首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

In this study, settling tests were conducted to investigate the sedimentation and self-weight consolidation behavior of seafloor sediments from Isahaya Bay, Ariake Sea, Japan. During the tests, the density variations with depth and time were measured by a gamma-ray transmission radioisotope densitometer. The test results show that the settling process of the seafloor sediments can be classified into the flocculation stage, settling stage, and consolidation stage. The settling rate of the seafloor sediments in the settling stage is dependent on the temperature and initial water content, while the settling rate in the consolidation stage is independent of the temperature and initial water content. The density profile changes from a constant density profile to a linear density profile when the sedimentation process transitions to the self-weight consolidation process. The relations between the void ratio (e) and effective vertical stress (p’) at very low pressures can be calculated from the measured density values, and this can be used for the analysis of the self-weight consolidation of seafloor sediments. For the seafloor sediments tested in this study, the undrained shear strength (su) values are almost the same when the density values are less than 1.14?g/cm3, and the su values increase linearly with an increase in density when the density values are in the range of 1.14–1.2?g/cm3.  相似文献   

2.
High‐resolution vertical and lateral gradients and variations in sediment mass physical properties were derived from measurements in box cores, on the scale of millimeters, tens of centimeters, and kilometers from typical, relatively broad areas of the northern California continental slope in the Cape Mendocino area at water depths from 380 to 940 m. Such data are important as a control on comparisons of different sediment suites, as well as providing limits for realistic flux calculations of dissolved inorganic and biochemical species and pollutants. The sediments studied have relatively constant organic carbon contents (OC ? 1.75 wt%) and bulk mineralogy. They range from silty sands (~45% sand, 40% silt) to clayey silts (~63% silt, ~35% clay) and are extensively bioturbated. Physical property variations between subcores (~25 to 35 cm in length), taken from the same box core, increase with increasing clay content. For coarse‐grained sediments, mean down‐core differences in physical property values between related subcores are small, averaging 3.6% for water content, 4% for porosity, 0.026 Mg/m3 for wet bulk density, and 0.1 for void ratio. Subcore variations for fine‐grained sediments are generally significantly larger, averaging 9.8% for water content, 1.52% for porosity, 0.027 Mg/m3 for wet bulk density, and 0.3 for void ratio (box core 125). Millimeter variations of physical properties from horizontal 12‐cm‐long subcores indicate a maximum range of lateral variation of 18.2% for water content, 8% for porosity, 0.14 Mg/m3 for wet bulk density, and0.6 for void ratio.  相似文献   

3.
Abstract

The mechanical characteristics of calcareous silt interlayers play an important role in the stability of island-reef foundations. Direct shear and consolidation tests were performed to study the relationship between the mechanical properties and the physical parameters of calcareous silt. Based on the consolidation test results and analysis of the settling examples, different calculation methods for soil settling were compared. The results show the following. (1) The relationship between the cohesion and water content of calcareous silt can be represented by an M-shaped curve. The water contents corresponding to the two peaks of the M-type curve increase with increasing dry density. (2) When the dry density is less than 1.33?g/cm3, increasing the density significantly improves the internal friction angle of calcareous silts. When the dry density of the calcareous silt is greater than 1.33?g/cm3, the internal friction angle is affected by both the dry density and the water content. (3) The shear strength decreases when the water content exceeds the optimum level. (4) The compressive modulus of calcareous silt is larger than that of terrigenous silt. Specifically, it decreases with decreasing dry density and increasing water content. (5) The stepwise loading method should be used to estimate the soil settling before fill engineering construction.  相似文献   

4.
Mass wasting processes are a common phenomenon along the continental margin of NW-Africa. Located on the high-upwelling regime off the Mauritanian coastline, the Mauritania Slide Complex (MSC) is one of the largest events known on the Atlantic margin with an affected area of ∼30?000 km2. Understanding previous failure events as well as its current hazard potential are crucial for risk assessment with respect to offshore installations and tsunamis. We present the results of geotechnical measurements and strain analyses on sediment cores taken from both the stable and the failed part of the MSC and compare them to previously published geophysical and sedimentological data. The material originates from water depths of 1500–3000 m and consists of detached slide deposits separated by undisturbed hemipelagic sediments. While the hemipelagites are characterized by normal consolidation with a downward increase in bulk density and shear strength (from 1.68 to 1.8 g/cm3, 2–10 kPa), the slid deposits of the uppermost debris flow event preserve constant bulk density values (1.75 and 1.8 g/cm3) with incisions marking different flow events. These slid sediments comprise three different matrix types, with normal consolidation at the base (OCR = 1.04), strong overconsolidation (OCR = 3.96) in the middle and normal consolidation to slight overconsolidation at the top (OCR = 0.91–1.28). However, the hemipelagic sediments underlying the debris flow units, which have been 14C dated at <24 ka BP, show strong to slight underconsolidation (OCR = 0.65–0.79) with low friction coefficients of μ = 0.18. Fabric analyses show deformation intensities R ≥ 4 (ratio σ1/σ3) in several of the remobilized sediments. Such high deformation is also attested by observed disintegrated clasts from the underlying unit in the youngest debrites (14C-age of 10.5–10.9 ka BP). These clasts show strong consolidation and intense deformation, implying a pre-slide origin and amalgamation into the mass transport deposits. While previous studies propose an emplacement by retrogressive failure for thick slide deposits separated by undisturbed units, our new data on geotechnical properties, strain and age infer at least two different source areas with a sequential failure mechanism as the origin for the different mass wasting events.  相似文献   

5.
To study the relationship between nano-MgO and soil shear property, the nano-MgO was evenly mixed in the soil to perform the triaxial consolidation draining shear test. Then the microscopic soil granules on the shear planes were observed through the scanning electron microscope. The soil water content was 10% and soil dry density was 1.5?g/cm3, different dosages of nano-MgO, i.e., 0, 2, 4, and 6% were put into the soil samples. The result of triaxial consolidation draining shear test showed that, under low confining pressure and more nano-MgO dosage, the stress–strain relationship of nano-MgO-modified soil turned from hardening to softening. The incorporation of nano-MgO can effectively improve the soil failure strength and cohesive force, and the increasing dosages of nano-MgO had a positive effect on soil shear strength and cohesive force, but little effect on internal friction angle. The analysis of scanning electron microscopy showed that the dosage of nano-MgO can reduce the void ratio of soil and reinforce the cementation between soil granules to change the shear property of soil.  相似文献   

6.
The downward flux of Mn through the water column was directly measured using sediment traps. The Mn flux from the bottom sediment to the water column, and the removal rate of Mn in the bottom water were estimated from Mn gradients in the bottom water. The sediment traps were deployed more than ten times at the same station in Funka Bay, Japan. The trapped settling matter and filtered suspended matter samples were analyzed for Mn, Fe, Al and ignition loss. The observed downward flux of Mn through the water column in winter (1.3–2.8 μg/cm2 /day) was generally an order of magnitude larger than that in summer (0.13–0.45 μg/cm2 /day), and the Mn fluxes for both seasons were also greater than the accumulation rate of Mn in the bottom sediments (0.10 μg/cm 2/day). More Al was contained in the trapped settling matter than in the suspended matter, while Mn showed the opposite behavior. The Fe/Mn ratio of the residual fraction (obtained by subtracting the sediment component of the settling matter) was rather well correlated with the corresponding ratio in suspended matter. Settling particles are expected to scavenge suspended matter during their passage through the water column. The flux of Mn across the sediment—water interface was estimated from its vertical profiles in the water column to be 0.1–0.3 μg/cm2 day. The residence time of Mn in bottom water was about one to several months. These results suggest that Mn is actively recycled between the water column and the sediments of the coastal sea.  相似文献   

7.
High-resolution seismic profiles of Eckernförde Bay and the adjacent Baltic Sea were collected, and the geoacoustic properties of sediments there were measured. Bulk densities averaged ~ 1.35 g cm–3 and ranged from ~ 1.2 to ~ 1.7 g cm–3. Compressional wave velocities in gas-free sediments averaged ~ 1460 m s–1 and ranged from ~ 1425 to ~ 1555 m s–1. In nongassy sediments, bulk density variations typically controlled changes of acoustic impedance. Impedance changes were usually too small and closely spaced to be resolved seismically, although, at certain sites, significant impedance changes are far apart enough that they correlate one-to-one with seismic reflectors. Where free gas is present, velocity decreases and wave energy is scattered, causing a prominent seismic reflector.  相似文献   

8.
Abstract

As a part of the environmental impact assessment studies, geotechnical properties of sediments were determined in the Central Indian Basin. The undrained shear strength and index properties of the siliceous sediments were determined on 20 box cores of uniform dimension collected from various locations in five preselected sites. The maximum core length encountered was 41 cm and most of the sediments were siliceous oozes consisting of radiolarian or diatomaceous tests. The shear strength measurements revealed that surface sediments deposited in recent times (0–10 cm) have a shear strength of 0–1 kPa; this value increases with depth, reaching 10 kPa at 40 cm deep. Older sediments have greater strength because of compaction. Water content varies in the wide range of 312–577% and decreases with depth. The clay minerals such as smectite and illite are dominant and show some control over water content. Wet density, specific gravity, and porosity do not indicate any notable variation with depth, thereby indicating a uniform, slow rate of sedimentation. The average porosity of sediments is 90.2%, specific gravity 2.18, and wet bulk density 1.12 g/cm3. Sediments exhibit medium to high plasticity characteristics, with the average plasticity index varying between 105% and 136%. Preliminary studies on postdisturbance samples showed an increase in natural water content and a decrease in undrained shear strength of sediments in the top 10- to 15-cm layer.  相似文献   

9.
利用大洋多金属结核矿区调查过程中4个航次所得的600多组表层沉积物物性测试资料,将矿区的沉积物分为5种类型,并分析了这些沉积物的物理性质,同时,运用回归分析方法,统计分析了不同类型沉积物的含水量、湿密度、孔隙比与埋藏深度的关系,以及各物性指标之间的相关关系。结果表明:(1)大洋多金属结核矿区表层沉积物均为粉质土,黄棕色粉质土是西部矿区的主要沉积物类型,棕黄色粉质土是东部矿区的主要沉积物类型;(2)除褐色粉质土外,其余4种类型土的含水量、孔隙比均随埋藏深度的增加而减少和降低,湿密度则随深度增加而增大;(3)各类土的物性指标与埋藏深度的相关性甚好,因而可以利用埋藏深度对矿区的沉积物进行物性指标预测;(4)含水量、孔隙比、湿密度等物性指标之间呈线性相关,其中含水量与孔隙比的相关性最为密切,呈明显线性关系。  相似文献   

10.
浙闽近岸与南黄海中部沉积物物理力学性质的差异性分析   总被引:1,自引:0,他引:1  
本文对浙闽近岸和南黄海中部泥质区沉积物的物理力学性质,分别从基本物理性质、水理性质及力学性质进行对比分析,发现两个区域沉积物均以淤泥为主,含水率与密度、压缩系数与压缩模量均呈良好的幂函数负相关性,液限与塑限呈良好的幂函数正相关性,含水率与孔隙比呈较好的线性正相关,十字板剪切强度与微型贯入阻力呈较好的多项式函数关系。总体来说,南黄海中部泥质区沉积物相对于浙闽近岸泥质区沉积物具有含水率高、孔隙比大、密度小、塑性高,压缩性大,抗剪强度低等特征。从地形特征、物质来源、水动力条件、沉积速率和物质组成等方面进行两个区域沉积物物理力学性质差异性的成因分析。结果显示,与浙闽近岸相比,南黄海中部离陆较远、地势低洼、水动力条件较弱,能够扩散至此的物质较少并以极细的粘粒物质为主,沉积物中的蒙脱石和有机质含量高。这些因素使得南黄海中部沉积物的含水率高,塑性大,密度低,强度低。  相似文献   

11.
The sediments of the modern Huanghe River subaqueous delta are easily to generate settlement and lead to topography change which is due to fast deposition rate, high void ratio, moisture content and compressibility. The sediment consolidation settlements and its contribution to the topography change in the northern modern Huanghe River subaqueous delta are studied based on drilling data, laboratory experiment results, and water depth measurements of different time. The results show that the final consolidation settlement of drill holes in the study area is between 1.17 and 3.21 m, and mean settlement of unit depth is between 2.30 and 5.30 cm/m based on the one-dimensional consolidation theory and Plaxis numerical model. The final consolidation settlement obtained by Plaxis numerical model is smaller than that obtained by the one-dimensional consolidation theory,and the difference is 3.4%–39.9% between the methods. The contribution of the consolidation settlement to the topographical change is at 20.2%–86.6%, and the study area can be divided into five different regions based on different contribution rates. In the erosion area, the actual erosion depth caused by hydrodynamics is lower than the changes of measured water depth, however, the actual deposition amount caused by hydrodynamics is much larger than the changes of water depth obtained by measured data in the equilibrium and deposition areas.  相似文献   

12.
Deposits of dredged cohesive sediments were monitored for changes in volume, bulk characteristics, and susceptibility to resuspension and erosion at disposal sites in Chesapeake Bay. There is a 23–48% volume reduction during the first six months, with correspondingly greater changes over longer time periods. A bulk density increase from 1.15 to 1.3 g/cm3 due to dewatering and compaction accounts for the majority of the volume change. Tidal current induced resuspension is a minor process. The observed suspended sediment load can be accounted for by erosion of only a fraction of a millimeter of sediment on each tidal cycle.  相似文献   

13.
Back-pressured, constant-rate-of-deformation consolidation, and permeability tests were conducted on 21 undisturbed samples from Eckernförde Bay in the Baltic Sea. The soft fine-grained sediments have very high in-situ void ratios and are highly compressible. The compression index decreases slightly in the upper 40 cm but remains essentially unchanged below 40 cm at an average value of 3.5 to a depth of 260 cm. Recompression indices range from 5 to 19% of the virgin indices. The preconsolidation stress is consistently higher than the overburden stress, particularly near the surface. Permeabilities at in situ void ratios vary between 3 × 10–4 and 10–6 cm s–1, with the relationship between void ratio and the logarithm of permeability being linear.  相似文献   

14.
分析研究了南海北部大陆架西南缘的海南岛东南外海海底沉积物声学物理特性,在多个航次中进行了海底沉积层取样、海水CTD测量、浅地层及旁侧声呐扫测等工作.在实验室里对沉积物样品进行声学参数、沉积学基本参数、物理力学参数和14C年龄测试等分析.根据多尔特曼公式求解出弹性模量、体积弹性模量、压缩系数、切变模量、泊松比和拉梅常数等六项沉积物弹性参数.分析结果表明在该海区海底沉积物的压缩波速为1.474~1.700 m/s,在不同的海区内有高低声速两类性质的沉积物分布;沉积物的切变波速为150~600 m/s;沉积物在100 kHz的声衰减为35~260 dB/m;沉积物的密度为1.4~2.0 g/cm3;沉积物的孔隙度为42%~88%.  相似文献   

15.
Quantitative information on the abundance and biomass of metazoan meiofauna was obtained from samples collected at 15 deep-sea stations in the Eastern Mediterranean Sea (533–2400m). Meiofaunal abundance was compared to bacterial biomass and other environmental factors such as the total sedimentary organic matter content, the concentrations of the main biochemical classes of organic compounds (i.e. proteins, carbohydrates and lipids) and to ATP. To estimate the sedimentation potential of primary organic matter, sediment bound chloroplastic pigment equivalents (CPE) were assayed. Meiofaunal density was very low ranging from 4 ind.10cm−2 (Station A4, 1658m depth) to 290 ind.10cm−2 (Station A12, 636m depth). Nematodes were the numerically dominant taxon (68% of total meiofauna) and were usually confined to the top 6cm of the sediments. Total meiofaunal biomass ranged from 2.78μgC 10cm−2 (Station A4) to 598.34μgC 10cm−2 (Station 15A). There was a significant decrease in the density of metazoan meiofauna with water depth. Bacterial biomass largely dominated the total biomass (as the sum of bacterial and meiofaunal biomass) with an average of 73.2% and accounted for 35.8% of the living biomass (as ATP carbon) whereas meiofaunal biomass accounted only for 6.56%. Bacterial biomass was significantly related to the DNA concentrations of the sediment. A significant correlation between ATP concentration and CPE content was also found. No correlations were found between meiofauna, ATP and CPE, or between meiofauna and bacterial parameters. The significant relationship between meiofaunal density and the ratio of labile organic matter/total organic matter indicates that deep-sea meiofauna inhabiting an extremely oligotrophic environment (such as the Eastern Mediterranean) may be more nutritionally dependent upon the quality than on the quantity of sedimentary organic matter.  相似文献   

16.
Geotechnical characteristics of carbonate sediments from two test sites (Dry Tortugas Keys and Marquesas Keys) in the Lower Florida Keys were investigated as part of the Coastal Benthic Boundary Layer Special Research Program, through an extensive field coring and laboratory testing program conducted by the Marine Geomechanics Laboratory of the University of Rhode Island. Based on results from physical measurements, water content and wet bulk density values for both sites generally showed large variations in the upper 25 cm and little variation below this depth. Sediment samples exhibited low plasticity or nonplastic characteristics. Constant-rate-of-deformation consolidation test results showed strong apparent overconsolidation (stress state ratio >7.5) in the surface sediments (upper 50 cm) at the Dry Tortugas Keys, and light overconsolidation (stress state ratio <1.5) below 50-cm depth at the Marquesas Keys site. In-situ permeability values were between 10-4 and 10-7 cm/s at both sites and showed no strong depth dependence in the upper 2 m. Undrained shear strength profiles for Dry Tortugas Keys sediments indicated a marked stiffening with depth, whereas the Marquesas Keys sediments showed a gradual increase with depth. Consolidated isotropically undrained triaxial shear strength test results indicate that the undisturbed sediments had an average effective angle of internal friction of 38°, which is not fully realized until large axial strains on the order of 11% have accumulated. Evidence of cementation was not found in triaxial compression or consolidation test results. The general behavior and characteristics of these sediments are similar to those of granular materials, which is primarily due to their high calcium carbonate contents and lack of cementation.  相似文献   

17.
Rose Bengal stained benthic foraminifera were studied from 11 cores collected along two depth transects off southern Portugal: one in the Lisbon-Setúbal Canyon and the other along the canyon edge. The total standing stocks and distribution of foraminifera were investigated in relation to sediment and pore water geochemistry. Nitrate was used as a redox indicator, sedimentary chlorophyll a and CPE (chloroplastic pigment equivalents) contents as a measure of labile organic matter, and total organic carbon as a measure of bulk organic matter availability.The canyon sediments were enriched in organic carbon and phytopigments at all water depths in comparison with the canyon edge. Water depth seemed to control sedimentary phytopigment content, but not total organic carbon. No significant correlation was seen between pigment and total organic carbon content.The abundance of calcareous foraminifera correlated with the phytodetritus content, whereas a weaker correlation was observed for the agglutinated taxa. Therefore, calcareous foraminifera appear to require a fresher food input than agglutinated taxa. The foraminiferal species composition also varied with pigment content and nitrate penetration depth in the sediment, in line with the TROX concept. Phytopigment-rich (surficial CPE content >20 μg/cm3) sediments with a shallow nitrate penetration depth (∼1 cm depth) were inhabited by generally infaunal species such as Chilostomella oolina, Melonis barleeanus and Globobulimina spp. As the nitrate penetration increased to ∼2 cm depth in sediment and the pigment content remained relatively high (>15 μg/cm3), Uvigerina mediterranea and Uvigerina elongatastriata became dominant species. With declining CPE content and increasing nitrate penetration depth, the foraminiferal assemblages changed from the mesotrophic Cibicides kullenbergi-Uvigerina peregrina assemblage to the oligotrophic abyssal assemblage, mainly consisting of agglutinated taxa.  相似文献   

18.
Abstract

The San Diego Trough Geotechnical Test Area, located about 24 km southwest of San Diego in a water depth of about 1.2 km, lies near the base of the Coronado Escarpment directly north of the Coronado Fan. A new bathymetric map delineates a shallow basin in the soft, highly plastic, clayey silts flooring the Test Area. Measurements of shear strength by vane and static cone pene‐trometer, and bulk density by nuclear densitometer, were made in place from the submersible Deep Quest. Sixteen short (< 1.6 m) gravity cores were collected from ships.

The geotechnical properties show little areal variation and generally change uniformly with depth within the 55 km2 Test Area. Silt is the predominant grain size, averaging about 62%. In‐place bulk density shows little change with increasing depth, values range from 1.23 to 1.26 Mg/m3; laboratory density values increase with depth, ranging from 1.30 to 1.52 Mg/m3 between the surface and a depth of about 1.1 m. The difference between the in place and laboratory values may indicate sampling densification of the cored sediment. Water content in the cores decreases uniformly within the range of 249 to 43% dry weight. Shear strength increases linearly with depth. The laboratory shear strength values are lower than the in place values, which range from 4 kPa at the surface to about 29 kPa at a depth of 3.27 m. Predictor equations relate Atterberg limits, bulk density, water content, and laboratory and in place shear strength to depth. Sedimentation‐compression e log p curves have an equivalent compression index of 1.5 to nearly 2. Excluding rurbidite layers and sampling disturbance effects, all cores indicate a uniform depositional environment in the surface to 1.6 m of sediment sampled. The geotechnical properties indicate that the sediments in the west central and southwest parts of the Test Area exhibit vertical heterogeneity due to thin silt‐sand layers, presumably of turbidity current origin, that originated from the Coronado Canyon.  相似文献   

19.
在1961-1962年中国科学院海洋研究所渤海底质调查中,作者对表层沉积物样品和部分柱状样品进行了现场测定,所得资料不仅为研究辽东湾现代沉积过程和成岩作用提供了依据,而且在石油开发前期工程的地基评价上也有重要的现实意义。本文根据这些资料,对辽东湾表层沉积物的天然湿容重和含水量的分布,及其与粒度之间的关系进行了初步探讨,调查站位见图1。  相似文献   

20.
Acouso-physical properties of sea floor sediments in the southeast offshore sea area of Hainan Island on the northern continental shelf of the South China Sea are analyzed. In many cruises, conductivity-temperature-depth measurements of seawater, measurements of shallow stratum and side-scan sonar have been made. Acoustic parameters, basic sedimentary parameters, physical-mechanical parameters and 14C age, etc., have been measured. The sediment elastic parameters, including Young's modulus, bulk modulus, constrained modulus, rigidity modulus, Poisson's ratio, Lames constant, etc., have been calculated. Results show that the compression wave velocity of the seafloor sediment in the sea area ranges from 1474–1700 m/s, and there are high and low sound velocity sediment types in the different sea areas; the shear wave velocity is 150–600 m/s; at 100 kHz the sediment sound attenuation is 35–260 dB/m, the sediment density is 1.4–2.0 g/cm3; the sediment porosity is 42–88%. Sound field parameters and describing sound reciprocity between sea and seafloor are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号