated by demonstrating specific physical problems which will play significant role in the analysis of wave structure interaction problems. Behavior of the wave spectra are discussed in the case of closed basin having a free surface and an elastic bottom topography.  相似文献   

16.
We conducted a detailed analysis of along-trench variations in the flexural bending of the subducting Pacific Plate at the Tonga-Kermadec Trench. Inversions were conducted to obtain best-fitting solutions of trench-axis loadings and variations in the effective elastic plate thickness for the analyzed flexural bending profiles. Results of the analyses revealed significant along-trench variations in plate flexural bending: the trench relief(W_0) of 1.9 to 5.1 km;trench-axis vertical loading(V_0) of –0.5×(10)~(12) to 2.2×(10)~(12) N/m; axial bending moment(M_0) of 0.1×(10)~(17) to 2.2×(10)~(17) N;effective elastic plate thickness seaward of the outer-rise region(T_e~M) of 20 to 65 km, trench-ward of the outer-rise(T_e~m) of 11 to 33 km, and the transition distance(X_r) of 20 to 95 km. The Horizon Deep, the second greatest trench depth in the world, has the greatest trench relief(W_0 of 5.1 km) and trench-axis loading(V_0 of 2.2×(10)~(12) N/m); these values are only slightly smaller than that of the Challenger Deep(W_0 of 5.7 km and V_0 of 2.9×(10)~(12) N/m) and similar to that of the Sirena Deep(W_0 of 5.2 km and V_0 of 2.0×(10)~(12) N/m) of the Mariana Trench,suggesting that these deeps are linked to great flexural bending of the subducting plates. Analyses using three independent methods, i.e., the T_e~M/T_e~m inversion, the flexural curvature/yield strength envelope analysis, and the elasto-plastic bending model with normal faults, all yielded similar average Te reduction of 28%–36% and average Te reduction area S¢Te of 1 195–1 402 km~2 near the trench axis. The calculated brittle yield zone depth from the flexural curvature/yield strength envelope analysis is also consistent with the distribution of the observed normal faulting earthquakes. Comparisons of the Manila, Philippine, Tonga-Kermadec, Japan, and Mariana Trenches revealed that the average values of T_e~M and T_e~m both in general increase with the subducting plate age.  相似文献   

17.
Rheology and strength of the lithosphere   总被引:2,自引:0,他引:2  
Mechanical properties of lithosphere are of primary importance for interpretation of deformation at all spatial and time scales, from local scale to large-scale geodynamics and from seismic time scale to billions of years. Depending on loading conditions and time scale, lithosphere exhibits elastic, brittle (plastic) or viscous (ductile) properties. As can be inferred from rock mechanics data, a large part of the long-term lithospheric strength is supported in the ductile or ductile-elastic regime, while it also maintains important brittle strength. Yet, at short seismic time scale (s), the entire lithosphere responds in elastic/brittle-elastic regime. Even though rock mechanics experiments provide important insights into the rheological properties of the lithosphere, their conditions (e.g., time scales, strain rates, temperature and loading conditions) are too far from those of real Earth. Therefore, these data cannot be reliably extended to geological time- and spatial scales (strain rates ∼10−17 to 10−13 s−1) without additional parameterization or validation based on geological time scale observations of large-scale deformation. For the oceanic lithosphere, the Goetze and Evan’s brittle-elastic-ductile yield strength envelopes (YSEs) were validated by geodynamic scale observations such as the observations of plate flexure. However, oceanic lithosphere behavior in subduction zones and passive continental margins is strongly conditioned by the properties of the continental counterpart, whose rheology is less well understood. For continents and continental margins, the uncertainties of available data sources are greater due to the complex structure and history of continental plates. For example, in a common continental rheology model, dubbed “jelly sandwich”, the strength mainly resides in crust and mantle, while in some alternative models the mantle is weak and the strength is limited to the upper crust. We address the problems related to lithosphere rheology and mechanics by first reviewing the rock mechanics data, Te (flexure) and Ts (earthquake) data and long-term observations such as folding and subsidence data, and then by examining the physical plausibility of various rheological models. For the latter, we review the results of thermo-mechanical numerical experiments aimed at testing the possible tectonic implications of different rheology models. In particular, it appears that irrespective of the actual crustal strength, the models implying weak mantle are unable to explain either the persistence of mountain ranges for long periods of time or the integrity of the subducting slabs. Although there is certainly no single rheology model for continents, the “jelly sandwich” is a useful first-order model with which to parameterize the long-term strength of the lithosphere. It is concluded that dry olivine rheology laws seem to represent well the long-term behavior of mantle lithosphere in oceans, margins and continents. As to the continent and margin crust rheology, analysis of the results of thermo-mechanical models and of Te data based on the most robust variants of flexural models, suggests that continental plates with Te 30-50% smaller than their theoretical mechanical thickness hm (i.e. Te = 20-60 km) should be characterized by a weak lower or intermediate crustal rheology enabling mechanical decoupling between crust and mantle. Older plates such as cratons are strong due to crust-mantle coupling and specific properties of the cratonic mantle lithosphere.  相似文献   

18.
Unsteady response of an ice cover in a channel with vertical walls is studied for large times. The ice deflection is caused by a load moving along the frozen channel at a constant speed. The ice cover is modelled as a thin elastic plate clamped to the walls of the channel. The time-dependent problem is solved by using the Fourier transform along the channel and the method of separating variables. In the system moving along the channel together with the load, the large-time deflection of the ice cover consists of steady deflection and standing waves in front and behind the load. The number of waves, their frequencies and wavenumbers depend on the speed of the load and the values of the critical speeds for the channel. The number of the waves and their amplitudes are calculated for a given load and its speed. The maximum stress in the ice as a function of the load speed is estimated.  相似文献   

19.
The deployment of suitable configurations of mutually interacting floating bodies for efficiently controlling their hydrodynamic interactions towards the reduction of the wave drift forces and, thus, of the mooring lines’ loads, has, nowadays, gained a great scientific interest. In this paper, the hydrodynamic behaviour of a floating cylinder and a concentric annular flexible plate is analysed in the frequency domain aiming at the minimization of the drift forces acting on the cylinder by optimizing the flexural rigidity of the plate. The diffraction/radiation problem is solved using a higher-order boundary element method. The analysis is implemented assuming that both floating bodies oscillate freely in heave, while for the plate, flexible modes are, additionally, considered for describing its structural deformations. The required modes shapes are determined in vacuum (“dry” mode superposition approach) through analytical expressions. The flexural rigidity of the plate, D, is optimized at a specific wave number using a real-coded genetic algorithm. Initially, results are compared with numerical results of other investigators for the case of two rigid concentric floating cylinders. Next, extended results are presented, focusing on the effect of D, including its optimum value, on various physical quantities describing the behaviour of both the cylinder and the plate. Contrary to the isolated cylinder, the presence of the plate introduces sharp peaks in the variation pattern of the drift force of the cylinder, bounded at specific wave numbers, where resonance of the seiche mode of water motion in the annular cavity or of specific flexible modes of the plate occurs. However, by reducing D to its optimum value, the cylinder’s drift force obtains practically zero values at the target wave number, due to an efficient improvement of the wave field in the annular cavity around the cylinder. Moreover, a great reduction of the drift force compared to the isolated cylinder is achieved in the subsequent high frequency range.  相似文献   

20.
The mode of load and deformation of directional drilling string and the expression of trigonometric series of deflection equation are established by means of elastic deformation energy and of the vertical and horizontal bending. A calculation formula for natural frequency of horizontal resonance and rotational speed is derived based on the calculation method by Ritz, with which analysis is made for the cause and affecting factors of the excessive abrasion of heavy-weight drill pipe in high-angle holes so as to provide reference and basis for rational selection of drilling parameters and drilling tools in the future high-angle directional drilling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号