首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A recent article by Sierra-Correa and Cantera Kintz published in Marine Policy 51 2015 identifies the need for systematic reviews of evidence to inform marine policy and management. To guide their review, the authors apply the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) Statement as a methodology. We identified eighteen systematic reviews published on marine topics between 2008 and 2015. Of those which stated a methodology (N=12), 25% (N=3) applied the PRISMA Statement. PRISMA is a checklist designed by the medical community to improve reporting standards of systematic reviews and meta-analyses, rather than guidelines for their conduct. Relevant guidelines have already been produced by the Collaboration for Environmental Evidence. By using PRISMA as a methodology without referring to these guidelines, or worse, post hoc without conducting a full systematic review, authors may unintentionally give the impression of having undertaken a more rigorous review than is in fact the case. Given the apparent increase in systematic reviews of marine and coastal topics, it is vital that appropriate methodology be used. Authors undertaking future reviews should use existing environmental systematic review guidance to help plan and conduct their review. By following these guidelines, standards for marine reviews should increase, ultimately resulting in more rigorous reviews better able to inform future marine science and policy.  相似文献   

2.
The Mediterranean: vulnerability to coastal implications of climate change   总被引:1,自引:0,他引:1  
The Mediterranean is experiencing a number of immediate coastal problems which are triggering efforts to improve short-term coastal management. This paper shows that coastal management also needs to address long-term problems and, in particular, the likelihood of climate change. Regional scale studies suggest that the Mediterranean is particularly vulnerable to increased flooding by storm surges as sea levels rise—a 1-m rise in sea level would cause at least a six-fold increase in the number of people experiencing such flooding in a typical year, without considering population growth. Protection is quite feasible, however, this would place a greater burden on those Mediterranean countries in the south than those in the north. All coastal wetlands appear threatened. Case studies of coastal cities (Venice and Alexandria), deltas (Nile, Po, Rhone and Ebro), and islands (Cyprus) support the need to consider climate change in coastal planning. However, the critical issues vary from site to site and from setting to setting. In deltaic areas and low-lying coastal plains climate change, particularly sea-level rise, is already considered as an important issue, but elsewhere this is not the case. Therefore, there is a need for coastal management plans to explicitly address long-term issues, including climate change, and integrate this planning with short-term issues. This is entirely consistent with existing guidelines.1 Given the large uncertainty concerning the future, planning for climate change will involve identifying and implementing low-cost proactive measures, such as appropriate land use planning or improved design standards incorporated within renewal cycles, as well as identifying sectors or activities which may be compromised by likely climate change. In the latter case, any necessary investment can be seen as a prudent ‘insurance policy’.  相似文献   

3.
Coastal areas are among the world's most vulnerable landscapes to impacts related to climate change, including inundation from sea-level rise (SLR), increased exposure to shoreline erosion, and greater frequency and intensity of storms. The status of research on the physical, ecological, and socio-economic effects of vulnerability to SLR and progress toward planning for its consequences varies from region to region worldwide. Here, we synthesize the results of three decades of SLR research and the development of coastal management policies in North Carolina, USA. We identify the major factors responsible for opening new policy ‘windows’ that address SLR, including how stakeholders have developed an increased understanding of the risks, the extent of public dialogue about potential response strategies, and advances in political receptivity to policy change. Research and policy progress in North Carolina continue to provide a model for other regions to help guide and evaluate the development of coastal policies.  相似文献   

4.
If the rising sea level due to climate change proceeds in the future with the rate observed in the past four decades, it could inundate some coastal lowlands. The aim of this paper is to assess future risk of sea-level rise (SLR) on the Nile delta of Egypt located along the Mediterranean Sea. Digital Elevation Models (DEMs) are verified, against ground control points, and used to identify areas susceptible to inundation due to future SLR. Analysis of DEMs maps and cross-shore profiles has identified locations that are vulnerable to SLR including coastal wetlands, agriculture areas, and urban neighborhoods. The results have revealed that about 7% of the Nile delta area is at risk of inundation due to future SLR. This information could be used by coastal zone managers in planning and protection of coastal areas.  相似文献   

5.
In this study we investigated the impacts of potential changes of land cover due to sea-level rise (SLR) on storm surge (i.e., the rise of water above normal sea level, namely mean-sea level and the astronomical tide, caused by hurricane winds and pressure) response inside bays on the lower Texas coast. We applied a hydrodynamic and wave model (ADCIRC + SWAN) forced by hurricane wind and pressure fields to quantify the importance of SLR-induced land cover changes, considering its impacts by changing bottom friction and the transfer of wind momentum to the water column, on the peak surge inside coastal bays. The SLR increments considered, 0.5 m to 2.0 m, significantly impacted the surge response inside the bays. The contribution of land cover changes due to SLR to the surge response, on average, ranged from a mean surge increase of 2% (SLR of 0.5 m) to 15% (SLR of 2.0 m), in addition to the SLR increments. The increase in surge response strongly depended on storm condition, with larger increases for more intense storms, and geographical location. Although land cover changes had little impact on the surge increase for SLR increments lower than 1.0 m, intense storms resulted in surge increase of up to 10% even for SLR below 1.0 m, but in most cases, the geometry changes were the major factor impacting the surge response due to SLR. We also found a strong relationship between changes in bottom friction and the surge response intensification; demonstrating the importance of considering land cover changes in coastal regions that are highly susceptible to SLR when planning for climate change.  相似文献   

6.
Globally, coastal aquaculture particularly shrimp farming has been under huge criticism because of its environmental impacts including devastating effects on mangrove forests. However, mangroves are ecologically and economically important forests, and the most carbon-rich forests in the tropics that provide a wide range of ecosystem services and biodiversity conservation. Carbon emissions are likely to have been the dominant cause of climate change and blue carbon emissions are being critically augmented through mangrove deforestation. Because of mangrove deforestation, different climatic variables including coastal flooding, cyclone, drought, rainfall, salinity, sea-level rise, and sea surface temperature have dramatic effects on coastal aquaculture. Mangrove forests have been instrumental in augmenting resilience to climate change. The “Reducing Emissions from Deforestation and forest Degradation (REDD)” program can help to restore mangroves which in turn increases options for adaptation to climate change. However, technical and financial assistance with institutional support are needed to implement REDD+.  相似文献   

7.
This paper reviews the approach taken by several UK coastal partnerships in developing research strategies and programmes. It reports on the status of these research initiatives and describes how the co-ordination and communication of scientific research have been approached through active partnerships with universities and the wider research community. Results of semi-structured interviews are followed by in-depth case studies of research networks on the Sefton Coast (focusing on coastal morphology) and the Severn Estuary (focusing on coastal change and climate change impacts). The results reveal the constraints and opportunities that exist in bringing together a variety of knowledge holders in the coastal zone. The paper identifies key elements of these initiatives and highlights lessons that can be applied to the development of other research initiatives in order to achieve science supported, ecosystem-based management.  相似文献   

8.
Sea level rise (SLR) adversely impacts groundwater quality and capacity of coastal regions. The objectives of this paper are to determine key natural and anthropogenic parameters which may influence and enhance adverse SLR impact upon coastal environments, as well as to assess these natural and anthropogenic components contributing to SLR, and enhance adverse effects of SLR on the environment. This would enable assessment of vulnerability of coastal areas. Components are evaluated in this paper by averaging data relative to respective measured parameters, along with given weightings and assessed ratings, vis-à-vis world maximal reference values. Israel's Mediterranean coast is utilized as an example for such an approach. This can indicate where operational long-term planning measures would be recommended, along with development of effective monitoring and the carrying out of helpful engineering and ecological activities.  相似文献   

9.
Benefits humans rely on from the ocean – marine ecosystem services – are increasingly vulnerable under future climate. This paper reviews how three valued services have, and will continue to, shift under climate change: (1) capture fisheries, (2) food from aquaculture, and (3) protection from coastal hazards such as storms and sea-level rise. Climate adaptation planning is just beginning for fisheries, aquaculture production, and risk mitigation for coastal erosion and inundation. A few examples are highlighted, showing the promise of considering multiple ecosystem services in developing approaches to adapt to sea-level rise, ocean acidification, and rising sea temperatures.Ecosystem-based adaptation in fisheries and along coastlines and changes in aquaculture practices can improve resilience of species and habitats to future environmental challenges. Opportunities to use market incentives – such as compensation for services or nutrient trading schemes – are relatively untested in marine systems. Relocation of communities in response to rising sea levels illustrates the urgent need to manage human activities and investments in ecosystems to provide a sustainable flow of benefits in the face of future climate change.  相似文献   

10.
This paper outlines the benefits of using the framework for an ecosystem approach to fisheries management (EAFM) for dealing with the inevitable yet unclear impacts of climate change and ocean acidification on coastal fisheries. With a focus on the Asia-Pacific region, it summarizes the projected biological and socio-economic effects of increased emissions of carbon dioxide (CO2) for coastal fisheries and illustrates how all the important dimensions of climate change and ocean acidification can be integrated into the steps involved in the EAFM planning process. The activities required to harness the full potential of an EAFM as an adaptation to climate change and ocean acidification are also described, including: provision of the necessary expertise to inform all stakeholders about the risks to fish habitats, fish stocks and catches due to climate change; promotion of trans-disciplinary collaboration; facilitating the participation of all key stakeholders; monitoring the wider fisheries system for climate impacts; and enhancing resources and capacity to implement an EAFM. By channeling some of the resources available to the Asia-Pacific region to adapt to climate change into an EAFM, developing countries will not only build resilience to the ecological and fisheries effects of climate change, they will also help address the habitat degradation and overfishing presently reducing the productivity of coastal fisheries.  相似文献   

11.
The Atlantic Meridional Transect programme uses the twice-annual passage of the RRS James Clark Ross between the UK and the Falkland Islands, before and after the Antarctic research programme in the Austral Summer (see Aiken, J., & Bale, A. J. (2000). An introduction to the Atlantic Meridional Transect (AMT) Programme. Progress in Oceanography, this issue). This paper examines the scientific rationale for a spatially-extensive time and space series programme and reviews the relevant physical and biological oceanography of the Atlantic Ocean. The main scientific observations from the research programme are reported. These are set in the context of historical and contemporary observations pertinent to the principal objectives of the cruise, notably the satellite remotely sensed observations of ocean properties. The extent to which the programme goals have been realised by the research to date is assessed and discussed. New bio-optical signatures, which can be related to productivity parameters, have been derived. These can be used to interpret remotely sensed observations of ocean colour in terms of productivity and production processes such as the air/sea exchange of biogenic gases, which relate to the issues of climate change and the sustainability of marine ecosystems.  相似文献   

12.
This paper analyses the global tendency of the sea level rise (SLR) and its long term influence on the sea level upstream drainage cascade based on the example of the level’s variation in the Vistula Lagoon of the Baltic Sea compared to the other lagoons and coastal regions of the southeastern part of the Baltic Sea. A steady positive trend in the water level variations was revealed; its magnitude varies significantly depending on the time period. In general, during the 100–150 year period, the rate of the SLR in the lagoons and coastal areas of the Baltic Sea (1.7–1.8 mm per year) is close to the SLR rate in the World Ocean. In the second half of the 20th century, the increased rate of the SLR in the lagoons and marine areas became stronger (up to 3.6 mm per year in the Vistula Lagoon and in 1959–2006 in the sea and exceeded the rate of global ocean SLR). It dramatically increased at the end of the last century both in the lagoons and in the sea (up to 10.0–15.0 mm per year). This is the response not only to the global climate warming but it is likely that it is also a response to the changes of the climate driving forces that influence the regimes of the local wind and precipitation in the catchment.  相似文献   

13.
As with the global scenario, a number of climate change ‘symptoms’ are being detected in Malaysia. Local scholars have looked into the problems of rising temperature, rising sea level, extreme rainfall and extreme winds, which are causing coastal and mangrove erosion and degradation of marine resources. In turn, these issues are affecting the small-scale fishermen who rely heavily on weather stability to conduct their social and economic routines. This paper analyses six adaptation strategies, namely, reducing the risks associated with fishing routines, strengthening social relationships, managing fishermen's climate change knowledge, facilitating the community's learning of alternative skills, involving fishermen in climate change adaptation planning, and enhancing fishermen's access to credit. These suggestions are hoped to provide basis for concerned parties to develop adaptation strategies that are in line with small-scale fishermen's needs, abilities and interests.  相似文献   

14.
For coastal areas across the world, sea-level rise and problems of coastal erosion and coastal flooding are expected to increase over the next hundred years. At the same time political pressure for continued waterfront planning and development of coastal areas threatens to increase our societal vulnerability, and necessitating climate adaptation in coastal zone management. The institutional dimension has been identified as important for ensuring a more robust adaptation to both current climate variability and future climate change. In this paper, lessons regarding institutional constraints for climate adaptation are drawn from a Swedish case-study on local coastal zone management, illustrating the diverse and complex nature of institutional capacity-building. The aim of the paper is to illustrate critical factors that from an institutional perspective condition the capacity to achieve a more integrated, strategic and proactive climate adaptation and for turning “rules on paper” to working practice, based on case-study experiences from Coastby. Following and expanding a framework for analysing institutional capacity-building we learnt that a selective few key actors had played a critical role in building a strong external networking capacity with a flip-side in terms of a weak internal coordinating capacity and lack of mutual ownership of coastal erosion between sectoral units e.g. risk-management, planning and environment. We also found a weak vertical administrative interplay and lack of formal coherent policy, procedures and regulations for managing coastal erosion between local, regional and national administrations. Further, tensions and trade-offs between policy-agendas, values and political priorities posed a barrier for capacity-building in coastal zone management which calls for processes to mediate conflicting priorities in policy-making, planning and decision-making. The case-study suggests that the ability of the political administrative system to acknowledge and deal with institutional conflicts is a critical condition for ensuring an integrated and proactive climate adaptation in coastal zone management.  相似文献   

15.
On the basis of the satellite maps of sea level anomaly(MSLA) data and in situ tidal gauge sea level data,correlation analysis and empirical mode decomposition(EMD) are employed to investigate the applicability of MSLA data,sea level correlation,long-term sea level variability(SLV) trend,sea level rise(SLR) rate and its geographic distribution in the South China Sea(SCS).The findings show that for Dongfang Station,Haikou Station,Shanwei Station and Zhapo Station,the minimum correlation coefficient between the closest MSLA grid point and tidal station is 0.61.This suggests that the satellite altimeter MSLA data are effective to observe the coastal SLV in the SCS.On the monthly scale,coastal SLV in the western and northern part of SCS are highly associated with coastal currents.On the seasonal scale,SLV of the coastal area in the western part of the SCS is still strongly influenced by the coastal current system in summer and winter.The Pacific change can affect the SCS mainly in winter rather than summer and the affected area mostly concentrated in the northeastern and eastern parts of the SCS.Overall,the average SLR in the SCS is 90.8 mm with a rising rate of(5.0±0.4) mm/a during1993–2010.The SLR rate from the southern Luzon Strait through the Huangyan Seamount area to the Xisha Islands area is higher than that of other areas of the SCS.  相似文献   

16.
Udupi coast in Karnataka state, along the west coast of India, selected as a study area, is well known for sandy beaches, aquaculture ponds, lush greenery, temples and major and minor industries. It lies between 13°00′00″–13°45′00″ north latitudes and 74°47′30″–74°30′00″ east longitudes, the length of the coastline is 95 km, and is oriented along the NNW–SSE direction. It is vulnerable to accelerated sea level rise (SLR) due to its low topography and its high ecological and touristy value. The present study has been carried out with a view to calculate the coastal vulnerability index (CVI) to know the high and low vulnerable areas and area of inundation due to future SLR, and land loss due to coastal erosion. Both conventional and remotely sensed data were used and analysed through the modelling technique and by using ERDAS Imagine and geographical information system software. The rate of erosion was 0.6018 km2/yr during 2000–2006 and around 46 km of the total 95 km stretch is under critical erosion. Out of the 95 km stretch coastline, 59% is at very high risk, 7% high, 4% moderate and 30% in the low vulnerable category, due to SLR. Results of the inundation analysis indicate that 42.19 km2 and 372.08 km2 of the land area will be submerged by flooding at 1 m and 10 m inundation levels. The most severely affected sectors are expected to be the residential and recreational areas, agricultural land, and the natural ecosystem. As this coast is planned for future coastal developmental activities, measures such as building regulation, urban growth planning, development of an integrated coastal zone management, strict enforcement of the Coastal Regulation Zone (CRZ) Act 1991, monitoring of impacts and further research in this regard are recommended for the study area.  相似文献   

17.
Climate change is altering many environmental parameters of coastal waters and open oceans, leading to substantial present-day and projected changes in the distribution, abundance and phenology of marine species. Attempts to assess how each species might respond to climate change can be data-, resource- and time-intensive. Moreover, in many regions of the world, including South Africa, species may be of vital socioeconomic or ecological importance though critical gaps may exist in our basic biological or ecological knowledge of the species. Here, we adapt and apply a trait-based sensitivity assessment for the key marine species in the southern Benguela system to estimate their potential relative sensitivity to the impacts of climate change. For our analysis, 40 priority species were selected based on their socioeconomic, ecological and/or recreational importance in the system. An extensive literature review and consultation with experts was undertaken concerning each species to gather information on their life history, habitat use and potential stressors. Fourteen attributes were used to estimate the selected species’ sensitivity and capacity to respond to climate change. A score ranging from low to high sensitivity was given for each attribute, based on the available information. Similarly, a score was assigned to the type and quality of information used to score each particular attribute, allowing an assessment of data-quality inputs for each species. The analysis identified the white steenbras Lithognathus lithognathus, soupfin shark Galeorhinus galeus, St Joseph Callorhinchus capensis and abalone Haliotis midae as potentially the most sensitive species to climate-change impacts in the southern Benguela system. There were data gaps for larval dispersal and settlement and metamorphosis cues for most of the evaluated species. Our results can be used by resource managers to determine the type of monitoring, intervention and planning that may be required to best respond to climate change, given the limited resources and significant knowledge gaps in many cases.  相似文献   

18.
《Marine Policy》2004,28(5):393-409
Expected effects of changes in global climate include warmer temperatures, rising sea levels, and potentially more frequent and severe extreme weather events such as hurricanes and tropical storms. Low-lying states in the Caribbean are especially vulnerable to these effects, posing significant risks to public safety and natural resources.This paper highlights expected trends in the Eastern Caribbean and examines the impacts of urbanization and supporting infrastructure, siting of major structures in high-hazard areas, and negative land-use practices on fragile coastal ecosystems. It focuses on the need to reduce the vulnerability of coastal infrastructure and land uses, arguing for effective linkages between climate change issues and development planning. The paper also provides general recommendations and identifies challenges for the incorporation of climate change impacts and risk assessment into long-term land-use national development plans and strategies.  相似文献   

19.
‘Offshore CO2 storage’ refers to the injection of liquefied CO2 into deep geological formations beneath the seabed (e.g. depleted oil and gas reservoirs, and saline aquifers) for the purpose of storing it there on a permanent basis. The storage in this manner of captured CO2 emissions from industrial installations and power plants has attracted considerable scientific and technical interest as a potential mitigation response to climate change. A key issue facing policymakers in several countries is how to reconcile policy commitments to develop offshore CO2 storage with other competing – and potentially conflicting – uses of the marine environment. With a view to informing policy responses to this issue, this paper presents a case study of legal and policy frameworks concerning offshore CO2 storage in United Kingdom. The paper maps key design features of the United Kingdom׳s framework for marine permitting and planning, appraising the extent to which they enable orderly development of offshore CO2 storage in a manner consistent with relevant high-level policy objectives.  相似文献   

20.
While planning coastal risk management strategies, coastal managers need to assess risk across a range of spatial and temporal scales. GIS-based tools are one efficient way to support them in the decision making process through a scenarios analysis starting from social, economic and environmental information integrated into a common platform. However, this integration process requires a significant effort from a team of scientists in terms of a) identifying the appropriate scales and data resolution for analysing social, environmental and economic issues; b) selecting and linking an appropriate set of tools to build a coupled model; c) representing key emerging (and hence challenging) research issues, such as risk perception and social resilience in the model; d) developing multi-criteria analysis to integrate social, environmental, economic impacts; and e) accounting for the expectations of the stakeholders and therefore optimizing the opportunity for them to interact with the tool development and with the final tool itself.In this spirit, this paper presents an open-source Spatial Decision Support System developed within the THESEUS Project to help decision makers to scopeg optimal strategies to minimise coastal risks. The exploratory tool allows the users to perform an integrated coastal risk assessment, to analyse the effects of different combinations of engineering, social, economic and ecologically based mitigation options, across short (2020s), medium (2050s) and long-term (2080s) scenarios, taking into account physical and non-physical drivers, such as climate change, subsidence, population and economic growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号