首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Upper Cretaceous carbonates cropping out in the Murge Plateau are good analogues of the fractured and faulted carbonate oil reservoirs of southern Italy. For this reason, a detailed field analysis focused on structural architecture of fault and fracture networks has been carried out in the Murge Plateau. The well-bedded carbonates exposed there are crosscut by a set of bed-parallel stylolites and two sets of bed-perpendicular cross-orthogonal joints/veins. These structural elements were likely formed under vertical loading during burial diagenesis and flexure of the Apulian foreland of the Southern Apennines fold-and-thrust belt. Bed-parallel stylolites and bed-perpendicular cross-orthogonal joints/veins represent the background deformation that was overprinted by the fault-related localized deformation. The fault sets documented in the study area are arranged in two kinematically-compatible fault networks. The first one is made up of WNW-ESE and NNW-SSE oriented strike-slip faults, right- and left-lateral, respectively, and NW–SE oriented normal faults. The second fault network consists of WNW-ESE oriented left-lateral strike-slip faults, and NE–SW oriented normal faults.First, both architecture and dimensional parameters of the fault and fracture networks have been characterized and computed by means of statistical analysis. Then, the permeability structures associated to the aforementioned networks have been assessed in order to determine the role exerted by fault architecture and dissolution/cementation processes on the fluid storage and migration pathways within the studied platform carbonates. Network 1 faults show a quite variable fluid behavior, in which the fluid flow is strongly affected by inherited structural elements and karst dissolution, whereas network 2 faults show a more uniform, fluid conduit behavior.  相似文献   

2.
Rifting of continental margins is generally diachronous along the zones where continents break due to various factors including the boundary conditions which trigger the extensional forces, but also the internal physical boundaries which are inherent to the composition and thus the geological history of the continental margin. Being opened quite recently in the Tertiary in a scissor-shape manner, the South China Sea (SCS) offers an image of the rifting structures which varies along strike the basin margins. The SCS has a long history of extension, which dates back from the Late Cretaceous, and allows us to observe an early stretching on the northern margin onshore and offshore South China, with large low angle faults which detach the Mesozoic sediments either over Triassic to Early Cretaceous granites, or along the short limbs of broad folds affecting Palaeozoic to Early Cretaceous series. These early faults create narrow troughs filled with coarse polygenic conglomerate grading upward to coarse sandstone. Because these low-angle faults reactivate older trends, they vary in geometry according to the direction of the folds or the granite boundaries. A later set of faults, characterized by generally E–W low and high angle normal faults was dominant during the Eocene. Associated half-graben basement deepened as the basins were filling with continental or very shallow marine sediments. This subsequent direction is well expressed both in the north and the SW of the South China Sea and often reactivated earlier detachments. At places, the intersection of these two fault sets resulting in extreme stretching with crustal boudinage and mantle exhumation such as in the Phu Khanh Basin East of the Vietnam fault. A third direction of faults, which rarely reactivates the detachments is NE–SW and well developed near the oceanic crust in the southern and southwestern part of the basin. This direction which intersects the previous ones was active although sea floor spreading was largely developed in the northern part, and ended by the Late Miocene after the onset of the regional Mid Miocene unconformity known as MMU and dated around 15.5 Ma. Latest Miocene is marked by a regional basement drop and localized normal faults on the shelf closer to the coast. The SE margin of the South China Sea does not show the extensional features as well as the Northern margin. Detachments are common in the Dangerous Grounds and Reed Bank area and may occasionally lead to mantle exhumation. The sedimentary environment on the extended crust remained shallow all along the rifting and a large part of the spreading until the Late Miocene, when it suddenly deepened. This period also corresponds to the cessation of the shortening of the NW Borneo wedge in Palawan, Sabah, and Sarawak. We correlate the variation of margin structure and composition of the margin; mainly the occurrence of granitic batholiths and Mesozoic broad folds, with the location of the detachments and major normal faults which condition the style of rifting, the crustal boudinage and therefore the crustal thickness.  相似文献   

3.
The central part of the Zagros Fold-Thrust Belt is characterized by a series of right-lateral and left-lateral transverse tear fault systems, some of them being ornamented by salt diapirs of the Late Precambrian–Early Cambrian Hormuz evaporitic series. Many deep-seated extensional faults, mainly along N–S and few along NW–SE and NE–SW, were formed or reactivated during the Late Precambrian–Early Cambrian and generated horsts and grabens. The extensional faults controlled deposition, distribution and thickness of the Hormuz series. Salt walls and diapirs initiated by the Early Paleozoic especially along the extensional faults. Long-term halokinesis gave rise to thin sedimentary cover above the salt diapirs and aggregated considerable volume of salt into the salt stocks. They created weak zones in the sedimentary cover, located approximately above the former and inactive deep-seated extensional faults. The N–S to NNE–SSW direction of tectonic shortening during the Neogene Zagros folding was sub-parallel with the strikes of the salt walls and rows of diapirs. Variations in thickness of the Hormuz series prepared differences in the basal friction on both sides of the Precambrian–Cambrian extensional faults, which facilitated the Zagros deformation front to advance faster wherever the salt layer was thicker. Consequently, a series of tear fault systems developed along the rows of salt diapirs approximately above the Precambrian–Cambrian extensional faults. Therefore, the present surface expressions of the tear fault systems developed within the sedimentary cover during the Zagros orogeny. Although the direction of the Zagros shortening could also potentially reactivate the basement faults as strike-slip structures, subsurface data and majority of the moderate-large earthquakes do not support basement involvement. This suggests that the tear fault systems are detached on top of the Hormuz series from the deep-seated Precambrian–Cambrian extensional faults in the basement.  相似文献   

4.
The Edremit Gulf, which developed during the Neogene-Quaternary, is a seismically active graben in NW Anatolia (Turkey) surrounded by the Sakarya continent. The sedimentary deposits in the gulf overlie the bedrock unconformably and can be separated into two parts as upper and lower deposits based on similarity of their seismic characteristics, and because the contact between them is clear. The lower deposits are characterized in the seismic profiles by the absence of well defined, continuous reflectors and are strongly disturbed by faults. A tectonic map and structural model of the Edremit Gulf was derived from interpreting 21 deep seismic profiles trending NE–SW and NW–SE within the gulf. Two fault systems were distinguished on the basis of this compilation. The NNW–SSE trending parallel faults are low-angle normal faults formed after compression. They controlled and deformed the lower basin deposits. A syncline and anticline with a broad fold-curvature length resulted in folds that developed parallel to basin boundaries in the lower basin deposits. The ENE–WSW trending high-angle faults have controlled and deformed the northern basin of the Edremit Gulf. The folds developed within the northern lower deposits originated from the listric geometry of the faults. These faults are normal faults associated with regional N–S extension in western Anatolia. The Edremit Gulf began to open under the control of low-angle NNW–SSE trending faults that developed after the compression of western Anatolia in an E–W direction in the early Neogene. Subsequently, regional N–S extensional stress and high-angle normal faults cut the previous structures, opened the northern basin, and controlled and deformed the lower basin deposits in the gulf. As a result, the Edremit Gulf has not been controlled by any strike-slip faults or the Northern Anatolian Fault. The basin developed in the two different tectonic regimes of western Anatolia as an Aegean type cross-graben from the Neogene to Holocene.  相似文献   

5.
Seismic (air-gun) and 3.5-kHz systems and coring in the northwestern sector of the Hellenic Arc, Ionian Sea, serve to define the regional configuration, attitude and geometry of the unconsolidated sedimentary cover in a compressive tectonic setting. The Pliocene and Quaternary deposits are deformed to varying degrees throughout the region southwest of the island of Zakinthos. Depositional trends, overall structural configuration of the cover, and assemblages of deformation structures, including tilted, folded and faulted strata associated with a very complex topography, clearly reflect syndepositional modification in a tectonically mobile area. The structural attitude of the unconsolidated strata can be distinguished from that in tectonically active regions of the Mediterranean where extension prevails. The youthful physiography, sediment dispersal patterns and depositional distribution reveal prevailing NW—SE and NE—SW trends. Sediment deformation structures, whose axes strike primarily NW—SE, reveal a general NE—SW compressive stress trend. The geologically recent nature and orientation of the deformation are compatible with present theories concerning the evolution of the Hellenic Arc.  相似文献   

6.
Recently acquired (2005) multi-beam bathymetric and high-resolution seismic reflection data from the E–W-oriented Gulf of Gökova off SW Anatolia were evaluated in order to assess the uneven seafloor morphology and its evolution in terms of present-day active regional tectonics. Stratigraphically, the three identified seismic units, i.e., the basement, deltaic sediments deposited during Quaternary glacial periods, and modern gulf deposits, are consistent with those observed in previous studies. Structurally, the folds and faults with strike-slip and reverse components have been regionally mapped for the first time. Of these, NE–SW-oriented left-lateral strike-slip faults with compressional components forming the so-called Gökova Fault Zone intersect and displace two WNW–ESE-oriented submarine ridges and deep submarine plains. Thus, strike-slip faults are the youngest major structures in the gulf, and control present-day active tectonism. E–W-oriented folds on the inner and outer shelf, which are generally accompanied by reverse faults, delimit the margins of these submarine ridges, and deform the young basin deposits. These features also reveal the concomitant existence of a compressional tectonic regime. The compressional structures probably represent pressure ridges along left-lateral strike-slip fault segments. However, some E–W-oriented normal faults occur on the northwestern and partly also southern shelf, and along the borders of the adjacent deep submarine plains. They are intersected and displaced by the strike-slip faults. The lower seismicity along the normal faults relative to the NE–SW-oriented strike-slip faults suggests that the former are at present inactive or at least less active.  相似文献   

7.
Several mechanisms have been proposed for the opening of the South China Sea. Here, we use SKS splitting analysis to investigate the mantle flow surrounding the South China Sea. We use a total of 23 seismic stations and 87 events. We applied spectral analysis and cluster analysis to find a stable splitting solution for each event. The main conclusions are: (1) In northern Vietnam, the NW–SE fast direction is parallel to the absolute plate motion as well as GPS observations with splitting times larger than 1 s, indicating a coupled lithosphere and mantle. In contrast, in southern Vietnam, the NE–SW fast direction suggests that the lithosphere and asthenosphere are decoupled. (2) The fast directions beneath the South China Block and central Taiwan are NE–SW and NS respectively, both parallel to surface deformations with splitting times greater than 1 s, indicating that mantle flow and surface deformation are related. (3) The observed NW–SE fast directions beneath Hainan Island reflect the India–Eurasia collision, and show no signatures of an upwelling mantle plume directly underneath Hainan Island. This implies that Hainan Island is tectonically closely related to the Red River Fault, not the South China Block. (4) In Borneo, the observed NE-SW direction is parallel to the Palawan Trench, consistent with flow associated with the inactive proto-South China Sea subduction system. The SKS splitting observations surrounding South China Sea cannot be explained by a single geologic process, with either the collision-driven extrusion model or the slab pull model fitting the data presented here.  相似文献   

8.
南海热流特征及其构造意义   总被引:13,自引:1,他引:13  
根据南海 592个热流数据 ,为克服热流站位分布不均及局部异常热流的影响 ,结合各单元的地质史及其地壳厚度等资料对研究区热流特征进行了详细分析。结果表明 ,具拉张背景的区域如北部陆缘、湄公盆地以及北巴拉望盆地具有中等偏高热流 ;海沟区热流相对较低 ,东部海沟区除台西南盆地外均为低热流区 ,而南部边缘东段古海沟区处于热恢复中 ;南部边缘西区因边界断裂的扭张及深部热源的异常补给而具高热流 ;属于剪切断裂带的西部陆缘也具高热流特征 ;中沙—西沙地区热流中等偏高 ,并由NW往SE方向增加 ,而南沙地区热流较低 ,约为 60mW·m- 2 ;海盆的热流基本满足随洋壳年龄增加而降低的规律 ,东部次海盆实测热流与理论预测基本一致 ,而西南次海盆实测热流普遍低于预测值 ;在南海北部下陆坡区识别出一条高热流带 ,该带与前人给出的海盆北缘断裂带位置基本一致。研究区不同区域地热特征直接或间接地受控于其所处的构造环境。据此 ,给出了研究区的热流趋势图。  相似文献   

9.
南冲绳海槽岩石圈构造动力作用机制探讨   总被引:8,自引:1,他引:8  
由最新获得的重磁、地震和多波束地形数据 ,结合多尺度的地幔流动力分析 ,展示了南冲绳海槽岩石圈构造动力的多样性特征和其内在的联系。从上新世开始的三幕张性断陷活动是在以前的压性断裂构造的基础上发展起来的 ,向岛弧侧迁移 ,岩浆、火山活动主要集中在正断层与平移断层的交汇处。深部动力源可归结为上地幔对流产生的菲律宾海板块俯冲 ,引起岛弧岩石圈挤压褶皱而向海沟旋张掀斜 ,产生弧后岩石圈的张性构造 ;进一步引起弧后软流圈挤压隆起 ,岩石圈与软流圈耦合作用导致海槽断陷张裂、岩浆活动。冲绳海槽仍是一个软流圈在汇聚的弧后盆地。全球性左旋压扭滑移背景 ,琉球海沟南段俯冲受阻小、强度大 ,台湾—吕宋的北向挤压 ,使海槽表现为剪张性 ,由平移断层调控使张性断裂左旋雁行排列 ,整个海槽张性构造由北往南推进 ,张应力方向由NW过渡到NNW。  相似文献   

10.
南海第三纪生物礁分布与古构造和古环境   总被引:23,自引:0,他引:23  
南海是一个具有特殊大地构造背景的区域,该区的第三纪生物礁主要发育在南海北部、南部和西部边缘的新生代沉积盆地中。对生物礁的分布规律以及相应的古构造和古环境研究证实,该区第三纪生物礁生长发育位置明显地受古构造控制,成礁期大型古河流体系对生物礁的生长和分布有较大影响,这些认识对南海生物礁油气藏的勘探、完善生物礁研究理论具有重要的意义和使用价值。  相似文献   

11.
The Cenozoic Yinggehai-Song Hong and Qiongdongnan Basins together form one of the largest Cenozoic sedimentary basins in SE Asia. Detail studying on the newly released regional seismic data, we observed their basin structure and stratigraphy are clearly different. The structure of the NW–SE elongation of the Yinggehai-Song Hong Basin is strongly controlled by the strike–slip faulting of steep Red River Fault. And the basement is covered by heavy sediments from the Red River. However, structures closely related with rifting are imagined on the seismic data from the Qiongdongnan Basin. This rifting and thinning on the northern continental margin of the South China Sea is necessary to be explained by the subduction of a Proto-South China Sea oceanic crust toward the NW Borneo block during the Eocene–Early Miocene. To test how the strike–slip faulting in the Yinggehai-Song Hong Basin and rifting in the Qiongdongnan Basin develop together in the northwest corner of the South China Sea, we reconstructed the tectonics of the northwest corner of the South China Sea and test the model with software of MSC MARC. The numerical model results indicate the South China Sea and its surrounding area can be divided into a collision-extrusion tectonic province and a Proto-South China Sea slab pull tectonic province as suggested in previous works. We suggested that offshore Red River Fault in the Yinggehai-Song Hong Basin is confirmed as a very important tectonic boundary between these two tectonic provinces.  相似文献   

12.
In Northern Ethiopia oil seepage could be traced flowing through fractured basalts at the Mechela river bed near Wereilu town. These rocks make up part of the huge volume of Ethiopia's Oligocene-Miocene Plateau basalts and associated rhyolites that cover most of the central and northern part of the country. They overlie the marine sedimentary formations of Triassic–Cretaceous age and constitute one of the largest visible flood basalts on the face of the earth.2-D and 3-D analyses of the gravity field have been performed to determine the structural pattern and subsurface density distributions beneath the thick volcanic sequences. The resulting images offer significant new insights into the structural pattern and geophysical characterization of the study area. A NW–SE elongated basin of significant dimension has been localized directly beneath the oil seep at Wereilu. The basin is a graben formed within and by the NW–SE trending structures of the Karroo rift system. A younger generation of faults in the NE–SW direction has affected the basin exerting significant control on the geometry and perhaps on the sedimentation pattern that might have played a major role in hydrocarbon accumulation and localization.The nature and thickness of the sub-volcanic sedimentary succession, attaining a significant thickness of more than 5 km, coupled with the overlying thick volcanic sequences providing the necessary thermal gradient for the maturation of the organic material create a favorable condition for the generation and accumulation of hydrocarbon deposit.  相似文献   

13.
This paper presents a structural and stratigraphic analysis of the foreland-fold-belt of the Eastern Venezuelan Basin and the main conclusions about shale tectonic mechanisms in the area. The deformation of the foreland-fold-belt has been investigated analyzing the growth strata architecture preserved on the structure fold limbs. Three contractional episodes are proposed for the Eastern Venezuelan Basin: 1) Oligocene to middle Miocene, 2) late Miocene to Pliocene and 3) Pleistocene. The first episode produced contractional listric faults inside the shale and long displacement blind thrusts in the underlying Cretaceous units. The second episode produced the deformation of the Cenozoic strata into overlapping east-west-trending, convex northward anticlines that covers more than 200 kilometers in length and 40 kilometers wide, break-through normal faults product of a high sedimentary load that overcomes contraction and the formation of short-displacement blind thrusts in the underlying Cretaceous units. The last episode is related to an oblique compression and the formation of high angle extensional faults with dextral movement and NW-SE strike. The role of the shale tectonics in the evolution implies that shale deforms in two stages: 1) folding and 2) normal faulting of the crest of the anticline (Break through normal faulting). Folding controlled the sediment distribution during most of the Neogene strata, while the normal faulting of the anticlines represent basin potential for hydrocarbon. The best potential hydrocarbon plays in the basin are related to oblique-collision restricted basins and controlled by break-through normal faults and the presence of NW-SE strike faults that connect the HC source with the reservoirs. Results from this research imply that the role of sedimentation is fundamental for the overburden sand distribution and tectonic constrain of the folds.  相似文献   

14.
Structural analysis of the Indian Merge 3D seismic survey identified three populations of normal faults within the Exmouth Sub-basin of the North West Shelf volcanic margin of Australia. They comprise (1) latest-Triassic to Middle Jurassic N-NNE-trending normal faults (Fault Population I); (2) Late Jurassic to Early Cretaceous NE-trending normal faults (Fault Population II); and (3) latest-Triassic to Early Cretaceous N-NNE faults (Fault Population III). Quantitative evaluation of >100 faults demonstrates that fault displacement occurred during two time periods (210–163 and 145–138 Ma) separated by ∼20 Myr of tectonic quiescence. Latest Jurassic to Early Cretaceous (145–138 Ma) evolution comprises magmatic addition and contemporaneous domal uplift ∼70 km wide characterised by ≥ 900 m of denudation. The areally restricted subcircular uplift centred on the southern edge of the extended continental promontory of the southern Exmouth Sub-basin supports latest Jurassic mantle plume upwelling that initiated progradation of the Barrow Delta. This polyphase and bimodal structural evolution impacts current hydrocarbon exploration rationale by defining the nature of latest Jurassic to Early Cretaceous fault nucleation and reactivation within the southern Exmouth Sub-basin.  相似文献   

15.
This study analyzes the structural development of the Gunsan Basin in the central Yellow Sea, based on multi-channel seismic reflection profiles and exploratory well data. The basin comprises three depressions (the western, central, and eastern subbasins) filled with a thick (ca. 6000 m) Cretaceous to Paleogene nonmarine succession. It was initiated in the early Cretaceous due to intracontinental extension caused by oblique subduction of the Izanagi plate under the Eurasian plate and sinistral movement of the Tan-Lu fault. The basin appears to have undergone transtension in the late Cretaceous–Eocene, caused by dextral movement of the Tan-Lu and its branching faults. The transtension was accommodated by oblique intra-basinal normal faults and strike-slip (or oblique-slip) movement of a NE-trending bounding fault in the northern margin of the central subbasin. The entire basin was deformed (NE–SW contraction) in the Oligocene when tectonic inversion occurred, possibly due to the changes in strike-slip motion, from right- to left-lateral, of the Tan-Lu fault. During the early Miocene, extension resumed by reactivation of the pre-existing normal and transpressional faults. A combination of extension, uplift, and erosion resulted in differential preservation of the early Miocene succession. At the end of the early Miocene, extension ceased with mild contraction and then the basin thermally subsided with ensued rise in sea level.  相似文献   

16.
Fractures associated with volcanic rock outcrops on the inner shelf of Alboran Island, Western Mediterranean, were mapped on the basis of a side-scan sonar mosaic. Absolute maximum fracture orientation frequency is NW–SE to NNW–SSE, with several sub-maxima oriented NNE–SSW, NE–SW and ENE–WSW. The origin of the main fracture systems in Neogene and Quaternary rocks of the Alboran Basin (south Spain) appears to be controlled by older structures, namely NE–SW and WNW–ESE to NW–SE faults which cross-cut the basement. These faults, pre-Tortonian in origin, have been reactivated since the early Neogene in the form of strike-slip and extensional movements linked to the recent stress field in this area. Fracture analysis of volcanic outcrops on the inner continental shelf of Alboran Island suggests that the shelf has been deformed into a narrow shear zone limited by two NE–SW-trending, sub-parallel high-angle faults, the main orientation and density of which have been influenced by previous WNW–ESE to NW–SE basement fractures.  相似文献   

17.
A high resolution seismic survey was carried out on the continental slope of Israel, NW of Caesarea. The area was studied in order to map the tectonic elements of the Dor structure, and to extrapolate and suggest a structural model of the tectonics of the continental slope of the SE Mediterranean since the Late Miocene. It was found that the continental slope was affected by two faulting systems—NW trending strike-slip faults and NNE trending normal faults. Faults of both systems are associated with numerous slumps along the slope. However, the NW trending faults belong to a faulting system of similar trend that abounds in the adjacent continent and extends northwestwards across the continental shelf and slope to the continental rise. The NNE trending faults form the shelf-edge faulting system that was associated with the subsidence of the eastern Mediterranean basin since the Pliocene. Thus the continental slope is not only a morphological transition zone but also a tectonic one, showing the influence of both the continental and the oceanic structural regimes in the SE Mediterranean region.  相似文献   

18.
The Gebel Yelleg area includes a number of folds belonging to the northern Sinai Syrian Arc structures. Detailed surface structural mapping and subsurface (seismic and borehole) data show that the Gebel Yelleg structures are related to Late Cretaceous-Early Tertiary inversion of a Jurassic asymmetric (or half) graben formed during the opening of Neotethys. The inversion structures include a large (45-km long) asymmetric fold (Yelleg Anticline) with a steep flank overlying the southeastern (main) bounding fault of the inverted half graben as well as some right-stepped en echelon folds overlying the northwestern bounding fault of the half graben. The large inversion anticline is dissected by a large number of long, nearly orthogonal normal faults whereas the en echelon folds are dissected by transverse normal faults and two sets of oblique-slip faults. Inversion of the northern Sinai extensional basins is related to Africa-Eurasia convergence and was probably transpressional with a small component of dextral slip. This study shows that the magnitude of inversion in the northern Sinai fold belt decreases toward the southern boundary of the Jurassic extensional province.  相似文献   

19.
A key consideration in tectonic models for SE Asia and opening of the South China Sea is the role that the West Baram and Tinjar Lines of NW Borneo may have played in accommodating the motion of crustal blocks displaced from Asia following India's collision. There are few studies that focus on these “lines”. Using onshore geological studies and offshore seismic data to address the origin and tectonic significance of these, this paper concludes that rather than a major transform boundary between Luconia and the Dangerous Grounds, the West Baram Line marks the boundary between domains of continental crust that underwent differential extension in the Eocene. The Baram Basin is underlain by hyperextended continental crust on the NE side of the Baram Line. The strong contrast in the geological features across the Tinjar and West Baram Lines likely reflects ancient differences in crustal rheology with Luconia being the more rigid block. Although lack of significant strike slip faulting along the West Baram Line poses problems for tectonic models in which a wide proto-South China Sea is subducted beneath NW Borneo, intra-plate deformation, such as partial inversion of the Dangerous Grounds rift, offers a potential mechanism to mass balance blocks displaced from Asia with the reduced strike slip motion along the West Baram Line.  相似文献   

20.
The South China Sea is the largest marginal basin of SE Asia, yet its mechanism of formation is still debated. A 1000-km long wide-angle refraction seismic profile was recently acquired along the conjugate margins of the SW sub-basin of the South China Sea, over the longest extended continental crust. A joint reflection and refraction seismic travel time inversion is performed to derive a 2-D velocity model of the crustal structure and upper mantle. Based on this new tomographic model, northern and southern margins are genetically linked since they share common structural characteristics. Most of the continental crust deforms in a brittle manner. Two scales of deformation are imaged and correlate well with seismic reflection observations. Small-scale normal faults (grabens, horsts and rotated faults blocks) are often associated with a tilt of the velocity isocontours affecting the upper crust. The mid-crust shows high lateral velocity variation defining low velocity bodies bounded by large-scale normal faults recognized in seismic reflection profiles. Major sedimentary basins are located above low velocity bodies interpreted as hanging-wall blocks. Along the northern margin, spacing between these velocity bodies decreases from 90 to 45 km as the total crust thins toward the Continent–Ocean Transition. The Continent–Ocean Transitions are narrow and slightly asymmetric – 60 km on the northern side and no more than 30 km on the southern side – indicating little space for significant hyper-stretched crust. Although we have no direct indication for mantle exhumation, shallow high velocities are observed at the Continent–Ocean Transition. The Moho interface remains rather flat over the extended domain, and remains undisturbed by the large-scale normal faults. The main décollement is thus within the ductile lower crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号