首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Numerical Model of Total Sediment Transport in the Yangtze Estuary   总被引:2,自引:2,他引:0  
Based on the non-equilibrium suspended load transport equation,bed load transport equationand sediment transport capacity formulas derived by Dou et al.,a 2-D numerical model of total sedimenttransport in the Yangtze Estuary is presented.In the model,the actions of tidal currents and wind waves andthe effect of salinity on sediment transport are considered.An automatically generated boundary-fitted grid isused to fit the boundaries of the estuary and the boundaries of engineering projects.The verification of calcu-lations shows that the sediment concentration,the deformation of riverbed and siltation in the channels causedby typhoons can be successfully simulated.  相似文献   

2.
Tide-driven bed load transport is an important portion of the net annual sediment transport rate in many shoreface and shelf environments. However, bed load transport under waves cannot be measured in the field and bed load transport by currents without waves is barely measurable, even in spring tidal conditions. There is, consequently, a strong lack of field data and validated models. The present field site was on the shoreface and inner shelf at 2 to 8.5 km offshore the central Dutch coast (far outside the surfzone), where tidal currents flow parallel to the coast. Bed load transports were carefully measured with a calibrated sampler in spring tidal conditions without waves at a water depth of 13–18 m with fine and medium sands. The near-bed flow was measured over nearly a year and used for integration to annual transport rates. An empirical bed load model was derived, which predicts bed load transports that are a factor of > 5 smaller than predicted by existing models. However, they agree with laboratory data of sand and gravel transport in currents near incipient motion. The damped transport rates may have been caused by cohesion of sediment or turbulence damping due to mud or biological activity. The annual bed load transport rate was calculated using a probability density function (pdf) derived from the near-bed current and orbital velocity data which represented the current and wave climate well when compared to 30 years of data from a nearby wave station. The effect of wave stirring was included in the transport calculations. The net bed load transport rate is a few m2/year. This is much less than predicted in an earlier model study, which is partly due to different bed load models but also due to the difference in velocity pdf. The annual transport rate is very sensitive to the probability of the largest current velocities.  相似文献   

3.
LU  Yongjun 《中国海洋工程》2002,16(1):107-122
A 2-D mathematical model of tidal current and sediment has been developed for the Oujiang Estuary and the WenzhouBay. This model accomodates complicated features including multiple islands, existence of turbidity, and significant differ-ence in size distribution of bed material. The governing equations for non-uniform suspended load and bed load transport arepresented in a boundary-fitted orthogonal curvilinear coordinate system. The numerical solution procedures along with theirinitial conditions, boundary conditions, and movable boundary technique are presented. Strategies for computation of thecritical condition of deposition or erosion, sediment transport capacity, non-uniform bed load discharge, etc. are suggested.The model verification computation shows that, the tidal levels computed from the model are in good agreement with the fielddata at the 18 tidal gauge stations. The computed velocities and flow directions also agree well with the values measuredalong the totally 52 synchronously observed verticals distributed over 8 cross sections. The computed tidal water throughputsthrough the Huangda‘ao cross section are close to the measured data. And the computed values of bed deformation fromYangfushan to the estuary outfall and in the outer-sea area are in good agreement with the data observed from 1986 to 1992.The changes of tidal volumes through the estuary, velocities in different channels and the bed form due to the influence of thereclamation project on the Wenzhou shoal are predicted by means of this model.  相似文献   

4.
A 2-D mathematical model of tidal current and sediment has been developed for the Oujiang Estuary and the Wenzhou Bay. This model accomodates complicated features including multiple islands, existence of turbidity, and significant differ-ence in size distribution of bed material. The governing equations for non-uniform suspended load and bed load transport are presented in a boundary-fitted orthogonal curvilinear coordinate system. The numerical solution procedures along with their initial conditions, boundary conditions, and movable boundary technique are presented. Strategies for computation of the critical condition of deposition or erosion, sediment transport capacity, non-uniform bed load discharge, etc. are suggested. The model verification computation shows that, the tidal levels computed from the model are in good agreement with the field data at the 18 tidal gauge stations. The computed velocities and flow directions also agree well with the values measured along the totally 52 synchronously ob  相似文献   

5.
潮流场对渤、黄、东海陆架底质分布的控制作用   总被引:10,自引:0,他引:10  
运用二维潮流数学模型,模拟了渤、黄、东海陆架的M2潮汐、潮流。结果表明,渤、黄、东海陆架的潮流有强弱之分以及往复流和旋转汉之别。在此基础上,计算了8种粒径沙的湖平均悬移输沙率、潮平均推移输沙以及相应的输沙率散度。根据输沙率散度的正负,划分了海底冲刷区与淤积区。根据不同粒径泥沙输沙率散度的相对大小,确定出海底的主要底质类型为砂质沉积、粉砂质泥沉积和以粉砂为主的混合沉积。计算结果表明,海底3种主要底负类型的分布格局与海底的冲淤格局以及与输沙率矢量的发散和聚合状况基本一致。在渤、黄、东海陆架,沙脊主要在强往复流区形成,沙席主要在强或较强的旋转流区形成,泥质沉积主要在弱潮流区形成。砂质沉积、泥质沉积以及混合沉积这3种主要底质类型并非孤立存在,而是受渤、黄、东海陆架潮流场控制而形成的一个完整的潮流沉积体系。渤、黄、东海陆架的砂质沉积与泥质沉积并非残留沉积,而是潮流沉积。在没有冷涡的情况下,黄、东海陆架的典型泥质沉积在弱潮流环境中同样可以形成,因此,认为冷涡并非黄、东海陆架典型泥质沉积形成的必要条件。  相似文献   

6.
闽江竹岐至侯官河段属山溪性感潮河段 ,水文条件变化快变幅大 ,河床边界复杂 ,整治建筑物多。通过选择有关参数 ,处理工程边界以及进口边界条件 ,用二维河道全沙数学模型计算所得的河床变形趋势与实测情况基本一致。在此基础上 ,对竹岐至侯官河段工程后的河床冲淤变化以及整治工程效果进行了预测分析  相似文献   

7.
Based on the characteristics of waves, tidal currents, sediment and seabed evolution in the Caofeidian sea area in the Bohai Bay, a 2D sediment mathematical model of waves and tidal currents is employed to study the development schemes of the harbor. Verification of spring and neap tidal currents and sediment in the winter and summer of 2006 shows that the calculated values of tidal stages as well as flow velocities, flow directions and sediment concentration of 15 synchronous vertical lines are in good agreement with the measured data. Also, deposition and erosion of the sea area in front of Caofeidian ore terminal induced by suspended load under tidal currents and waves are verified; it shows that the calculated values of depth of deposition and erosion as well as their distribution are close to the measured data. Furthermore, effects of reclamation scheme of island in front of the land behind Caofeidian harbor on the hydrodynamic environment are studied, including changes of flow velocities in the deep channels at the south side of Caofeidian foreland and Laolonggou and in various harbor basins, as well as changes of deposition and erosion of seabed induced by the project.  相似文献   

8.
Benthic nearshore currents were measured continuously for a week over the subtidal zone fronting an open coast, macrotidal beach (spring tide range 9.5 meters) in Northwestern Australia. The shore-parallel currents were dominated by the semidiurnal tide; however pronounced asymmetries expressed the contributions of higher harmonics. Northerly flows at high tide were considerably stronger and of longer duration than southerly flows at low tide. Considering the combined effects of sediment agitation by waves and net transport by the tidal currents, it is shown that a mechanism may exist which could produce net northerly transport of “bed load” and southerly transport of suspended load.  相似文献   

9.
对于粉沙淤泥质河口和海岸,海底泥沙受潮流作用主要以悬沙形式输运。在这样的海区建港与疏浚航道,需要首先进行泥沙淤积问题的研究。本文采用潮流作用下不平衡方程式、挟沙能力公式和起动流速公式,建立了潮流作用下河口悬沙运动二维数学模型,在对二维悬沙不平衡输沙方程和海底变形方程进行离散时直接采用显式迎风格式,得到了较好的结果。在此基础上,将该模型应用于实际水域,结果表明,该数学模型能够模拟河口的悬沙运动规律和冲淤变化,对于水流较大的海域该模型有一定的应用价值  相似文献   

10.
Owing to lack of observational data and accurate definition,it is difficult to distinguish the Kuroshio intrusion water from the Pacific Ocean into the South China Sea(SCS).By using a passive tracer to identify the Kuroshio water based on an observation-validated three-dimensional numerical model MITgcm,the spatio-temporal variation of the Kuroshio intrusion water into the SCS has been investigated.Our result shows the Kuroshio intrusion is of distinct seasonal variation in both horizontal and vertical directions.In winter,the intruding Kuroshio water reaches the farthest,almost occupying the area from 18°N to 23°N and 114°E to 121°E,with a small branch flowing towards the Taiwan Strait.The intrusion region of the Kuroshio water decreases with depth gradually.However,in summer,the Kuroshio water is confined to the east of 118°E without any branch reaching the Taiwan Strait;meanwhile the intrusion region of the Kuroshio water increases from the surface to the depth about 205 m,then it decreases with depth.The estimated annual mean of Kuroshio Intrusion Transport(KIT) via the Luzon Strait is westward to the SCS in an amount of –3.86×106 m3/s,which is larger than the annual mean of Luzon Strait Transport(LST) of –3.15×106 m3/s.The KIT above 250 m accounts for 60%–80% of the LST throughout the entire water column.By analyzing interannual variation of the Kuroshio intrusion from the year 2003 to 2012,we find that the Kuroshio branch flowing into the Taiwan Strait is the weaker in winter of La Ni?a years than those in El Ni?o and normal years,which may be attributed to the wind stress curl off the southeast China then.Furthermore,the KIT correlates the Ni?o 3.4 index from 2003 to 2012 with a correlation coefficient of 0.41,which is lower than that of the LST with the Ni?o 3.4 index,i.e.,0.78.  相似文献   

11.
Vast bay-type tidal inlets can be found along the coastal zones of China. They are generally suitable for deep water channels and large harbors because of the presence of large water depth and good mooring conditions. The deep channel, in front of the head of Caofeidian Island in Bohai Bay, China, is a typical bay-type tidal inlet system. The tidal current, a type of reverse flow, makes the key contribution to maintain the deep water depth. The co-action of waves and tidal currents is the main dynamic force for sediment motion. Waves have significant influence on the sediment concentration. Based on the characteristics of waves, tidal currents, sediment and seabed evolution in Caofeidian sea area, a 2D mathematical model for sediment transport under influence of waves and tidal currents is developed to study the development schemes of the Caofeidian Harbor. The model has been verified for spring and neap tides, in winter as well as in summer of 2006. The calculated tidal stages, flow velocities, flow directions and sediment concentrations at 15 stations are in good agreement with the observations. Furthermore, the calculated data on pattern and magnitude of sedimentation and erosion in the related area agree well with the observations. This model has been used to study the effects of the reclamation scheme for Caofeidian Harbor on the hydrodynamic environment, sediment transport and morphological changes. Attentions are paid to the project inducing changes of flow velocities and morphology in the deep channel at the south side of Caofeidian foreland, in the Laolonggou channel and in various harbor basins. The conclusions can provide the important foundation for the protection and use of bay-type tidal inlets and the development of harbor industry.  相似文献   

12.
为探讨外航道回淤特征,采用二维波浪潮流泥沙数学模型,模拟研究了莱州湾东部航道回淤情况并探讨了其影响因素,以期对航道泥沙输运研究提供借鉴。研究表明,正常天气下,水流跨越航道,流速减小、挟沙能力下降导致的悬沙落淤是航道淤积的主要原因,但淤积量有限。大风浪是造成航道淤积的主要动力因素,其淤积泥沙主要来源于海底侵蚀来沙,河流来沙和沿岸输沙对航道淤积的贡献不大。从水深地形、泥沙来源、底质类型、水文动力条件等方面分析,航道发生骤淤的可能性较小。  相似文献   

13.
—A comprehensive analysis is conducted based on observations on topography.tidal current.salinity.suspended sediment and bed load during the years of 1982.1983.1988.1989.1996 and 1997 in theYangtze Estuary.Results show that the deformation of tidal waves is distinct and the sand carrying capaci-ty is large within the mouth bar due to strong tidal currents and large volume of incoming water and sedi-ments.Owing to both temporal and spatial variation of tidal current.deposition and erosion are extremelyactive.In general a change of up to 0.1 m of bottom sediments takes place during a tidal period.The maxi-mum siltation and erosion are around 0.2 m in a spring to neap tides cycle.The riverbed is silted duringflood when there is heavy sediment load.eroded during dry season when sediment load is low.The annualaverage depth of crosion and siltation on the riverbed is around 0.6 m.In particular cases.it may increaseto 1.4 m to 2.4 m at some locations.  相似文献   

14.
Field measurements were conducted in Mont-Saint-Michel Bay, a megatidal embayment (spring tidal range of 15 m), in order to monitor, over the course of a tidal cycle, sediment transport variability due to waves and tides on the upper part of a tidal flat characterised by shallow water depths. Sensors used to measure currents, water depth and turbidity were installed just above the bed (0.04 m). Two experiments were conducted under contrasting hydrodynamic conditions. The results highlight wave activity over the tidal flat even though observed wind waves were largely dissipated due to the very shallow water depths. Very high suspended sediment concentrations (up to 6 kg/m3) were recorded in the presence of wave activity at the beginning of the local flood, when significant sediment transport occurred, up to 7 times as much as under conditions of no wave activity. This influence may be attributed to the direct action of waves on bed sediments, to wave-induced liquefaction, and to the erosive action of waves on tidal channel banks. The sediment composition, comprising a clay fraction of 2-5%, may also enhance sediment transport by reducing critical shear stress through the sand lubrication effect. The results also show that antecedent meteorological conditions play an important role in suspended sediment transport on the tidal flat. Total sediment flux directions show a net transport towards the inner part of the bay that contributes to deposition over the adjacent salt marshes, and this tendency also prevails during strong wave conditions. Such sediment transport is characterised by significant variability over the course of the tidal cycle. During fair and moderate weather conditions, 83% and 71% of the total flux was observed, respectively, over only 11% and 28% of the duration of the local tidal cycle and with water depths between 0.04 and 0.3 m. These results suggest that in order to improve our understanding of sediment budgets in this type of coastal environment, it is essential to record data just at the beginning and at the end of tidal submergence close to the bed.  相似文献   

15.
In May of 2005, an observational program was carried out to investigate the along channel hydrodynamics and suspended sediment transport patterns at North Inlet, South Carolina. Along channel variability, which is important in establishing sediment transport pathways, has not been characterized for this system. Measurements of water column currents, salinity, bed sediment, suspended sediment concentration, and particle size distribution were obtained over a complete tidal cycle along the thalweg of the inlet entrance. Along channel currents, shear stress and bed sediment distributions vary significantly in space and time along a 3 km section bracketing the inlet throat. Most of the variability is consistent with geomorphic controls such as bed elevation variability and channel width. The highest velocities, shear stresses, suspended sediment concentration and bed sediment grain size are observed in the narrowest section of the inlet throat. Magnitudes systematically decrease along the channel toward the marsh as changes in channel geometry and branching reduces flow energy. Due to tidal asymmetry, the ebb phase contains significantly higher currents and associated sediment transport. Over the complete tidal cycle, depth integrated transport is directed towards the marsh landward of the intersection of Town and Debidue Creek. In contrast, net transport is out of the inlet seaward of this intersection. Sediment grain size distributions show 35% more material less than 63 μm on flood, suggesting net landward transport of fines.  相似文献   

16.
Sediment transport in the Hangzhou Bay is extremely complicated due to its bathymetry and hydrodynamic conditions. The ECOMSED model is employed to simulate three-dimensional (3-D) cohesive sediment transport in Hangzhou Bay. Dynamical factors such as Coriolis force, tides, salinity, river discharges, and waves are considered in the model. The wave parameters, including the significant wave height, period, and direction, are calculated with the SWAN model. The Grant-Madsen model is introduced for the bed shear stress due to the combined effect of waves and currents. The formulation of bed shear stress used to calculate the sink/source terms is modified based on previous research that sufficiently validated the formulation with measurement data. The integrated model of the above-mentioned models is applied to simulate sediment transport in Hangzhou Bay. The results of the simulation agree well with field observations concerning the distribution of suspended sediment, indicating that the sediments are remarkably suspended in Hangzhou Bay under the action of waves and currents.  相似文献   

17.
南黄海辐射沙洲区悬沙潮扩散规律数值研究   总被引:2,自引:0,他引:2  
在对南黄海辐射沙洲区的潮汐、潮流特征作进一步探讨的基础上,数值模拟了该区的悬沙潮扩散。根据计算结果,分析了计算海域悬沙含量在一个半日潮过程中随潮流场的瞬时变化规律,研究了不同地点悬沙含量与潮位、潮流的关系,总结了涨、落潮平均含沙量的平面分布规律。结果表明,该区的潮流场控制着悬沙的扩散、运移和分布,进而控制着海底地形的发育,尤其是辐射沙洲北大南小不对称格架的塑造与辐射沙洲根部的加积淤高。  相似文献   

18.
《Coastal Engineering》2006,53(11):897-913
For the general purposes of morphodynamic computations in coastal zones, simple formula-based models are usually employed to evaluate sediment transport. Sediment transport rates are computed as a function of the bottom shear stress or the near bed flow velocity and it is generally assumed that the sediment particles react immediately to changes in flow conditions. It has been recognized, through recent laboratory experiments in both rippled and plane bed sheet flow conditions that sediment reacts to the flow in a complex manner, involving non-steady processes resulting from memory and settling/entrainment delay effects. These processes may be important in the cross-shore direction, where sediment transport is mainly caused by the oscillatory motions induced by surface short gravity waves.The aim of the present work is to develop a semi-unsteady, practical model, to predict the total (bed load and suspended load) sediment transport rates in wave or combined wave-current flow conditions that are characteristic of the coastal zone. The unsteady effects are reproduced indirectly by taking into account the delayed settling of sediment particles. The net sediment transport rates are computed from the total bottom shear stress and the model takes into account the velocity and acceleration asymmetries of the waves as they propagate towards the shore.A comparison has been carried out between the computed net sediment transport rates with a large data set of experimental results for different flow conditions (wave-current flows, purely oscillatory flow, skewed waves and steady currents) in different regimes (plane bed and rippled bed) with fine, medium and coarse uniform sand. The numerical results obtained are reasonably accurate within a factor of 2. Based on this analysis, the limits and validity of the present formulation are discussed.  相似文献   

19.
20.
《Coastal Engineering》1999,36(3):171-195
A morphological stability analysis is carried out for a long straight coast with a longshore bar. The situation with oblique wave incidence and a wave-driven longshore current is considered. The flow and sediment transport are described by a numerical modelling system. The models comprise: (i) a wave model with depth refraction, shoaling and wave breaking, (ii) a depth integrated model for wave driven currents and (iii) a sediment transport model for the bed load transport and the suspended load transport in combined waves and current. The direction of the sediment transport is taken to be parallel to the depth integrated mean current velocity, neglecting the effects of a bed slope and secondary currents. An instability is found to develop around the bar crest. The instability is periodic in the alongshore direction, and tends to form rip channels and to steepen the offshore face of the bar between the rip channels. The alongshore wave length of the most unstable perturbation is determined for different combinations of the wave conditions and the geometry of the profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号