首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 406 毫秒
1.
The destiny of the North Pacific Intermediate Water in the South China Sea   总被引:1,自引:0,他引:1  
The previous studies show that the spreading path of the subtropical salinity minimum of the North Pacific Intermediate Water (NPIW) is southwestward pointing to the Luzon Strait. Based on the P -vector method and generalized digital environmental model (GDEM) data, the volume transport of NPIW through Luzon Strait and the upward transport on the NPIW lower and upper boundaries are calculated to examine the destiny of NPIW in the South China Sea (SCS). On the annual mean, the estimation of NPIW transport into the SCS through the Luzon Strait is 1.72 Sv (1Sv=10 6 m 3 /s). The upward transport over the SCS is 0.31 Sv on the NPIW upper boundary and 1.31 Sv on the NPIW lower boundary. There is no strait or passage deeper than the surface for the NPIW to extend, except for the Luzon Strait. For the volume balance in the SCS NPIW, the volume transport of 2.72 Sv has to flow out of the SCS NPIW layer through the Luzon Strait.  相似文献   

2.
This study examines a Kuroshio main path(KMP) cut-off event east of Taiwan Island occurred in fall-winter2013–2014 and its impacts on the South China Sea(SCS) by analyzing satellite altimetry and mooring observations. Satellite altimeter sea level anomaly(SLA) images reveal a complete process that a huge cyclonic eddy(CE) from the Pacific collided with the Kuroshio and the western boundary from 15 October 2013 to 15 January 2014. Mooring observations evidenced that the Kuroshio upper ocean volume transport was cut off more than 82% from 17×106 m~3/s in September to 3×106 m~3/s in November 2013. The KMP cut-off event caused the Kuroshio branching and intruding into the SCS and strengthened the eddy kinetic energy in the northern SCS west of the Luzon Strait. Using the total momentum as a dynamic criterion to determine the role of eddy collision with the Kuroshio reasonably explains the KMP cut-off event.  相似文献   

3.
A fine-resolution MOM code is used to study the South China Sea basin-scale circulationand its relation to the mass transport through the Luzon Strait. The model domain includes the South China Sea, part of the East China Sea, and part of the Philippine Sea so that the currents in the vicinity of the Luzon Strait are free to evolve. In addition, all channels between the South China Sea and the Indonesian seas are closed so that the focus is on the Luzon Strait transport. The model is driven by specified Philippine Sea currents and by surface heat and salt flux conditions. For simplicity, no wind-stress is applied at the surface.The simulated Luzon Strait transport and the South China Sea circulation feature a sandwich vertical structure from the surface to the bottom. The Philippine Sea water is simulated to enter the South China Sea at the surface and in the deep ocean and is carried to the southern basin by western boundary currents. At the intermediate depth, the net Luzon Strait transport is out of t  相似文献   

4.
The wide presence of internal solitary waves (ISWs) in the northern South China Sea (SCS) has been confirmed by both Synthetic Aperture Radar (SAR) images and in situ observations. These ISWs are believed being generated over the varying topography in the Luzon Strait. They typically propagate westwards into the SCS with a diurnal or semidiurnal period. Their generation sites are, however, not yet solidly identified. To obtain a clear picture of the ISWs, we designed numerical experiments to analyze the generation and propagation of the ISWs in the Luzon Strait using a 2-dimensional non-hydrostatic model. The model current is forced by barotropic or baroclinic currents imposed at open boundaries. The experiments show that the tidal current serves as a kind of triggering force for the ISWs over the submarine ridges in the strait. Under the forcing of tidal currents, depressions are formed near the ridges. The ISWs then split from the depressions through a process different from lee-wave generation mechanism. The appearance of the ISWs is influenced by the strength and period of the forcing current:the ISWs are more likely to be generated by a stronger tidal current. That is why the ISWs in the Luzon Strait are frequently observed during spring tide. Compared with diurnal tidal current, the ISWs generated by semidiurnal tidal current with the same amplitude is much more energetic. It is partly because that the wave beams in diurnal frequency have a larger angle with the vertical direction, thus are more likely to be reflected by the topography slope. The impact of the Kuroshio to the ISWs is also analyzed by adding a vertical uniform or shear current at boundaries. A vertically uniform current may generate ISWs directly. On the other hand, a vertically shear current, which is more realistic to represent the Kuroshio branch, seems to have little influence on the generation process and radiating direction of the ISWs in the Luzon Strait.  相似文献   

5.
A P - vector method is optimized using the variational data assimilation technique(VDAT). The absolute geostrophic velocity fields in the vicinity of the Luzon Strait (LS) are calculated, the spatial structures and seasonal variations of the absolute geostrophic velocity field are investigated. Our results show that the Kuroshio enters the South China Sea (SCS) in the south and middle of the Luzon Strait and flows out in the north, so the Kuroshio makes a slight clockwise curve in the Luzon Strait, and the curve is strong in winter and weak in summer. During the winter, a westward current appears in the surface, and locates at the west of the Luzon Strait. It is the north part of a cyclonic gyre which exits in the northeast of the SCS; an anti-cyclonic gyre occurs on the intermediate level, and it exits in the northeast of the SCS, and an eastward current exits in the southeast of the anti-cyclonic gyre.  相似文献   

6.
On generation source sites of internal waves in the Luzon Strait   总被引:2,自引:0,他引:2  
This effort aims to determine the generation source sites in the Luzon Strait for energetic, long-crest, transbasin internal waves (IW) observed in the northern South China Sea (NSCS). The roles of islands distributed on eastern side of the strait, Kuroshio, submarine ridges, shoaling thennocline, and strait configuration played in the IW generation are examined using the cruise data analysis, satellite data interpretation, and dynamical analysis. The islands and channels on eastern side of the strait are excluded from a list of possible IW source sites owing to their unmatched horizontal dimensions to the scale of IW crest line length, and the relative low Reynolds number. The Kuroshio has a potential to be a radiator for the long-crest IW disturbances, meanwhile, the Kurosbio west (east) wing absorbs the eastward (westward) propagating IW disturbance. Namely, the Kuroshio blockades the outside west-east propagating IW disturbances. The 3-D configuration of the Luzon Strait is characterized by a sudden, more than one order widening of the cross-section areas at the outlets on both sides, providing a favorable condition for IW type initial disturbance formation. In the Luzon Strait, the thermocline is featured by a westward shoaling all the year around, providing the dynamical conditions for the amplitude growth (declination) to the westward (eastward) propagating IW type disturbance. Thus, the west slope of western submarine ridge at the western outlet of the Luzon Strait is a high possibility source sites for energetic, long-crest, transbasin IWs in the NSCS. The interpretation results of satellite SAR images during a 13 a period from 1995 to 2007 provide the convincing evidence for the conclusions.  相似文献   

7.
A method of quantifying the penetration of the Kuroshio into the Luzon Strait is improved with simulated salinity. The new method is applied in an area bounded by 0.6 correlation coefficient contour to the point of 20 N, 118 E which is determined by EOF analysis. The results suggest that the method is suitable for indicating Kuroshio’s intrusion into the South China Sea quantitatively. As an indicator, the Kuroshio penetrating the Luzon index (KLI) reveals obvious annual cycle and weak bimodality. For annual periods, indexes on the surface and subsurface which point the same events have totally opposite signs due to the winter burst of surface westward current. On long-term period, the surface and subsurface indexes have consistent signs. A subsurface index on 150 m avoiding high frequency signals from the surface can be used for indicating long-term Kuroshio intrusion variation. An anti-phase pattern in wavelet coherence map between KLI and Japan large meander index shows that the Luzon Strait is a "smoother" reducing the variability of the Kuroshio transport changes on long-term periods.  相似文献   

8.
A review on the South China Sea western boundary current   总被引:7,自引:2,他引:5  
The advances in understanding the South China Sea (SCS) western boundary current (SCSwbc) have been reviewed since the works of Dale (1956) and Wyrtki (1961) in the middle of the 20th century. The features of the pattern of SCSwbc and the oceanic phenomena associated with it are focused on. The current is driven mainly by monsoon over the SCS and partially by winds over the tropical Pacific governed by the island rule. The SCSwbc exhibits strong seasonal variation in its direction and patterns. In winter, the current is strong and flows southwestward along the South China shelf and slope from the east of Dongsha Islands to the northern central Vietnamese coast, then turns to the south along the central and southern Vietnamese coast, and finally partially exits the SCS through the Karimata Strait. In summer and early fall, the SCSwbc can be divided into three segments based on their characteristics. The southern segment is stable, flowing northward from the Karimata Strait up to about 11 N, where it separates from the coast forming an eastward offshore current. The separation of the current from Vietnamese coast induces some striking features, such as upwelling and cold sea-surface temperature. The middle segment off the central Vietnamese coast may have a bimodal behavior: northward coastal current and meandering current in early summer (June-July), and cyclonic gyre in later summer and early fall (August-September). The northern segment is featured by the summer SCS Warm Current on the South China shelf and a southwestward subsurface current along the continental slope.  相似文献   

9.
<正>The South China Sea(SCS) is a marginal sea connecting the Pacific and Indian oceans and has gained much attention in recent decades. The dynamics in the northeast SCS are considerably influenced by topography, monsoons, tropical cyclones, the Kuroshio intrusion, and water exchange through the Luzon Strait(LS). Recently, an array of 38 current and pressure-recording inverted echo sounders(CPIES) and two moorings are deployed in the northeast SCS from 2016 to 2019(Fig. 1),  相似文献   

10.
Owing to lack of observational data and accurate definition,it is difficult to distinguish the Kuroshio intrusion water from the Pacific Ocean into the South China Sea(SCS).By using a passive tracer to identify the Kuroshio water based on an observation-validated three-dimensional numerical model MITgcm,the spatio-temporal variation of the Kuroshio intrusion water into the SCS has been investigated.Our result shows the Kuroshio intrusion is of distinct seasonal variation in both horizontal and vertical directions.In winter,the intruding Kuroshio water reaches the farthest,almost occupying the area from 18°N to 23°N and 114°E to 121°E,with a small branch flowing towards the Taiwan Strait.The intrusion region of the Kuroshio water decreases with depth gradually.However,in summer,the Kuroshio water is confined to the east of 118°E without any branch reaching the Taiwan Strait;meanwhile the intrusion region of the Kuroshio water increases from the surface to the depth about 205 m,then it decreases with depth.The estimated annual mean of Kuroshio Intrusion Transport(KIT) via the Luzon Strait is westward to the SCS in an amount of –3.86×106 m3/s,which is larger than the annual mean of Luzon Strait Transport(LST) of –3.15×106 m3/s.The KIT above 250 m accounts for 60%–80% of the LST throughout the entire water column.By analyzing interannual variation of the Kuroshio intrusion from the year 2003 to 2012,we find that the Kuroshio branch flowing into the Taiwan Strait is the weaker in winter of La Ni?a years than those in El Ni?o and normal years,which may be attributed to the wind stress curl off the southeast China then.Furthermore,the KIT correlates the Ni?o 3.4 index from 2003 to 2012 with a correlation coefficient of 0.41,which is lower than that of the LST with the Ni?o 3.4 index,i.e.,0.78.  相似文献   

11.
根据2001年3月份南海东北部航次调查温、盐资料,分析了2001年冬末春初南海东北部温、盐结构和环流的特征.分析结果表明:观测期间南海东北部环流主要受一次海盆尺度气旋型冷环流支配,冷环流呈现双核结构,垂向尺度接近1000 m.吕宋海峡内侧断面的水交换在600 m以浅海水流入南海,在断面南部(20°N以南)中层和深层有流出,断面法向地转流向西净输运量为6.9×106m3/s;直接的黑潮入侵不超过120.5°E,但有部分的黑潮水沿陆坡达到台湾岛西南部海域,并更有一部分逸入东沙岛以西海域,与南海水混合变性.  相似文献   

12.
1 IntroductionThe South China Sea (SCS) is the largestmarginal sea in the western Pacific (see Fig. 1). It con-nects with the SCS through the Taiwan Strait, with thePacific through the Luzon Strait, with the Sulu Seathrough the Mindoro and Balabac Straits and with theJava Sea and Andaman Sea through the Sunda Shelf(For convenience, here we refer to the section at 1.5°N,Fig. 2). It is shown that the seasonal SCS circulation ismostly affected by the summer/winter monsoon, andthe no…  相似文献   

13.
南海环流动力机制研究综述   总被引:40,自引:9,他引:31  
南海的环流复杂,但通过近20 a来的研究工作,国内外学者对此已取得了不少的成果.本文就南海环流框架性的问题,综述了有关的文献,认为对南海上层海洋三方面的环流分量的驱动机制已有了初步的认识.这三方面分别是:(1)准季节性风场;(2)黑潮向南海的净输运;(3)黑潮向南海的涡度平流输送.但是对这些驱动的时空变化仍相当不清楚.三者皆增强了南海北部的海盆尺度气旋式环流,其强化的西南向西边界流靠近东沙群岛,建议称为“东沙海流”.没有水文证据显示黑潮水是以分支形式进入南海,其向南海的输运也不可能主要通过中尺度涡过程,具体机制有待研究.每年在南海生成的中尺度涡平均约有10个,风场与沿岸地形所生成的强风应力旋度可能是其主要的驱动机制.作为框架性的认识,也有三方面的工作进行得较少,即:(1)吕宋海峡的上层水交换;(2)南海的中尺度涡生成机制,虽然强风应力旋度及前述的第三种环流驱动机制也有中尺度涡伴生;(3)自吕宋海峡进入的深层水对南海上层海洋环流的影响.  相似文献   

14.
黑潮通过吕宋海峡入侵南海呈现明显的瞬态特征。以往的研究通常将黑潮在吕宋海峡附近的流态分为几种不同类型。本文基于表层地转流计算得到的有限时间李雅普诺夫指数场(FTLE),展示了拉格朗日视角下的吕宋海峡上层水交换特征。从FTLE场提取的拉格朗日拟序结构(LCSs)很好地识别了吕宋海峡附近的典型流态和旋涡活动。此外,这些LCSs还揭示了吕宋海峡周围复杂的输运路径和流体域,这些特征得到了卫星跟踪浮标轨迹的验证,且从流速场中是无法直接识别的。FTLE场显示,吕宋海峡附近表层水体的输运形态主要可分为四类。其中,黑潮直接向北流动的“跨越”形态和顺时针旋转的“流套”形态的发生频次明显高于直接进入南海的黑潮分支“渗入”形态和南海水流出至太平洋的“外流”形态。本文还进一步分析了黑潮在吕宋海峡处的涡旋脱落事件,突出强调了LCSs在评估涡旋输运方面的重要性。反气旋涡旋的脱落个例表明,这些涡旋主要源自黑潮“流套”,涡旋脱落之前可有效地俘获黑潮水。LCS所指示的输运通道信息有助于预测最终被反气旋涡所挟卷水体在上游的位置。而在气旋涡的形成过程中,LCS的分布特征表明,大部分气旋涡并未与黑潮水的输运路径相连通。因此,气旋涡对从太平洋到南海的上层水交换的贡献较小。  相似文献   

15.
Based on a two-level nested model from the global ocean to the western Pacific and then to the South China Sea(SCS), the high-resolution SCS deep circulation is numerically investigated. The SCS deep circulation shows a basin-scale cyclonic structure with a strong southward western boundary current in summer(July), a northeastsouthwest through-flow pattern across the deep basin without a western boundary current in winter(January),and a transitional pattern in spring and autumn. The sensitivity ...  相似文献   

16.
1998年春夏南海温盐结构及其变化特征   总被引:11,自引:2,他引:11  
利用1998年5~8月“南海季风试验”期间“科学1”号和“实验3”号科学考察船两个航次CTD资料,分析了1998年南海夏季风暴发前后南海主要断面的温盐结构及其变化特征.观测发现,南海腹地基本被典型的南海水团所控制,但在南海东北部尤其是吕宋海峡附近,表层和次表层水明显受到西太平洋水的影响.季风暴发以后,南海北部表面温度有显著升高,升幅由西向东递减,而南海中部和南部表面温度基本没变,这使得南海北部东西向温度梯度和整个海盆南北向温度梯度均减小.北部断面表层盐度普遍由34以上降低到34以下,混合层均有所发展,是季风暴发后降水和风力加剧的结果.观测期间黑潮水跨越吕宋海峡的迹象明显但变化剧烈.4~5月,黑潮次表层水除在吕宋海峡中北部出现外,在吕宋岛以西亦有发现,表明有部分黑潮水从吕宋海峡南端沿岸向西进而向南进入南海.6~7月,次表层高盐核在吕宋海峡中北部有极大发展,但在吕宋岛以西却明显萎缩;虽然看上去黑潮水以更强的流速进、出南海,但对南海腹地动力热力结构的影响未必更大.一个超过34.55的表层高盐水体于巴拉望附近被发现,似与通过巴拉望两侧水道入侵南海的西太平洋水有关.  相似文献   

17.
This study discusses branching of the Kuroshio Current including North Pacific Intermediate Water (NPIW) into the South China Sea (SCS). The spreading path of the subtropical salinity minimum of NPIW is southwestward pointing to the Luzon Strait between Taiwan and Luzon islands. Using a large collection of updated hydrography, results show that the SCS is a cul-de-sac for the subtropical NPIW because even the NPIW’s upper boundary neutral density surface σ N = 26.5 is completely blocked by the Palawan sill and partly blocked by the southern Mindoro Strait. In autumn, NPIW is driven out of the Luzon Strait by the preceding anticyclonic summer monsoon due to an intraseasonal variation and seasonal phase lag response to the weaker summer monsoon. Stronger inflow under winter monsoon than outflow under summer monsoon results in a net annual transport of NPIW of about 1.1 ± 0.2 Sv (1 Sv = 106 m3s−1) into the SCS. This net transport accounts for the anomaly in NPIW transport across the World Ocean Circulation Experiment section P8 (130° E). An earlier study estimated a large westward NPIW transport of about 3.9 ± 0.2 Sv, resulting in a difference of 1.2 ± 0.2 Sv from the basin-wide mean of 2.7 ± 0.2 Sv. Observations are generally in agreement with numerical results although the intraseasonal signal seems to cause a slight bias and remains to be simulated by future model experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号