首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
Longshore sediment transport (LST) is one of the main drivers of beach morphology. Bulk LST formulas are routinely used in coastal management/engineering studies to assess LST rates and gradients. Over 50 years of research has resulted in several bulk LST formulas that have been tested with varying levels of rigour. In this study, the predictive skill of three of the most commonly used bulk LST formulas (CERC, Kamphuis and Bayram) is rigorously evaluated using the most extensive LST data set presently available. The calibration coefficients in the three formulas are improved using a least-squares optimization algorithm, resulting in a significant improvement in the predictive skill of all three formulas. The generality of the improved formulas is verified via the statistical methods of bootstrapping and cross-validation. While the performance of all three improved formulas is very similar, the improved Kamphuis formula performs best, followed by the improved Bayram formula.  相似文献   

2.
《Coastal Engineering》2001,44(2):79-99
The skill of six well-known formulas developed for calculating the longshore sediment transport rate was evaluated in the present study. Formulas proposed by Bijker [Bijker, E.W., 1967. Some considerations about scales for coastal models with movable bed. Delft Hydraulics Laboratory, Publication 50, Delft, The Netherlands; Journal of the Waterways, Harbors and Coastal Engineering Division, 97 (4) (1971) 687.], Engelund–Hansen [Engelund, F., Hansen, E., 1967. A Monograph On Sediment Transport in Alluvial Streams. Teknisk Forlag, Copenhagen, Denmark], Ackers–White [Journal of Hydraulics Division, 99 (1) (1973) 2041], Bailard–Inman [Journal of Geophysical Research, 86 (C3) (1981) 2035], Van Rijn [Journal of Hydraulic Division, 110 (10) (1984) 1431; 110(11) (1984) 1613; 110(12) (1984) 1733], and Watanabe [Watanabe, A., 1992. Total rate and distribution of longshore sand transport. Proceedings of the 23rd Coastal Engineering Conference, ASCE, 2528–2541] were investigated because they are commonly employed in engineering studies to calculate the time-averaged net sediment transport rate in the surf zone. The predictive capability of these six formulas was examined by comparison to detailed, high-quality data on hydrodynamics and sediment transport from Duck, NC, collected during the DUCK85, SUPERDUCK, and SANDYDUCK field data collection projects. Measured hydrodynamics were employed as much as possible to reduce uncertainties in the calculations, and all formulas were applied with standard coefficient values without calibration to the data sets. Overall, the Van Rijn formula was found to yield the most reliable predictions over the range of swell and storm conditions covered by the field data set. The Engelund–Hansen formula worked reasonably well, although with large scatter for the storm cases, whereas the Bailard–Inman formula systematically overestimated the swell cases and underestimated the storm cases. The formulas by Watanabe and Ackers–White produced satisfactory results for most cases, although the former overestimated the transport rates for swell cases and the latter yielded considerable scatter for storm cases. Finally, the Bijker formula systematically overestimated the transport rates for all cases. It should be pointed out that the coefficient values in most of the employed formulas were based primarily on data from the laboratory or from the river environment. Thus, re-calibration of the coefficient values by reference to field data from the surf zone is expected to improve their predictive capability, although the limited amount of high-quality field data available at present makes it difficult to obtain values that would be applicable to a wide range of wave and beach conditions.  相似文献   

3.
Empirical formulas have been developed to calculate the fractional bed-load and suspended-load transport rates and near-bed suspended-load concentration under non-breaking waves and currents for coastal applications. The formulas relate the bed-load transport rate to the grain shear stress, the suspended-load transport rate to the energy of the flow system, and the near-bed suspended-load concentration to the bed-load transport rate, velocity and layer thickness. Adequate methods are adopted to determine the bed shear stress due to coexisted waves and currents. The hiding and exposure mechanism in nonuniform bed material is considered through a correction factor that is related to the hiding and exposure probabilities and in turn the size composition of bed material. The developed formulas have been tested using a large database of single-sized sediment transport and several sets of multiple-sized sediment transport data collected from literature, and compared with several existing formulas. The developed formulas can provide reasonably good predictions for the test cases.  相似文献   

4.
5.
This paper presents an analysis of longshore sediment transport (LST) rates based on an accumulation of data obtained during five storms. Direct measurements of velocities and suspended sediment concentration were conducted at a minimum of nine positions across a barred profile in waves up to Hm0=3.5 m to provide a measure of the cross-shore distribution and total suspended-load sediment transport rates. The study was conducted at the US Army Engineer Waterways Experiment Station's Field Research Facility, located in Duck, NC. Measurements were made using the Sensor Insertion System (SIS) which provides an economical means to collect the required information. The largest LST rate computed from the measurements was 1780 m3 h−1. Although the cross-shore distribution of the LST varied, it most often had two peaks associated with wave shoaling and breaking at the bar and near the beach. Comparisons of measurement results with predictions using the ‘CERC' LST formula show the predicted rates were sometimes higher and other times lower; suggesting that additional terms may be required for short term predictions during storms. Comparisons to a ‘Bagnold' type formulation, which included a velocity term that could account for wind and other effects on LST, show better agreement for at least one of the storms. These results are intended to help fill a void of information documenting the cross-shore distribution and LST rates, particularly during storms.  相似文献   

6.
A fuzzy inference system (FIS) and a hybrid adaptive network-based fuzzy inference system (ANFIS), which combines a fuzzy inference system and a neural network, are used to predict and model longshore sediment transport (LST). The measurement data (field and experimental data) obtained from Kamphuis [1] and Smith et al. [2] were used to develop the model. The FIS and ANFIS models employ five inputs (breaking wave height, breaking wave angle, slope at the breaking point, peak wave period and median grain size) and one output (longshore sediment transport rate). The criteria used to measure the performances of the models include the bias, the root mean square error, the scatter index and the coefficients of determination and correlation. The results indicate that the ANFIS model is superior to the FIS model for predicting LST rates. To verify the ANFIS model, the model was applied to the Karaburun coastal region, which is located along the southwestern coast of the Black Sea. The LST rates obtained from the ANFIS model were compared with the field measurements, the CERC [3] formula, the Kamphuis [1] formula and the numerical model (LITPACK). The percentages of error between the measured rates and the calculated LST rates based on the ANFIS method, the CERC formula (Ksig = 0.39), the calibrated CERC formula (Ksig = 0.08), the Kamphuis [1] formula and the numerical model (LITPACK) are 6.5%, 413.9%, 6.9%, 15.3% and 18.1%, respectively. The comparison of the results suggests that the ANFIS model is superior to the FIS model for predicting LST rates and performs significantly better than the tested empirical formulas and the numerical model.  相似文献   

7.
准确预测波浪作用下沿岸输沙率是沙质海岸研究领域的重要科学问题。根据数十年来国内外沿岸输沙率公式的研究进展,按研究方法对各项成果进行分类,并兼顾时间逻辑,回顾了各研究方法的发展历程及其代表性成果。对各项成果的理论基础、考虑因素、资料来源等方面进行了探讨,并采用现场原型沙、室内原型沙和室内轻质沙等实测资料,对国内外常用公式的预测准确性进行了检验。结果表明,孙林云公式与各项实测资料的吻合程度最高,在众多沿岸输沙率公式中具有明显的先进性。在此基础上,对未来可进一步深化研究的方向作出了展望。  相似文献   

8.
近岸海域水沙界面通量与水流挟沙力研究   总被引:1,自引:0,他引:1  
郑俊  李瑞杰  于永海 《海洋学报》2014,36(5):136-141
近岸海域的波浪、潮流及海流等动力因素具有周期性和时间、空间尺度差异大的特点,在综合考虑各动力因子的联合作用时具有较大的难度。本文根据平动动能叠加原理给出了一种近岸动力因子的表达形式,并提出了海洋波动有效速度的概念,结合水沙界面处泥沙通量的切应力与挟沙力关系,得到了水流挟沙力的新的计算公式。指出了水流挟沙力与水流临界速度有关,并且该水流临界速度随水深的增大及相对糙率的减小而增大。采用近岸实测数据和模拟结果,对本文的近岸水流挟沙力公式进行了验证,结果表明该公式的计算值与实测值吻合较好,可以适用于近岸海域。  相似文献   

9.
A 2D Mathematical Model for Sediment Transport by Waves and Tidal Currents   总被引:12,自引:5,他引:12  
In this study, the combined actions of waves and tidal currents in estuarine and coastal areas are considered and a 2D mathematical model for sediment transport by waves and tidal currents has been established in orthogonal curvilinear coordinates. Non-equilibrium transport equations of suspended load and bed load are used in the model. The concept of background concentration is introduced, and the formula of sediment transport capacity of tidal currents for the Oujiang River estuary is obtained. The Dou Guoren formula is employed for the sediment transport capacity of waves. Sediment transport capacity in the form of mud and the intensity of back silting are calculated by use of Luo Zaosen' s formula. The calculated tidal stages are in good agreement with the field data, and the calculated velocities and flow directions of 46 vertical lines for 8 cross sections are also in good agreement with the measured data. On such a basis, simulations of back silting after excavation of the waterway with a sand bar under complicated boundary conditions in the navigation channel induced by suspended load, bed load and mud by waves and tidal currents are discussed.  相似文献   

10.
Many existing practical sand transport formulae for the coastal marine environment are restricted to a limited range of hydrodynamic and sand conditions. This paper presents a new practical formula for net sand transport induced by non-breaking waves and currents. The formula is especially developed for cross-shore sand transport under wave-dominated conditions and is based on the semi-unsteady, half wave-cycle concept, with bed shear stress as the main forcing parameter. Unsteady phase-lag effects between velocities and concentrations, which are especially important for rippled bed and fine sand sheet-flow conditions, are accounted for through parameterisations. Recently-recognised effects on the net transport rate related to flow acceleration skewness and progressive surface waves are also included. To account for the latter, the formula includes the effects of boundary layer streaming and advection effects which occur under real waves, but not in oscillatory tunnel flows. The formula is developed using a database of 226 net transport rate measurements from large-scale oscillatory flow tunnels and a large wave flume, covering a wide range of full-scale flow conditions and uniform and graded sands with median diameter ranging from 0.13 mm to 0.54 mm. Good overall agreement is obtained between observed and predicted net transport rates with 78% of the predictions falling within a factor 2 of the measurements. For several distinctly different conditions, the behaviour of the net transport with increasing flow strength agrees well with observations, indicating that the most important transport processes in both the rippled bed and sheet flow regime are well captured by the formula. However, for some flow conditions good quantitative agreement could only be obtained by introducing separate calibration parameters. The new formula has been validated against independent net transport rate data for oscillatory flow conditions and steady flow conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号