首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A 2D Mathematical Model for Sediment Transport by Waves and Tidal Currents   总被引:12,自引:5,他引:12  
In this study, the combined actions of waves and tidal currents in estuarine and coastal areas are considered and a 2D mathematical model for sediment transport by waves and tidal currents has been established in orthogonal curvilinear coordinates. Non-equilibrium transport equations of suspended load and bed load are used in the model. The concept of background concentration is introduced, and the formula of sediment transport capacity of tidal currents for the Oujiang River estuary is obtained. The Dou Guoren formula is employed for the sediment transport capacity of waves. Sediment transport capacity in the form of mud and the intensity of back silting are calculated by use of Luo Zaosen' s formula. The calculated tidal stages are in good agreement with the field data, and the calculated velocities and flow directions of 46 vertical lines for 8 cross sections are also in good agreement with the measured data. On such a basis, simulations of back silting after excavation of the waterway with a sand bar under complicated boundary conditions in the navigation channel induced by suspended load, bed load and mud by waves and tidal currents are discussed.  相似文献   

2.
Owing to lack of observational data and accurate definition,it is difficult to distinguish the Kuroshio intrusion water from the Pacific Ocean into the South China Sea(SCS).By using a passive tracer to identify the Kuroshio water based on an observation-validated three-dimensional numerical model MITgcm,the spatio-temporal variation of the Kuroshio intrusion water into the SCS has been investigated.Our result shows the Kuroshio intrusion is of distinct seasonal variation in both horizontal and vertical directions.In winter,the intruding Kuroshio water reaches the farthest,almost occupying the area from 18°N to 23°N and 114°E to 121°E,with a small branch flowing towards the Taiwan Strait.The intrusion region of the Kuroshio water decreases with depth gradually.However,in summer,the Kuroshio water is confined to the east of 118°E without any branch reaching the Taiwan Strait;meanwhile the intrusion region of the Kuroshio water increases from the surface to the depth about 205 m,then it decreases with depth.The estimated annual mean of Kuroshio Intrusion Transport(KIT) via the Luzon Strait is westward to the SCS in an amount of –3.86×106 m3/s,which is larger than the annual mean of Luzon Strait Transport(LST) of –3.15×106 m3/s.The KIT above 250 m accounts for 60%–80% of the LST throughout the entire water column.By analyzing interannual variation of the Kuroshio intrusion from the year 2003 to 2012,we find that the Kuroshio branch flowing into the Taiwan Strait is the weaker in winter of La Ni?a years than those in El Ni?o and normal years,which may be attributed to the wind stress curl off the southeast China then.Furthermore,the KIT correlates the Ni?o 3.4 index from 2003 to 2012 with a correlation coefficient of 0.41,which is lower than that of the LST with the Ni?o 3.4 index,i.e.,0.78.  相似文献   

3.
Tide-driven bed load transport is an important portion of the net annual sediment transport rate in many shoreface and shelf environments. However, bed load transport under waves cannot be measured in the field and bed load transport by currents without waves is barely measurable, even in spring tidal conditions. There is, consequently, a strong lack of field data and validated models. The present field site was on the shoreface and inner shelf at 2 to 8.5 km offshore the central Dutch coast (far outside the surfzone), where tidal currents flow parallel to the coast. Bed load transports were carefully measured with a calibrated sampler in spring tidal conditions without waves at a water depth of 13–18 m with fine and medium sands. The near-bed flow was measured over nearly a year and used for integration to annual transport rates. An empirical bed load model was derived, which predicts bed load transports that are a factor of > 5 smaller than predicted by existing models. However, they agree with laboratory data of sand and gravel transport in currents near incipient motion. The damped transport rates may have been caused by cohesion of sediment or turbulence damping due to mud or biological activity. The annual bed load transport rate was calculated using a probability density function (pdf) derived from the near-bed current and orbital velocity data which represented the current and wave climate well when compared to 30 years of data from a nearby wave station. The effect of wave stirring was included in the transport calculations. The net bed load transport rate is a few m2/year. This is much less than predicted in an earlier model study, which is partly due to different bed load models but also due to the difference in velocity pdf. The annual transport rate is very sensitive to the probability of the largest current velocities.  相似文献   

4.
《Coastal Engineering》2005,52(1):43-62
A vertical two-dimensional (2D) numerical model for time dependent local scour below offshore pipelines subject to unidirectional steady flow is developed. The governing equations for the flow and sediment transport are solved by using finite difference method in a general curvilinear coordinate system. The performance of two turbulence models, the standard kɛ model and Smagorinsky subgrid scale (SGS) model, on modeling time dependent scour processes is examined. Both suspended load and bed load are considered in the scour model. The suspended-load model is verified against two channel sediment transport cases. The change of bed level is calculated from the continuity equation of total sediment transport. A new time marching scheme and a sand slide scheme are proposed for the scour calculation. It is found that the proposed time marching scheme and sand slide model work well for both clear-water and live-bed scour situations and the standard kɛ turbulence closure is more preferable than the SGS model in the 2D scour model developed in this study.  相似文献   

5.
Study of the major Asian rivers discharge to the ocean reveals variations of their water discharges and sediment loads.and local characteristics of river sediment concentrations.On the basis of this,the Asian rivers fall into three regions,including Eurasia Arctic,East Asia,Southeast and South Asia Regions.The Eurasia Arctic Region is characterized by the lowest sediment concentration and load,while the East Asia Region is of the highest sediment concentration and higher sediment load,and the South-East and South Asia Region yields Higher Sediment concentration and highest sediment load. The sediment loads of these regions are mainly controlled by climate,geomorphology and tectonic activity.The Eurasia Arctc rivers with large basin areas and water discharge,drain low relief which consists of tundra sediment,thus causing the lowest sediment load.The East Asia rivers with small basin areas and lowest water discharges,drain extensive loess plateau,and transport most erodible loess material,which results in highest sediment concentration.The SE and South Asia rivers originating from the Tibet Plateau have large basin areas and the largest water discharges because of the Summer Monsoon and high rainfall influence,causing the highest sediment load.In Asia,tectonic motion of the Tibet Plateau Plays an important role.Those large rivers originating from the Tibet Plateau trasport about 50% of the world river sediment load to ocean annually,forming large estuaries and deltas,and consequently exerting a great influence on sedimentation in the coastal zone and shelves.  相似文献   

6.
LU  Yongjun 《中国海洋工程》2002,16(1):107-122
A 2-D mathematical model of tidal current and sediment has been developed for the Oujiang Estuary and the WenzhouBay. This model accomodates complicated features including multiple islands, existence of turbidity, and significant differ-ence in size distribution of bed material. The governing equations for non-uniform suspended load and bed load transport arepresented in a boundary-fitted orthogonal curvilinear coordinate system. The numerical solution procedures along with theirinitial conditions, boundary conditions, and movable boundary technique are presented. Strategies for computation of thecritical condition of deposition or erosion, sediment transport capacity, non-uniform bed load discharge, etc. are suggested.The model verification computation shows that, the tidal levels computed from the model are in good agreement with the fielddata at the 18 tidal gauge stations. The computed velocities and flow directions also agree well with the values measuredalong the totally 52 synchronously observed verticals distributed over 8 cross sections. The computed tidal water throughputsthrough the Huangda‘ao cross section are close to the measured data. And the computed values of bed deformation fromYangfushan to the estuary outfall and in the outer-sea area are in good agreement with the data observed from 1986 to 1992.The changes of tidal volumes through the estuary, velocities in different channels and the bed form due to the influence of thereclamation project on the Wenzhou shoal are predicted by means of this model.  相似文献   

7.
泥沙运动作为水流和底床相互作用的纽带,是河流、河口及海岸工程研究的重要内容。在潮波作用明显的河口、海岸地区,周期性的动力作用下的泥沙运动具有往复和可逆的特征,因此研究这类水域的泥沙的净输运更具有实际的意义。基于泥沙输运和流速呈指数关系假设,建立潮流环境下的泥沙全沙净输运的解析解公式,并对该公式的计算结果和数值计算以及数学模型的结果进行了检验和验证,结果表明本研究提出的公式能较好地反应潮流环境下的泥沙净输运。由此,基于本公式采用潮流分潮调和常数可计算得到全沙净输运,并可以分析各分潮流及其相互作用与泥沙净输运的关系。研究结果显示,在受径流影响较大的半日潮河口,S2、MS4、M2三潮相互作用对全沙净输运的贡献显著高于通常的潮流不对称作用,即M2、M4的相互作用。此外,河口区域径流导致的余流对泥沙净输运的贡献不可忽略,特别是在洪季,大径流量条件下往往导致余流较大,其对泥沙净输运的贡献所占比例较大。  相似文献   

8.
Quantity of bed load is an important physical parameter in sediment transport research. Aiming at the difficulties in the bed load measurement, this paper develops a bottom-mounted monitor to measure the bed load transport rate by adopting the sedimentation pit method and resolving such key problems as weighing and desilting, which can achieve long-time, all-weather and real-time telemeasurement of the bed load transport rate of plain rivers, estuaries and coasts. Both laboratory and field tests show that this monitor is reasonable in design, stable in properties and convenient in measurement, and it can be used to monitor the bed load transport rate in practical projects.  相似文献   

9.
为了研究泻湖型海湾内经常出现的湾中岛的形成机理,应用水平二维潮流、泥沙输移和地形演变耦合模型,对具有典型的沙坝泻湖地貌形态的水东湾的湾中岛的形成和演化进行了数值模拟,成功地模拟出了涨潮三角洲(大洲岛)的形成过程,计算结果与实际地貌形态总体符合。模型中分别考虑了全沙输沙和推移质输沙两种输沙情况。结果表明,水东湾湾中岛是由涨潮流引起的泻湖内泥沙不断淤积而形成的,是一种涨潮三角洲的地貌形态;全沙输沙模式比推移质输沙模式更适合这一地形演化过程的模拟。模拟结果也再现了湾中岛在25 a期间的地形变化过程,这一研究结果为通过计算数值模拟来研究一般海湾的地貌形态的形成机理和演化过程提供了实际算例。  相似文献   

10.
A 2-D mathematical model of tidal current and sediment has been developed for the Oujiang Estuary and the Wenzhou Bay. This model accomodates complicated features including multiple islands, existence of turbidity, and significant differ-ence in size distribution of bed material. The governing equations for non-uniform suspended load and bed load transport are presented in a boundary-fitted orthogonal curvilinear coordinate system. The numerical solution procedures along with their initial conditions, boundary conditions, and movable boundary technique are presented. Strategies for computation of the critical condition of deposition or erosion, sediment transport capacity, non-uniform bed load discharge, etc. are suggested. The model verification computation shows that, the tidal levels computed from the model are in good agreement with the field data at the 18 tidal gauge stations. The computed velocities and flow directions also agree well with the values measured along the totally 52 synchronously ob  相似文献   

11.
Details are given herein of the refinement and application of a three-dimensional layer integrated numerical model to predict morphological changes in tidal basins. The solution of governing differential equations, which consist of the conservation of mass and momentum for the hydrodynamics, the transport equation for the suspended sediment fluxes and the sediment mass conservation equation for the bed level changes are carried out by the use of Alternating Direction Implicit (ADI) Finite Difference Method (FDM). The model includes different criteria for the initiation of motion namely Shields (1936, Application of Similarity Principles and Turbulence Research to Bed load Movement, Hydrodynamics Laboratory, California Institute of Technology, Pub. No. 167), Kolahdoozan (1999, Numerical Modelling of Geomorphological Processes in Estuarine Waters, PhD Thesis, Department of Civil and Environmental Engineering, University of Bradford, Bradford, UK, 288) and Zanke (2003, On the Influence of Turbulence on the Initiation of Sediment Motion, International Journal of Sediment Research, 18(1), 17–31), to compare different aspects of flow conditions. As the flow is highly turbulent with the random nature of its components, many researchers have tried to express sediment transport processes by using stochastic approaches. In the current study both deterministic and stochastic methods are included in the numerical model to evaluate their accuracy and efficiency. To validate the numerical model results, laboratory measurements are used, with these being obtained from an earlier experimental program undertaken by the authors. Results of a short term bed level changes in a laboratory model harbor are included for the model verification purposes. Comparisons are undertaken using different criteria for the initiation of motion, with the results highlighting that the unsteadiness in the flow parameters included in the numerical model has a major effect on the bed level changes inside the harbor, in compare with the turbulence structure of the flow. The model is then applied to a real case study of the Humber Estuary, located in the UK, with comparisons being undertaken for different criteria for the initiation of motion, using both deterministic and stochastic approaches for the long term bed level predictions.  相似文献   

12.
13.
海底管道周围局部冲刷数值模拟分析   总被引:1,自引:0,他引:1  
通过建立一个垂直二维紊流模型来模拟管道周围流场,建立泥沙冲刷模型来模拟海床底面变化。其中,冲刷模型同时包括悬移质输沙和推移质输沙。海床底面变化通过计算底面泥沙总输运平衡关系得到。并进行多组冲刷数值实验,分析泥沙冲刷过程,总结出一套冲刷平衡深度经验公式。  相似文献   

14.
《Coastal Engineering》2005,52(7):647-653
In this note we point out a bias error that affects calibrations of ‘Bagnold-type’ energetics sediment transport models. Calibrations based on instantaneous measurements of fluid velocity and suspended sediment concentration incur an inherent increase in correlation between measured and predicted sediment transport rates because the measured fluid velocity resides on both sides of the calibration equation. Random, fully uncorrelated velocity and suspended load time series tests comparing the energetics model with a similar model which divides both sides of the equation by the velocity, showed that having velocity on both sides increased the R2 correlation coefficient from its expected near zero value to 0.45. This “false correlation” can be as high as 0.55 when there is a high mean concentration relative to the concentration variance and there are small mean velocities. In contrast, when there is relatively high variability in concentration in the presence of large mean velocities (e.g. suspension events of coarse grains under waves in the surf zone with an alongshore current), the “false correlation” reduced to 0.35. Comparisons with data from two swash experiments and a surf zone study showed a similar increase in “false correlation”. Associated with the “false correlation” was a 4-fold overestimate of the calibration coefficient used to tune the sediment transport model under simulated noisy field measurement conditions.  相似文献   

15.
对于粉沙淤泥质河口和海岸,海底泥沙受潮流作用主要以悬沙形式输运。在这样的海区建港与疏浚航道,需要首先进行泥沙淤积问题的研究。本文采用潮流作用下不平衡方程式、挟沙能力公式和起动流速公式,建立了潮流作用下河口悬沙运动二维数学模型,在对二维悬沙不平衡输沙方程和海底变形方程进行离散时直接采用显式迎风格式,得到了较好的结果。在此基础上,将该模型应用于实际水域,结果表明,该数学模型能够模拟河口的悬沙运动规律和冲淤变化,对于水流较大的海域该模型有一定的应用价值  相似文献   

16.
王玉海 《海洋工程》2016,(5):703-717
Wave shapes that induce velocity skewness and acceleration asymmetry are usually responsible for onshore sediment transport, whereas undertow and bottom slope effect normally contribute to offshore sediment transport. By incorporating these counteracting driving forces in a phase-averaged manner, the theoretically-based quasi-steady formula of Wang (2007) is modified to predict the magnitude and direction of net cross-shore total load transport under the coaction of wave and current. The predictions show an excellent agreement with the measurement data on medium and fine sand collected by Dohmen-Janssen and Hanes (2002) and Schretlen (2012) in a full-scale wave flume at the Coastal Research Centre in Hannover, Germany. The modified formula can predict the net onshore transport of fine sand in sheet flows. In particular, it can predict the net offshore transport of medium sand in rippled beds through enlarged bed roughness, as well as the net offshore transport of fine-to-coarse sand in sheet flows with the aid of a new criterion to judge the occurrence of net offshore transport.  相似文献   

17.
渤海海峡沉积物输运的参数化计算   总被引:1,自引:1,他引:0  
本文以2018年冬季渤海海峡两个站位的定点连续观测数据为基础,使用一维参数化方案,计算了观测站位底边界层内的水平悬浮物输运通量以及推移质输运量。在参数化方案中,简化的一维对流扩散方程被用于计算底边界层内的垂向悬浮物浓度。为了验证参数化方案的可靠性,本文基于观测数据对比了两种底剪切应力计算模型、四种临界起动剪切应力计算方法和两种一维对流扩散方程解法。对比结果表明:(1)不同模型计算的底剪切应力结果相近;(2)临界起动剪切应力受到颗粒间黏性作用的影响;(3)一维对流扩散方程的求解过程需要考虑沉积物浓度的分层效应和不同粒级颗粒临界起动剪切应力的差异。基于上述对比结果确定的最优参数化方案,进一步计算了观测站位的沉积物输运量:(1)在有再悬浮的时段,距底5 m内的水平悬浮物通量占全水深悬浮物通量的比例(T01站约为21%,T02站约为17%)显著高于相同层位水通量的占比;(2)依据参数化方案估算的冬季平均的悬浮物通量比忽略底边界层悬浮物浓度垂向变化的传统方法结果高约16%;(3)推移质输运量比悬移质输运量约低两个数量级。  相似文献   

18.
ABSTRACT

SedNetNZ is used to model the effect of erosion control undertaken under the Sustainable Land Use Initiative (SLUI) and predict the effect of climate change on sediment load in the Manawatū–Whanganui region. Sediment load in 2004 is estimated at 13.4?Mt?yr?1; by 2018, ≈5000?km2 of land had farm plans implemented and annual sediment load reduced by 6.2% of the 2004 load. If SLUI stops at the 2018 level of implementation, by 2038 it is predicted to achieve a 15.7% reduction in annual sediment load. If SLUI continues to implement farm plans, 7949?km2 of land will be treated by 2043 and annual sediment load could be reduced by a further 14.7%. Climate change is predicted to substantially increase sediment loads. By 2043 annual sediment load for the region is predicted to increase, compared to 2004, by between 8.3 and 23.7%. However, this can largely be offset by SLUI works. By 2090 an annual sediment load increase of between 53 and 224% due to climate change is predicted. The results suggest climate warming may dominate changes in sediment load in the future.  相似文献   

19.
20.
A horizontal two- dimensional numerical model is developed for estimation of sediment transport and sea bed change around a large circular cylinder under wave action. The wave model is based on an elliptic mild slope equation. The wave-induced current by the gradient of radiation stress is considered and a depth integrated shallow water equation is applied to the calculation of the current. The mass transport velocity and the bed shear stress due to streaming are considered, which are important factors affecting the sediment transport around a structure due to waves, especially in reflective areas. Wave-current interaction is taken into account in the model for computing the bed shear stress. The model is implemented by a finite element method. The results of this model are compared with those from other methods and agree well with experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号