首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
一、前言讨论一维潮波运动,特别是对其非线性和底摩擦效应的探讨,所得的结论有助于推广到二维潮波运动的研究,也可以近似地用来说明某些河口的潮汐现象。 Officer,C.B.引述非线性一维潮波动力学方程,根据口门已知一个分潮求解,得出倍潮波。其中没有考虑底摩擦效应,因此未能解释河口的潮波传播的实际问题。Amin,M.在口门取两个分潮作为已知条件求解,在不考虑摩擦项的情况下得出  相似文献   

2.
试释黄海半日潮波系统形成机制   总被引:5,自引:2,他引:5  
本文利用南黄海中央实际存在的半日潮波的往复流带作为水墙,视黄海半日潮波为水墙西部(U形海湾)与东部(L形海湾)两个独立潮波系统的组合.经过数值试验,获得令人满意的结果.从而可以用已有的矩形海湾潮波系统形成的动力机制来合理地阐明黄海半日潮波系统形成动力机制.仁川和江苏弶港附近的潮波腹点是黄海半日潮波系统的重要特性点,两个潮波腹点位置是由潮波系统的驻波性质决定的.南黄海中部存在一大片半日潮弱流区.  相似文献   

3.
通过半封闭矩形理想海湾的潮波运动数值模拟,分析了潮滩及平流效应对M4分潮的生成和增长的影响.结果说明潮滩的作用不但依赖本身的规模和湾内潮波非线性的强弱,而且与潮滩在湾内所处位置关系很大.在存在M4分潮共振的海湾中,平流效应可以抑制共振对M4分潮的放大作用.  相似文献   

4.
用简单的一维浅水方程,与盐度变化和潮波同相位的长期观测结果验证,对海南岛清澜河口进行分析计算,可以得出它的一些特征。清澜河口虽然处在南海弱潮区,仍是典型的潮汐控制的强混合型;潮波被河口反射形成驻波,因而潮波、流速和盐度存在特殊的关系;盐度值和纵向扩散系数也可以进行估算,得出近乎实测值的结果。  相似文献   

5.
应用海湾和半封闭矩形海域改进的Taylor问题的解研究海平面上升对M2分潮旋转潮波系统及沿岸潮差的变化.将南黄海概化为一等深矩形海域,初步研究在海平面上升3 m和5 m条件下该海域旋转潮波系统的演化趋势,继而分析沿岸潮差变化特征.初步分析研究表明:随着海平面上升,该海域M2分潮的无潮点有向东南方向偏移的趋势,受此影响,沿岸潮差呈现不同的变化特征,靠近无潮点的左侧及湾顶海岸变化明显,而远离无潮点的右侧及湾顶海岸则变化不大.  相似文献   

6.
本文利用二维潮波数值模拟,描画出海南岛清澜港潮汐通道及其相邻海湾的海流流场。计算结果与实测结果符合较好。在清澜港口门内,潮流与潮波有约90°的相位差。在相邻海湾中,由此可说明一些拦门沙的形态和潮流作用的关系。  相似文献   

7.
钦州湾潮汐和潮流的变化特征   总被引:3,自引:0,他引:3  
本文根据数值计算结果,分析了钦州湾潮汐和潮流的变化特征。结果表明该湾的潮波运动属于驻波式振动;西部沿岸的流速比东部弱,在龙门港口门附近可达70厘米/秒;其落潮流速比涨潮流速大。  相似文献   

8.
二维潮流计算中非结构有限体积法研究和应用   总被引:1,自引:0,他引:1  
基于非结构网格有限体积法,通过引入弥散修正项和TVD高阶对流格式,形成高精度、守恒性好的非结构二维潮流有限体积算法.利用该算法对一维驻波理论算例进行了验证计算,并对长江口潮流情况进行了模拟.结果表明,模型能反映水流运动的基本规律,二维潮流场的模拟精度较高,能达到工程应用要求.  相似文献   

9.
利用潮波基本方程数值模拟了湾口朝南的不同矩形海湾和曲折岸线海湾中海平面上升引起的潮位振幅和位相变化.根据矩形海湾中的模拟结果可以看出,如果忽略潮波方程中的非线性项,潮位振幅变化△R和位相变△θ的空间分布特征与基于理论模型在矩形海湾所获得的特征相当接近;当考虑方程中的非线性项时,不包括较深的海湾,正负△R的分界线变成1条通过无潮点附近的封闭曲线,而不是线性情况下的1条通过无潮点附近大致东西走向的曲线.另外也发现,在曲折岸线的海湾内,如果忽略非线性项,正负△R的分界线是1条通过2个无潮点的半环状的曲线,当考虑非线性项时,出现2条正负的分界线,它们是通过各自无潮点附近的封闭曲线.就△R的强度来说,非线性项使得正△R的强度减弱,在较浅水海湾中的△R强度大于较深水海湾中的强度,海底横向倾斜的海湾中的莫玆强度大于较浅水海湾中的强度.△R最强的区域位于无潮点附近的一段△R分界线之两侧.  相似文献   

10.
南海潮汐特征的初步探讨   总被引:16,自引:4,他引:16  
俞慕耕 《海洋学报》1984,6(3):293-300
本文以英版潮汐表上刊出的调和常数为主,选取了320个站资料,计算了南海的潮汐性质、潮差,半日潮和日潮的同潮时线、潮差,并用等高线法,绘制了M2、S2、K1、O1分潮图,从而较好地展现了潮汐的分布规律.在南海北部,汕头以南海区发现了一个新的半日分潮(S2)无潮点.海区的潮波运动,以前进波为主,由北向南传播,到了沿岸海湾,因受地形等影响变成驻波.与以往文献比较,更准确地揭示了本海区的潮汐特征.  相似文献   

11.
将黄渤海海域概化为矩形海湾,山东半岛概化为垂直于海岸的巨型丁坝,形成一个带丁坝型半封闭矩形海湾。利用DELFT3D-FLOW计算模块在上述海湾中进行了M2分潮数值模拟,对其无潮点和辐射状潮流场的特性进行了分析。研究发现:考虑科氏力影响和巨型丁坝反射作用,坝前形成了明显的无潮点,但在等水深条件下并未形成辐射状潮流场,而叠加上倾斜海底地形后其得以形成;无潮点和辐射状潮流场顶端位置受水深影响明显,随着平均水深的增大,无潮点将向湾口和湾中轴线方向偏移,而辐射状潮流场顶端则向湾口方向偏移。研究结果有助于加深对带丁坝型半封闭矩形海湾中驻潮波系统形成机制和动力特性的理解和认识。  相似文献   

12.
To study the Taiwan Strait (TS), an unusual sea area, the numerical model in marginal seas of China is used to simulate and analyze the tidal wave motion in the strait. The numerical modeling experiments reproduce the amphidromic system of the M2 tide in the south end of the Taiwan strait, and consequently confirm the existence of the degenerate amphidromic system. On this basis, further discussion is conducted on the M2 system and its formation mechanism. It can be concluded that the tidal waves of the TS is consisted of the progressing wave from the north entrance and the degenerate amphidromic system from the south entrance, in which the progressing wave from the north entrance dominates the tidal wave motion in the strait. Except for the convergent effect caused by the landform and boundary, the degenerate amphidromic system produced in the south of the strait is another important factor for the following phenomena: the large tidal range in the middle of the strait, the concentrative zone of co-amplitude and co-phase line in the south of the strait. The degenerate amphidromic system is mainly produced by the incident Pacific Ocean tidal wave from the Luzon strait and the action by the shoreline and landform. The position of the amphidromic point is compelled to move toward southwest until degenerating by the powerful progressing wave from the north entrance.  相似文献   

13.
为了探讨黄河三角洲附近潮波运动的变化特征,乐肯堂等(1995)用二维数值模式模拟了1855-1984年该海区的潮汐和潮流的分布变化,并着重考察了M2和S2分潮的无潮点,以及规则全日潮区的位置变化。乐肯堂等(1995)的研究表明,黄河尾闾的摆动以及由此而造成的黄河三角洲之进退,是该海区潮波特征发生变化的主要外因。自从1976年黄河尾闾改道清水沟以来,该流路已稳定运行了20多年,由此造成了河口附近沙嘴不断向莱州湾内延伸,因而对该区的潮波分布特征产生了显著影响。从黄河三角洲区的经济可持续发展和海洋生态环境的可持续发展的目的出发来规划今后黄河尾闾的走向,就必须对以下两个问题进行深入研究:(1)清水沟流路是否还能长期稳定下去;(2)如果清水沟流路长期稳定不变,并且按照清水沟流路期间黄河三角洲向莱州湾推进的方式来推演10a后黄河三角洲的形势,那么到2010年该区的潮波运动将会发生什么变化。为此,在本文中我们仍然采用乐肯堂等(1995)已经过验证的数值模式和数值预的方法对上述问题作初步探讨。  相似文献   

14.
中国东部边缘海潮波系统形成机制的模拟研究   总被引:11,自引:0,他引:11  
以三维高精度潮波数值模拟为基础,动用系统分析方法和地理信息系统技术,对影响中国东部边缘海潮波系统的因素,包括入射潮波、科氏力、海区地形、岸线形状及底摩擦等,进行了模拟试验。结果表明,它们对潮波系统的模式有不同程度的作用,其中科氏力的有无、岸线形态的变化和水下地形的巨变化对潮波系统有重要影响。研究认为,中国东部边缘海潮波系统是一个海-潮相互作用的整体;在一定的入射潮波条件下,该区的海区条件、特别是岸  相似文献   

15.
考虑波能耗散的近岸波浪传播数学模型   总被引:1,自引:0,他引:1  
王亮  李瑞杰 《海岸工程》2002,21(3):8-13
基于考虑能耗的定常缓坡方程,推导得出包含波能耗散的近岸水域波浪传播变形数学模型,并用所得模型对浅水中波浪的传播进行了计算,将计算结构与Berkhoff的实验数据进行比较,表明二者吻合很好。该数学模型能较好地解决波浪在浅水中的传播变形问题。  相似文献   

16.
由长江口现场水文测验资料分析知,洪水期潮波上溯过程中,潮波变形具有先加剧后趋缓的特点。基于非结构网格FVM方法建立大通至外海的大范围数学模型,复演长江口潮波传播过程,以此为基础,研究长江口洪水期潮波变形特征的形成原因。研究认为:洪水期长江口潮波变形转折点位于潮流界上游;转折点下游潮波变形逐渐加剧是由于高低潮位潮波传播速度差异造成的;转折点上游潮波变形趋缓是由于高潮位重力引起的潮波传播阻力对潮波传播影响大于高低潮位潮波传播速度差异造成的。  相似文献   

17.
渤海主要分潮的模拟及地形演变对潮波影响的数值研究   总被引:2,自引:0,他引:2  
基于FVCOM数值模式,利用1972年和2002年水深岸线数据,分别对渤海主要潮波系统进行模拟,研究了水深岸线变化对渤海主要分潮的影响。结果表明渤海地形演变会引起各分潮无潮点位置移动和振幅的改变,其中M2、S2分潮黄河口附近无潮点位置向东北方向迁移20km以上,且渤海湾湾顶振幅减弱,莱州湾内振幅增强;K1、O1分潮位于渤海海峡附近的无潮点亦向东北方向偏移,移动距离为10km左右,且渤海湾湾顶振幅明显减弱。在此基础上,本文通过敏感性数值实验,对导致黄河口外M2分潮无潮点位置移动的主要因素进行了初步分析。结果显示,在岸线不变的情况下,水深变化导致无潮点向东北方向迁移;而岸线变化导致无潮点向东南方向迁移。  相似文献   

18.
文章基于长乐海滩前滨剖面的实测波浪数据, 通过统计分析以及谱分析的方法, 探讨了潮汐过程中长乐海滩波浪参数及耗能过程的变化规律。结果表明, 观测期间内波浪以混合浪为主, 各测点谱型较宽, 存在多峰振荡现象。向岸传播过程中, 波能耗散的形式为窄频域向宽频域转变, 能量分布趋于分散, 高频波能减小, 低频波能反而有所上升, 波浪破碎后生成长重力波。破波带内的能量衰减与波浪传播距离具有良好的相关性, 破碎波能在破波带内大约衰减了98.3%。潮汐水位对波浪具有明显的调制作用。入射波能随潮汐水位的增加而有所增加, 且水位越高, 入射波能分布越分散。破波带内的有效波高和潮汐水位具有显著的正相关关系。潮汐过程中固定测点的波谱变化与波浪沿剖面的波谱变化具有明显的相似性。  相似文献   

19.
渤黄东海潮波数值模拟   总被引:30,自引:5,他引:30  
利用考虑引潮力的非线性球面潮波方程,数值模拟渤黄东海的潮波运动,将计算结果与实测资料作比较。依据所得结果绘制M2,S2,K1,O1和M4的同潮图和潮流椭圆,并进行讨论。研究表明,K1和O1的同位相线在台湾附近先作顺时针方向旋转然后作逆时针方向旋转,该现象是由于大陆架和大陆坡水深分布和台湾存在的结果。同时也发现最大流速时刻比高潮时刻提前,是摩擦和旋转潮液系统中的驻波成份所引起的。对该海区的非线性潮波部分的模拟作了首次尝试。可以看出:M4有18个旋转潮波系统,其中6个作顺时针方向旋转,12个作逆时针方向旋转;在江苏南部海岸和杭州湾口的外海区域以及渤海湾和大部分的莱州湾,由M2引起的潮汐余水位为正,而在海区的其余部分这种余水位为负;由M2引起的潮汐余流总体上向南或向东南方向流动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号