首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 594 毫秒
1.
Recent observations over the Sigsbee Escarpment in the Gulf of Mexico have revealed extremely energetic deep currents (near 1 m s−1), which are trapped along the escarpment. Both scientific interest and engineering needs demand dynamical understanding of these extreme events, and can benefit from a numerical model designed to complement observational and theoretical investigations in this region of complicated topography. The primary objective of this study is to develop a modeling methodology capable of simulating these physical processes and apply the model to the Sigsbee Escarpment region. The very steep slope of the Sigsbee Escarpment (0.05–0.1) limits the application of ocean models with traditional terrain-following (sigma) vertical coordinates, which may represent the very complicated topography in the region adequately, can result in large truncation errors during calculation of the horizontal pressure gradient. A new vertical coordinate system, termed a vanishing quasi-sigma coordinate, is implemented in the Navy Coastal Ocean Model for application to the Sigsbee Escarpment region. Vertical coordinate surfaces for this grid have noticeably gentler slopes than a traditional sigma grid, while still following the terrain near the ocean bottom. The new vertical grid is tested with a suite of numerical experiments and compared to a classical sigma-layer model. The numerical error is substantially reduced in the model with the new vertical grid. A one-year, realistic, numerical simulation is performed to simulate strong, deep currents over the Escarpment using a very-high-resolution nested modeling approach. The model results are analyzed to demonstrate that the deep-ocean currents in the simulation replicate the prominent dynamical features of the observed intense currents in the region.  相似文献   

2.
A 1/8° global version of the Navy Coastal Ocean Model (NCOM) is described with details of its formulation, implementation, and configuration of the vertical coordinate. NCOM is a baroclinic, hydrostatic, Boussinesq, free-surface ocean model that allows its vertical coordinate to consist of σ coordinates for the upper layers and z-levels below a user-specified depth. This flexibility allows implementation of a hybrid σz coordinate system that is expected to mitigate some of the weaknesses that can be associated with either pure coordinate option. For the global NCOM application, the σz coordinate is used to allow terrain-following σ coordinates in the upper ocean, providing better resolution and topographic fidelity in shelf regions where flow is most sensitive to its representation. Including z coordinates for deeper regions efficiently maintains high near-surface vertical resolution in the open ocean. Investigation into the impact of the selected coordinate system focuses on differences between atmospherically-forced free-running (no assimilation) global solutions using σz and pure z coordinates. Comparisons with independent temperature observations indicate that global NCOM using the σz coordinate has improved skill relative to its z coordinate implementation. Among other metrics, we show that in comparison with time series of surface temperature from National Oceanic Data Center (NODC) buoys, mostly located in coastal regions, root mean squared differences (RMSD) improved for 63% and correlation improved for 71% of the stations when σz coordinates were used instead of pure z. For the exclusively open-ocean Tropical Atmosphere-Ocean (TAO) buoys, differences between the simulations were small, with the σz showing smaller RMSD for 45% of the stations and higher correlation for 65% of the stations. Additional comparisons using temperature profile observations further confirm a tendency for improved performance using the hybrid σz coordinates.  相似文献   

3.
海洋模式中Boussinesq近似误差讨论   总被引:4,自引:0,他引:4  
根据全球增暖的特点,设计了一个理想的数值试验方案,用Boussinesq POP海洋模式和改进的非Boussinesq POP海洋模式定量讨论了Bousiinesq近似在海洋模式计算中的误差。结果发现,在只有热力驱动的热力环流背景下,由热膨胀引起的海平面上升在水平方向上是基本均匀的,在所给的初始边界条件下,这种由Boussinesq近似引起的最大海平面误差可以达到59%,在Boussinesq POP模式中,热源中心处的海面高度要远小于由非Boussinesq模式计算的海面高度,而其周围有虚假的海面高度下降;在只有加热引起的热盐环流过程中,当模式作了Boussinesq假设以后,计算的经向和纬向垂直环流都会产生虚假的加强,虽然这种误差只是在1%左右;在Bousiinesq近似假定下,热量经向通量在赤道上垂直剖面的积分误差比质量经向通量在赤道上垂直剖面的积分误差大一个量级;非Boussinesq模式计算的气压梯度所做功的垂向分布在3000m以下是有波动的,而Boussinesq模式计算的气压梯度所做功的垂向分布在3000m以下基本上是均匀的,它的误差在10%以上。  相似文献   

4.
Step-like thermohaline structure was observed near icebergs trapped by fast ice in Lützow-Holm Bay, Antarctica. The structure was developed within the draft depth of the icebergs. The typical vertical distance between the succeeding step surfaces is 20–30 m, and the temperature and salinity differences across the step surface are about 0.05–0.06 deg and 0.06–0.10 psu, respectively. The structure appears to be generated by a sea-water/iceberg interaction, and is explainable by a simple model in which an ice wall is placed in the ocean linearly stratified by vertical salinity gradient.  相似文献   

5.
The zooplankton community of the subarctic Pacific is relatively simple, and contains a similar set of major species in all deep water areas of the subarctic Pacific. Their role in the food web varies considerably between coastal and offshore locations. In the oceanic gyres, microzooplankton and other mesozooplankton taxa replace phytoplankton as the primary food source for the dominant mesozooplankton species. Micronekton and larger zooplankton probably replace pelagic fish as major direct predators. Productivity and upper ocean biomass concentrations are intensely seasonal, in part because of seasonality of the physical environment and food supply, but also because of life history patterns involving seasonal vertical migrations (400–2000 m range) and winter dormancy. During the spring–summer season of upper ocean growth, small scale horizontal and vertical patchiness is intense. This can create local zones of high prey availability for predators such as planktivorous fish, birds, and marine mammals. On average, the cores of the subarctic gyres have lower biomass and productivity than the margins of the gyres. There is also some evidence that the Western Gyre is more productive than the Alaska Gyre, but more research is needed to confirm whether this east–west gradient is permanent. There is increasing evidence that the pattern of zooplankton productivity is changing over time, probably in response to interdecadal ocean climate variability. These changes include 2–3 fold shifts in total biomass, 30–60 day shifts in seasonal timing, and 10–25% changes in average body length.  相似文献   

6.
Realistic representation of sea ice in ocean models involves the use of a non-linear free-surface, a real freshwater flux and observance of requisite conservation laws. We show here that these properties can be achieved in practice through use of a rescaled vertical coordinate “z*” in z-coordinate models that allows one to follow undulations in the free-surface under sea ice loading. In particular, the adoption of “z*” avoids the difficult issue of vanishing levels under thick ice.Details of the implementation within MITgcm are provided. A high resolution global ocean sea ice simulation illustrates the robustness of the z* formulation and reveals a source of oceanic variability associated with sea ice dynamics and ice-loading effects. The use of the z* coordinate allows one to achieve perfect conservation of fresh water, heat and salt, as shown in extended integration of coupled ocean sea ice atmospheric model.  相似文献   

7.
Unstructured-grid models grounded on semi-implicit, finite-volume, Eulerian–Lagrangian algorithms, such as UnTRIM and ELCIRC, have enjoyed considerable success recently in simulating 3D estuarine and coastal circulation. However, opportunities for improving the accuracy of this type of models were identified during extensive simulations of a tightly coupled estuary–plume–shelf system in the Columbia River system. Efforts to improve numerical accuracy resulted in SELFE, a new finite-element model for cross-scale ocean modeling. SELFE retains key benefits, including computational efficiency of existing semi-implicit Eulerian–Lagrangian finite-volume models, but relaxes restrictions on grids, uses higher-order shape functions for elevation, and enables superior flexibility in representing the bathymetry. Better representation of the bathymetry is enabled by a novel, “localized” vertical grid that resembles unstructured grids. At a particular horizontal location, SELFE uses either S coordinates or SZ coordinates, but the equations are consistently solved in Z space. SELFE also performs well relative to volume conservation and spurious oscillations, two problems that plague some finite-element models. This paper introduces SELFE as an open-source code available for community use and enhancement. The main focus here is on describing the formulation of the model and on showing results for a range of progressively demanding benchmark tests. While leaving details to separate publications, we also briefly illustrate the superior performance of SELFE over ELCIRC in a field application to the Columbia River estuary and plume.  相似文献   

8.
Jan O. Backhaus   《Ocean Modelling》2008,22(3-4):114-127
This is the first part of a publication that describes the generation of adaptive grids (this part), and simulations with vector-ocean-model (VOM) in unstructured grids resulting from the adaptation (part II). A static vertical adaptive grid in z-coordinates allows improving the approximation of topography and vertical resolution at slopes. Adaptive grids use elements from a set of grid sizes by multiplying a basic smallest cell size with powers of two, as in cell division. Grids with locally isotropic vertical resolution at surface, seabed, and slopes can be generated whereby resolution decreases towards the ocean interior. The adaptation to topography yields unstructured grids that are organised in a one-dimensional vector by column-wise storage of cells, discarding land cells. The vector storage suggested the model’s name. Grids are generated by an iterative procedure that relies on rules, i.e. criteria and directives to control the grid structure in favour of a good representation of physics and smooth numerical operations. The directives govern vertical resolution at sea surface and seabed, and at slopes. For the latter vertical resolution is extended in the horizontal. In the ocean interior horizontal distances between changes in grid size can be controlled for the sake of smooth numerics. The use of a z-grid that avoids transformation errors, the depth-independence of vertical resolution, and the lateral extension of vertical resolution at slopes towards the ocean interior are the most significant differences of adaptive grids in comparison to vertical coordinate transformations. Unstructured grids do not rely on a smoothing of topography and can be used within any of the horizontal Arakawa-grids. For the same topography directives allow creating various grids as demonstrated for a shelf-ocean topography. The number of cells per column in two unstructured grids generated for the North Atlantic may locally well exceed typical layer numbers in conventional model matrices. But the domain average is similar to layer numbers of today’s ocean models. Thus, with the same investment of cells per domain a higher resolution in slope regions can be achieved by unstructured grids as compared to conventional z-grids.  相似文献   

9.
Gravity current entrainment is essential in determining the properties of the interior ocean water masses that result from marginal sea overflows. Although the individual entraining billows will be unresolvable in large-scale ocean models for the foreseeable future, some large-scale simulations are now being carried out that do resolve the intermediate scale environment which may control the rate of entrainment. Hallberg [Mon. Wea. Rev. 128 (2000) 1402] has recently developed an implicit diapycnal mixing scheme for isopycnic coordinate ocean models that includes the Richardson number dependent entrainment parameterization of Turner [J. Fluid Mech. 173 (1986) 431], and which may be capable of representing the gravity current evolution in large-scale ocean models. The present work uses realistic regional simulations with the Miami Isopycnic Coordinate Ocean Model (MICOM) to evaluate ability of this scheme to simulate the entrainment that is observed to occur in the bottom boundary currents downstream of the Mediterranean outflow. These simulations are strikingly similar to the observations, indicating that this scheme does produce realistic mixing between the Mediterranean outflow and the North Atlantic Central Water. Sensitivity studies identify the critical Richardson number below which vigorous entrainment occurs as a particularly important parameter. Some of these experiments also show meddies detaching from the Mediterranean undercurrent at locations that appear to be highly influenced by topographic features.  相似文献   

10.
The problem of numerical modeling and analysis of the large-scale World Ocean circulation variability under variations of the external forcing is considered. A numerical model was developed in the INM RAS and is based on the primitive equations of the ocean circulation written in a spherical generalized σ-coordinate system. The model’s equations are approximated on a grid with resolution of 2.5° × 2° × 33, and the North Pole is displaced to the continental point (60°E, 60.5°N). There are two stages for the numerical experiments. The quasi-equilibrium circulation of the World Ocean under the climatological atmospheric forcing is simulated at the first stage. The run is carried out over a period of 3000 years during which a quasi-equilibrium model regime is formed. At the second stage, the sensitivity of the model ocean circulation to the atmospheric forcing perturbations in the Southern Hemisphere is studied. According to the results, the strongest regional changes in the hydrography take place in the Arctic Ocean. Substantial changes of sea’s surface height and local anomalies of the temperature and salinity are formed there.  相似文献   

11.
When a steep bottom slope exists, it is well known that conventional methods for calculating horizontal diffusion in sigma-coordinate coastal ocean models causes spurious transport (e.g. salinity, temperature, and sediments) and currents. In this study, a second-order accurate finite-difference algorithm and program have been developed to reduce the spurious numerical diffusion errors. In the proposed algorithm, the finite differencing is performed in the xz coordinate system to approximate the horizontal gradient. Each variable in the finite differential formation is calculated in the sigma-coordinate grid cells using a second-order Lagrangian interpolation polynomial. In conjunction with a stepwise bottom boundary condition, numerical experiments show that the proposed finite-difference scheme considerably reduces numerical errors compared to conventional approaches when dealing with horizontal diffusion over steep topography, which often occurs in coastal oceans and navigation channels.  相似文献   

12.
降低水平压力梯度误差的方法比较   总被引:1,自引:0,他引:1  
由于坐标变换的关系,σ坐标海洋模式在处理陡峭地形时会产生较大的水平压力梯度误差.为减少水平压力梯度误差,前人提出了一系列改进的方法,这些方法可分为减去平均密度法、平滑地形法、网格变换法和水平压力梯度计算方程变换法4类.水平压力梯度计算方程变换法又可分为密度雅克比法、高阶精度法、有限体积法和转换到z坐标下计算水平压力梯度法.利用POM模式模拟理想海山来比较标准密度雅克比法、线性插值到z坐标法、四阶精度插值法、三次方多项式拟合法和权重密度雅克比法在计算水平压力梯度中出现的误差.模式初始时垂向分成,水平均匀,外模时间步长为12 s,内模时间步长为360 s,计算时间为360 d.从最大流速误差的结果可以看出,标准密度雅克比法得到的最大流速误差为0.45 m/s左右;线性插值到z坐标法得到的最大流速误差达到0.7 m/s;四阶精度方法计算得到的最大流速误差为0.3 m/s;权重密度雅克比方法和三次方多项式拟合法计算得到的最大流速误差相差不大,都只有0.2 m/s左右.标准密度雅克比法计算得到的单位质量平均动能最大,为9×10-4 m2/s2;四阶精度方法和线性插值到z坐标方法计算得到的单位质量平均动能差不多,为3×10-4 m2/s2;三次方多项式拟合法计算得到的单位质量平均动能为1.9×10-4 m2/s2;权重密度雅克比方法计算得到的单位质量平均动能最小,仅为1×10-4 m2/s2.标准密度雅克比法的计算耗时最短,为294 min;与其相比,三次方多项式拟合法的计算耗时增加了5.9%;权重密度雅克比法的计算耗时增加了8.8%;四阶精度插值法的计算耗时增加了23.6%.线性插值到z坐标法的计算耗时最长,需要384.5 min,相对于标准密度雅克比法的计算耗时增加了30.6%.因此,综合最大流速误差、平均动能和计算耗时的结果可知,线性插值到z坐标法的计算结果相对较差,采用权重密度雅克比法能较好地降低水平压力梯度误差.  相似文献   

13.
Sensitivity studies with a new generalized coordinate ocean model are performed in order to compare the behavior of bottom boundary layers (BBLs) when terrain-following (sigma or combined sigma and z-level) or z-level vertical grids are used, but most other numerical aspects remain unchanged. The model uses a second-order turbulence closure scheme that provides surface and BBL mixing and results in a quite realistic climatology and deep water masses after 100 year simulations with a coarse resolution (1° × 1°) basin-scale terrain-following grid. However, with the same turbulence scheme but using a z-level grid, the model was unable to produce dense water masses in the deep ocean. The latter is a known problem for coarse resolution z-level models, unless they include highly empirical BBL schemes.A set of dense water overflow experiments with high-resolution grids (10 and 2.5 km) are used to investigate the influence of model parameters such as horizontal diffusivity, vertical mixing, horizontal resolution, and vertical resolution on the simulation of bottom layers for the different coordinate systems. Increasing horizontal diffusivity causes a thinner BBL and a bottom plume that extends further downslope in a sigma grid, but causes a thicker BBL and limited downslope plume extension in a z-level grid. A major difference in the behavior of the BBL in the two grids is due to the larger vertical mixing generated by the turbulence scheme over the step-like topography in the z-level grid, compared to a smaller vertical mixing and a more stably stratified BBL in the sigma grid. Therefore, the dense plume is able to maintain its water mass better and penetrates farther downslope in the sigma grid than in the z-level grid. Increasing horizontal and vertical resolution in the z-level grid converges the results toward those obtained by a much coarser resolution sigma coordinate grid, but some differences remain due to the basic differences in the mixing process in the BBL.  相似文献   

14.
A finite-volume formulation is presented that solves the three-dimensional, nonhydrostatic Navier–Stokes equations with the Boussinesq approximation on an unstructured, staggered, z-level grid, with the goal of simulating nonhydrostatic processes in the coastal ocean with grid resolutions of tens of meters. In particular, the code has been developed to simulate the nonlinear, nonhydrostatic internal wave field in the littoral ocean. The method is based on the formulation developed by Casulli, in that the free-surface and vertical diffusion are semi-implicit, thereby removing stability limitations associated with the surface gravity wave and vertical diffusion terms. The remaining terms in the momentum equations are discretized explicitly with the second-order Adams–Bashforth method, while the pressure-correction method is employed for the nonhydrostatic pressure in order to achieve overall second-order temporal accuracy. Advection of momentum is accomplished with an Eulerian discretization which conserves momentum in cells that do not contain the free surface, and scalar advection is discretized in a way that ensures consistency with continuity, thereby ensuring local and global mass conservation using a velocity field that conserves volume on a local and global basis. The nonhydrostatic pressure field is solved efficiently using a block-Jacobi preconditioner, and while stability is limited by the internal gravity wave speed and vertical advection of momentum, applications requiring relatively small time steps due to accuracy or stability constraints are run efficiently on parallel computers, since the present formulation is written entirely with the message-passing interface (MPI). The ParMETIS libraries are employed in order to achieve a load-balanced parallel partitioning that minimizes interprocessor communication, and the grid is reordered to optimize per-processor performance by limiting cache misses while accessing arrays in memory. Test cases demonstrate the ability of the code to efficiently and accurately compute the nonhydrostatic lock exchange and internal waves in idealized as well as real domains, and we evaluate the parallel efficiency of the code using up to 32 processors.  相似文献   

15.
The Navy’s Modular Ocean Data Assimilation System (MODAS) is an oceanographic tool to create high-resolution temperature and salinity on three-dimensional grids, by assimilating a wide range of ocean observations into a starting field. The MODAS products are used to generate the sound speed for ocean acoustic modeling applications. Hydrographic data acquired from the South China Sea Monsoon Experiment (SCSMEX) from April through June 1998 are used to verify the MODAS model. MODAS has the capability to provide reasonably good temperature and salinity nowcast fields. The errors have a Gaussian-type distribution with mean temperature nearly zero and mean salinity of −0.2 ppt. The standard deviations of temperature and salinity errors are 0.98°C and 0.22 ppt, respectively. The skill score of the temperature nowcast is positive, except at depth between 1750 and 2250 m. The skill score of the salinity nowcast is less than that of the temperature nowcast, especially at depth between 300 and 400, where the skill score is negative. Thermocline and halocline identified from the MODAS temperature and salinity fields are weaker than those based on SCSMEX data. The maximum discrepancy between the two is in the thermocline and halocline. The thermocline depth estimated from the MODAS temperature field is 10–40 m shallower than that from the SCSMEX data. The vertical temperature gradient across the thermocline computed from the MODAS field is around 0.14°C/m, weaker than that calculated from the SCSMEX data (0.19°–0.27 °C/m). The thermocline thickness computed from the MODAS field has less temporal variation than that calculated from the SCSMEX data (40–100 m). The halocline depth estimated from the MODAS salinity field is always deeper than that from the SCSMEX data. Its thickness computed from the MODAS field varies slowly around 30 m, which is generally thinner than that calculated from the SCSMEX data (28–46 m).  相似文献   

16.
Amala Mahadevan   《Ocean Modelling》2006,14(3-4):222-240
Through a suite of three-dimensional, high-resolution numerical modeling experiments, we examine the role of nonhydrostatic effects on O(1 km) submesoscale processes at ocean fronts, with particular focus on the vertical velocity field. Several differences between nonhydrostatic and hydrostatic models are pointed out using a framework that enables precise comparison, but it is difficult to identify categorical differences between the model solutions at the grid resolutions afforded. The instantaneous vertical velocity structure is sensitive to the model choice and, even more so, to grid resolution, but the average vertical flux is similar in both hydrostatic and nonhydrostatic cases.When a frontal region with horizontal density gradients is perturbed by wind, a profusion of submesoscale, O(1 km), secondary circulation features develops in the upper 50 m. Narrow, elongated cells of intense up- and down-welling are found to occur close to the surface, overlying broader regions of weaker up- and down-welling associated with the mesoscale meanders of the baroclinically unstable front. The submesoscale down-welling is considerably stronger than up-welling and is concentrated in 1–2 km width filaments within which velocities can attain magnitudes as high as 200 m day−1. The submesoscale features are found to be robust at horizontal grid resolutions varying between 1 and 0.25 km and exist even in the hydrostatic model. Submesoscale circulation is difficult to observe or resolve in coarser resolution circulation models, but is likely to play a significant role in the exchange of energy and properties between the surface ocean and thermocline. Possible mechanisms for the generation of these features are investigated in a follow-on paper.  相似文献   

17.
Arcandra Tahar  M.H. Kim   《Ocean Engineering》2008,35(17-18):1676-1685
A theory and numerical tool are developed for the coupled-dynamic analysis of a deepwater floating platform with polyester mooring lines. The formulas allow relatively large elongation and nonlinear stress–strain relationships, as typically observed in polyester fibers. The mooring-line dynamics are based on a rod theory and the finite element method (FEM), with the governing equations described in a generalized coordinate system. The original rod theory [Nordgren, R.P., 1974. On Computation of the Motion of Elastic Rods. Journal of Applied Mechanics, 41, 777–780] is generalized to allow larger elongation and nonlinear stress–strain relationship. The dynamic modulus of polyester is modeled following an empirical regression formula suggested by [Bosman, R.L.M., Hooker, J., 1999. The Elastic Modulus Characteristic of Polyester Mooring Ropes. In: Proceedings of the Offshore Technology Conference, OTC 10779. Houston, Texas], in which the axial stiffness is not constant, but depends on loading conditions. Two case studies, the static and dynamic behavior of a tensioned buoy and a classic spar with polyester mooring lines, are conducted. The time-domain simulation results are systematically compared with those from the original rod theory. The effects of large elongation and nonlinear stress–strain relations are separately assessed. It is seen that the mean offset, motions, and tension with polyester lines can be different from those by original rod theory with linear elastic lines.  相似文献   

18.
Sea level elevations from near the mouth of San Francisco Bay are used to describe the low-frequency variability of forcing of the coastal ocean on the Bay at a variety of temporal scales. About 90% of subtidal fluctuations in sea level in San Francisco Bay are driven by the sea level variations in the coastal ocean that propagate into the Bay at the estuary mouth. We use the 100-year sea level record available at San Francisco to document a 1.9 mm/yr mean sea level rise, and to determine fluctuations related to El Nino-Southern Oscillation (ENSO) and other climatic events. At time scales greater than 1 year, ENSO dominates the sea level signal and can result in fluctuations in sea level of 10–15 cm. Alongshore wind stress data from central California are also analyzed to determine the impact of changes in coastal elevation at the mouth of San Francisco Bay within the synoptic wind band of 2–30 days. At least 40% of the subtidal fluctuations in sea level of the Bay are tied to the large-scale regional wind field affecting sea level variations in the coastal ocean, with little local, direct wind forcing of the Bay itself. The majority of the subtidal sea level fluctuations within the Bay that are not related to the coastal ocean sea level signal are forced by an east–west sea level gradient resulting from tidally induced variations in sea level at specific beat frequencies that are enhanced in the northern reach of the Bay. River discharge into the Bay through the Sacramento and San Joaquin River Delta also contributes to the east–west gradient, but to a lesser degree.  相似文献   

19.
Most off-shore oil platforms are supported by vertical cylinders extending to the ocean floor. An important problem in off-shore engineering is the calculation of the wave loading exerted on these vertical cylinders. Analytical solutions have been found for the case of plane incident waves incident on a circular cylinder by MacCamy and Fuchs [(1954), Wave forces on piles: a diffraction theory. U.S. Army Corps of Engineering, Beach Erosion Board, Technical Memorandum No. 69] and also for short-crested waves incident on a circular cylinder by Zhu [(1993), Diffraction of short-crested waves around a circular cylinder. Ocean Engng 20, 389–407]. However, for a cylinder of arbitrary cross-section, no analytic solutions currently exist. Au and Brebbia [(1983), Diffraction of water waves for vertical cylinders using boundary elements. Appl. Math. Modelling 7, 106–114] proposed an efficient numerical approach to calculate the wave loads induced by plane waves on vertical cylinders by using the boundary element method. However, wind-generated waves are better modelled by short-crested waves. Whether or not these short-crested waves can induce larger wave forces on a structure is of great concern to ocean engineers. In this paper wave loads, induced by short-crested incident waves, on a vertical cylinder of arbitrary cross-section are discussed. For a cylinder of certain cross-section, the wave loads induced by short-crested waves can be larger than those induced by plane waves with the same total wave number.  相似文献   

20.
The subject of the wave–seabed–structure interaction is important for civil engineers regarding stability analysis of foundations for offshore installations. Most previous investigations have been concerned with such a problem in the vicinity of a simple structure such as a vertical wall. For more complicated structures such as a pipeline, the phenomenon of the wave–seabed–structure has not been fully understood. This paper proposes a finite-difference model in a curvilinear coordinate system to investigate the wave-induced seabed response in a porous seabed around a pipeline. Based on the present numerical model, mechanism of the wave-induced soil response is examined. Employing Mohr–Coulomb failure criterion, the wave-induced seabed instability is also estimated. The numerical results indicate the importance of the effect of pipeline on the seabed response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号