首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 359 毫秒
1.
In this study, we develop a variable-grid global ocean general circulation model(OGCM) with a fine grid(1/6)°covering the area from 20°S–50°N and from 99°–150°E, and use the model to investigate the isopycnal surface circulation in the South China Sea(SCS). The simulated results show four layer structures in vertical: the surface and subsurface circulation of the SCS are characterized by the monsoon driven circulation, with basin-scaled cyclonic gyre in winter and anti-cyclonic gyre in summer. The intermediate layer circulation is opposite to the upper layer, showing anti-cyclonic gyre in winter but cyclonic gyre in summer. The circulation in the deep layer is much weaker in spring and summer, with the maximum velocity speed below 0.6 cm/s. In fall and winter, the SCS deep layer circulation shows strong east boundary current along the west coast of Philippine with the velocity speed at 1.5 m/s, which flows southward in fall and northward in winter. The results have also revealed a fourlayer vertical structure of water exchange through the Luzon Strait. The dynamics of the intermediate and deep circulation are attributed to the monsoon driving and the Luzon Strait transport forcing.  相似文献   

2.
The results of the new concept of coastal sea circulation are demonstrated by numerical simulations for the first time. The numerical experiments in three types of rectangular model seas illustrate the dependence of circulation on tidal phases due to the convectively nonlinear effect which is estimated by a newly defined drift dispersion index. Then, the present theory is applied in the Bohai Sea of China. At the Bohai Straits and the Huanghe River mouth area the circulation direction even reverses owing to different initial tidal phases which shows that the theory copes with nonlinearity well. The calculated M2 tideinduced residual circulation shows that a clockwise gyre exists in the center of an anticlockwise gyre in the central Bohai Sea due to the topographic features. In the Bohai Gulf the tide induced circulation shows a 3D structure with outflow at the surface and the inflow at the bottom which can partly explains the spread of the Huanghe River fresh water out of the Bohai Gulf and the inflow of the sediment from the Huanghe River.  相似文献   

3.
An attenuation depth is defined for remote sensing purposes as a depth above which 90% of the arising light leaving the water surface is originated.The deeper the attenuation depth,the more information of water is detectable by remote sensing,then the more precise information of water is extracted.Meanwhile,the attenuation depth is helpful to know water layer (by its thickness) from which remote sensing will be able to extract information.A number of investigators are using the moderate resolution imaging spectroradiometer (or MODIS) for remote sensing of ocean color.It is necessary to have a rough idea of the effective attenuation depth of imagery in each of the spectral bands employed by the MODIS.The attenuation depth is directly determined from MODIS data.Though analyzing the spectral distribution of the attenuation depth on 7 August 2003 and the seasonal variation of the attenuation depth (551 nm) in the Bohai Sea indicated that:the spectral distribution of the attenuation depth for the spectral range between 400 to 700 nm is single-peak curve,and it''s similar and difference in different regions is consistent with other scholars'' results of zoning,moreover,it supports the Bohai Sea is Case 2 water; the maximum attenuation depth shifts toward longer wavelengths,liking the red shift,with increase of turbidity of water,just like the maximum attenuation depth in the outside of the northwest coast of the Bohai Sea and the Bohai Strait is at 531nm,in the central of the Bohai Sea is at 551nm,in the region controlled by the Huanghe (Yellow) River,the region impacted by the old Huanghe River,the western side of the Liaodong Bay and the eastern side of the Liaodong Bay is at 555 nm; the seasonal change of the attenuation depth is the largest in the summer,followed by the fall,and the ranking of winter and spring in different regions is distinct.The attenuation depth in different regions is dissimilar:the order of the attenuation depth in different regions from small to big is the region controlled by the Huanghe River or the eastern side of the Liaodong Bay,the western side of the Liaodong Bay,the region impacted by the old Huanghe River,the central of the Bohai Sea or the outside of the northwest coast of the Bohai Sea,the Bohai Strait (except at 412 nm and 645 nm),in which between the region controlled by the Huanghe River and the eastern side of the Liaodong Bay (and between the central of the Bohai Sea and the outside of the northwest coast of the Bohai Sea) it varies in different seasons and different bands.  相似文献   

4.
The results of the suspended material measurement in the Huanghe River Estuary show that the silt movement in the estuary is different during summer and winter. The centric water-mass in Bohai Sea enters the Laizhou Bay, which makes the fresh water occupy the head of Laizhou Bay and prevents the silt from spveading to the sea.The disturbing of wind in winter makes the sediment resuspend which results in the high content of suspended materials in the water. The distribution of suspended materials and salinity in summer indicate that because of its own momentum, the silt from the Huanghe River will go ahead out of the river mouth and the effect of centric water-mass in the middle Bohai Sea is relatively small in summer. The distributions of suspended materials in the mid and bottom layer water during different seasons show that the primary direction of the siltl movement in the estuary is towards NE, whice coincides with the movement of residual current.Our paper also presents the size distribution of suspended materials.According to the data, we consider that the silt from Huanghe River moves mainly in the surface layer and the Huanghe River Estuary belongs to weak mixing estuary.  相似文献   

5.
On the basis of a three-dimensional weakly nonliear theory of Lagrangian residual current in the Baroclinic shallow seas, a diagnostic numerical calculation of wind-driven, thermohaline and tide-induced Lagrangian residual current in the Bohai Sea is made. The model involves the Richardson number in the eddy viscosity coefficient, wind, thcrmolialine and tidal effects in the focing terms. The runoff of the Huanghe River and a part of the Huanghai Warm Water coming from the Huanghai Sea through the Bohai Sea Strait is also considered. The velocity-splitting method is adopted. The wind-driven circu lation, thermohaline circulation and the tide-induced Lagrangian residual circulation are also obtained individually and analysed. The dynamics of the three main eddies in the Lagrangian mean circulation is discussed. Finally, the numerical result is partly verified with the observed data.  相似文献   

6.
Analyses of clay mineralogy about 30 surface sediments indicate widespread occurrence of illite, kaolinite, chlorite and montmorillonite throughout the Bohai Sea. Illite is the most abundant mineral, averaging 60%, kaolinite, next to illite, is the most abundant one,averaging 18%. Chlorite and montmorillonite come second, averaging 12% and 10% respectively. The distributive patterns of clay minerals in the surface sediments are closely related to the suspended materials carried into the Bohai Sea, especially to those did by the Huanghe River, and to water dynamics in the area. Based on the distribution, the assemblages and the others of clay minerals, the Bohai Sea can be divided into two clay mineral regions, the Liaodong Gulf region and the Bohai-Laizhou Bay region.  相似文献   

7.
The Phoca largha is found in the coastal waters of China from the Huanghai Sea and Bohai Sea to the northern part of East China Sea. Its breeding ground is situated in ice packs in the Liaodong Gulf., from about 40°10′ to 40°45′ N, from 121 °15′ to 122°E. At the breeding season, male and female seals in pairs form many family groups. The pup is born with white lanugo fur on ice packs in Liaodong Gulf during a period from January to the middle of February, and usually carried by its mother on her back to run away. However, from February to March, it could be caught around some islands in Bohai Strait. In recent years, these species resources have been reduced rapidly. It must be strengthened to protect the seals from extinction.  相似文献   

8.
The structure of the annual-mean shallow meridional overturning circulation(SMOC) in the South China Sea(SCS) and the related water movement are investigated,using simple ocean data assimilation(SODA) outputs.The distinct clockwise SMOC is present above 400 m in the SCS on the climatologically annual-mean scale,which consists of downwelling in the northern SCS,a southward subsurface branch supplying upwelling at around 10°N and a northward surface flow,with a strength of about 1×10~6 m~3/s.The formation mechanisms of its branches are studied separately.The zonal component of the annual-mean wind stress is predominantly westward and causes northward Ekman transport above 50 m.The annual-mean Ekman transport across 18°N is about 1.2×10~6 m~3/s.An annual-mean subduction rate is calculated by estimating the net volume flux entering the thermocline from the mixed layer in a Lagrangian framework.An annual subduction rate of about 0.66×10~6m~3/s is obtained between 17° and 20°N,of which 87% is due to vertical pumping and 13% is due to lateral induction.The subduction rate implies that the subdution contributes significantly to the downwelling branch.The pathways of traced parcels released at the base of the February mixed layer show that after subduction water moves southward to as far as 11°N within the western boundary current before returning northward.The velocity field at the base of mixed layer and a meridional velocity section in winter also confirm that the southward flow in the subsurface layer is mainly by strong western boundary currents.Significant upwelling mainly occurs off the Vietnam coast in the southern SCS.An upper bound for the annual-mean net upwelling rate between 10° and 15°N is 0.7×10~6m~3/s,of which a large portion is contributed by summer upwelling,with both the alongshore component of the southwest wind and its offshore increase causing great upwelling.  相似文献   

9.
Based on the comprehensive collection of the field observed salinity of the Bohai Sea (BHS) and the northern Huanghai Sea (NHS) from the 1950s to the present,the patterns of 10-years-averaged salinity at the different layers in the recent five decades (the 1950s,the 1960s,the 1970s,the 1980s and the 1990s) are obtained by the spatial-temporal interpolation technique with the scrupulous data quality control in this study.Then,by combining the spatial-temporal interpolation technique with successive correction method,the annual distributions of salinity both in the BHS and in the NHS are obtained as well.The data analyses indicate that the overall salinity in the BHS and the NHS increases from the 1960s till the present,with the increase of annual mean salinity of 0.04 psu from the 1950s,and the maximum increase rate of salinity is about 0.14 psu/a in the Bohai Bay.The high salinity tongue extended significantly from the NHS into the BHS.The intensified eastern wind field is related to the western intrusion of the NHS warm current,which probably leads to the moving forward of the high salinity water mass into the BHS.However,it is rather different from the salinity distribution characteristics between the 1950s and the 1960s.The extensive precipitation in the 1960s could lead to an increase in the discharge of the Huanghe River,which might result in the decrease of salinity in the BHS.But the salinity isoline of 32 in the NHS still extended significantly into the BHS in the 1960s.Since the 1980s,the patterns of salinity distribution have changed thoroughly.The salinity in the central area of the BHS was low,while the salinity in the Bohai Bay and the Liaodong Bay was higher than the other regions with its horizontal salinity gradient decreasing in the 1980s.The Empirical Orthogonal Function Analysis (EOF) is also conducted to study the interannual salinity variability of the BHS and the NHS.The correlation coefficient between the time coefficient series of the main mode and the Huanghe River discharge can reach -64.57%.It can be concluded that salinity variation of the BHS and the NHS has strong negative correlation with the Huanghe River discharge.  相似文献   

10.
On the basis of the salinity distribution of isopycnal(σ_0=27.2 kg/m~3) surface and in salinity minimum, the Antarctic Intermediate Water(AAIW) around South Australia can be classified into five types corresponding to five regions by using in situ CTD observations. Type 1 is the Tasman AAIW, which has consistent hydrographic properties in the South Coral Sea and the North Tasman Sea. Type 2 is the Southern Ocean(SO) AAIW, parallel to and extending from the Subantarctic Front with the freshest and coldest AAIW in the study area. Type 3 is a transition between Type 1 and Type 2. The AAIW transforms from fresh to saline with the latitude declining(equatorward). Type 4, the South Australia AAIW, has relatively uniform AAIW properties due to the semienclosed South Australia Basin. Type 5, the Southeast Indian AAIW, progressively becomes more saline through mixing with the subtropical Indian intermediate water from south to north. In addition to the above hydrographic analysis of AAIW, the newest trajectories of Argo(Array for real-time Geostrophic Oceanography) floats were used to constructed the intermediate(1 000 m water depth) current field, which show the major interocean circulation of AAIW in the study area. Finally, a refined schematic of intermediate circulation shows that several currents get together to complete the connection between the Pacific Ocean and the Indian Ocean. They include the South Equatorial Current and the East Australia Current in the Southwest Pacific Ocean, the Tasman Leakage and the Flinders Current in the South Australia Basin, and the extension of Flinders Current in the southeast Indian Ocean.  相似文献   

11.
渤海的环流、潮余流及其对沉积物分布的影响   总被引:16,自引:2,他引:16  
阐明渤海环流和潮余流的分布特征及其与沉积物输运之间的关系。本文根据80年代以来的实测海流资料得到:辽东湾的环流是顺时针向的;黄河三角洲外海存在着一支流向东北偏北向流,与辽东湾西部的东北向海流相接;渤海湾内的环流北部为反时针向,南部为顺时针向回转的双环结构。上述环流趋势与渤海沉积物分布相一致。渤海沿岸主要入海河流的特征矿物分布正在上述环流存在的最好佐证。文中进一步讨论了潮余流分布特征及其对渤海环流的  相似文献   

12.
渤海环流与输运季节变化的数值模拟   总被引:8,自引:0,他引:8  
渤海的风和温度层结有明显的季节变化 ,因而其环流与输运亦有明显的季节信号。以季节平均的海面气象条件和开边界的潮波系统驱动三维斜压水动力模型———HAMSOM ,模拟了渤海冬、夏季的总环流。渤海环流冬强夏弱 ,表层风漂流常被下层逆风流所补偿。深度平均环流 ,即水柱内的输运 ,流型有显著的季节变化 :冬季在渤海中部沿逆时针方向旋转 ,辽东湾顶有一个顺时针流涡 ,阻碍了湾顶水与外海水的交换 ;夏季则为一个大的贴岸的顺时针流环 ,内嵌许多局地涡旋。这些与渤黄东海海洋水文图集中给出的多年观测的环流基本相同 ,同时也被水文要素分布及耐盐浮游动物的出现所佐证。风的季节变化决定了渤海大部分海区、特别是海峡附近环流的季节变化 ,但辽东湾东岸众多的岬角涡旋却不随季节变化 ,因为它们是由潮波系统与岬角岸型变化的非线性相互作用产生的。  相似文献   

13.
渤海的环流、潮余流及其对沉积物分布的影响   总被引:42,自引:2,他引:42  
阐明渤海环流和潮余流的分布特征及其与沉积物输运之间的关系。本文根据80年代以来的实测海流资料得到:辽东湾的环流是顺时针向的;黄河三角洲外海存在着一支流向东北偏北向流,与辽东湾西部的东北向海流相接;渤海湾内的环流北部为反时针向,南部为顺时针向回转的双环结构。上述环流趋势与渤海沉积物分布相一致。渤海沿岸主要入海河流的特征矿物分布正是上述环流存在的最好佐证。文中进一步讨论了潮余流分布特征及其对渤海环流的贡献。  相似文献   

14.
渤海湾是三面环陆的半封闭浅水海湾,海底泥沙悬浮与输运对海洋工程与生态环境有重要影响。冬季是渤海泥沙输运、海床冲刷和海底灾害的主要发生季节,但冬季观测(特别是连续观测)难度大,观测资料相对缺乏,研究冬季悬浮体分布与输运规律对海洋生态环境保护和海洋工程维护等具有指导意义,对认识近海物质及能量循环有重要科学价值。本文基于海洋水色卫星GOCI(Geostationary Ocean Color Imager)遥感影像资料,对渤海湾冬季悬浮体浓度进行了长达8年监测,提取2011—2017年冬季(11、12、1、2月)悬浮体浓度(Total Suspended Sediment, TSS)月平均数据,对渤海湾冬季悬浮体分布情况及输运规律进行研究。结果表明,渤海湾冬季的表层悬浮体浓度分布呈现近岸高离岸低、南岸高北岸低的规律,悬浮体浓度的高值区主要分布于黄河口附近以及渤海湾南岸一带,该海域冬季TSS在80mg/L以上,最高可达200mg/L;海河口及辽东湾沿岸流区域各存在一个低值区,悬浮体浓度介于0—40mg/L。冬季大风天气对水体扰动剧烈,导致渤海湾海底泥沙再悬浮,风速与悬浮体浓度存在正相关性。同时,冬季渤海湾沿岸流等环流增强,使黄河口再悬浮的沉积物向渤海湾西部和北部扩散。  相似文献   

15.
The results of the new concept of coastal sea circulation are demonstrated by numerical simulations for the first time. The numerical experiments in three types of rectangular model seas illustrate the dependence of circulation on tidal phases due to the convectively nonlinear effect which is estimated by a newly defined drift dispersion in-dex. Then, the present theory is applied in the Bohai Sea of China. At the Bohai Straits and the Huanghe River mouth area the circulation direction even reverses owing to different initial tidal phases which shows that the the-ory copes with nonlinearity well. The calculated M2 tide-induced residual circulation shows that a clockwise gyre exists in the center of an anticlockwise gyre in the central Bohai Sea due to the topographic features. In the Bo-hai Gulf the tide induced circulation shows a 3D structure with outflow at the surface and the inflow at the bottom which can partly explains the spread of the Huanghe River fresh water out of the Bohai Gulf and the inflow of the sediment from the Huanghe River.  相似文献   

16.
秦皇岛海域海流特征及规模化养殖对其影响的观测研究   总被引:1,自引:1,他引:0  
秦皇岛海域是辽东湾与渤海中部及渤海湾进行物质和能量交换的重要通道。本文基于海床基观测平台获取的夏秋季海流连续观测资料,运用调和分析和滤波等方法对该海域的海流特征及其对规模化养殖的响应进行了研究。结果表明:秦皇岛海域最显著的潮流是M2分潮流,其最大流速介于20.0~36.9 cm/s之间,远小于辽东湾东部海域M2分潮流最大流速;秋季秦皇岛海域余流流速介于0.2~2.5 cm/s之间,整体上较辽东湾东侧海域余流弱,辽东湾底层可能存在逆时针的弱环流系统;夏季秦皇岛海域M2和K1分潮流的最大流速均大于秋季;养殖活动对余流影响较大,养殖区中部A7、A8站余流的垂向平均流速比养殖区边缘A6站分别减小76%和18%左右。  相似文献   

17.
渤海的平均余环流   总被引:1,自引:0,他引:1  
利用72个渤海石油平台、站点测流资料,阐明了渤海的平均余环流特征,并用已有的数值计算结果阐明了其形成机制。观测表明在黄河三角洲近海存在一支北-东北向的流动,可抵达秦皇岛附近水域,数值计算表明该支流动主要是潮生的;在辽东湾北部存在一顺时针向的涡旋运动,在冬半年该涡旋是风生的;在渤海湾北部存在潮生的逆时针向的余环流。  相似文献   

18.
2018年6月渤海大型水母分布特征   总被引:3,自引:0,他引:3  
2018年6月使用渔业底拖网采样,对渤海大型水母进行了全面调查,调查船舶为"中渔科102"渔业科考船。本研究分析了渤海大型水母的种类组成、渔获密度与伞径大小,并对其源地进行了探讨。结果表明:本次调查共采集到海月水母、沙海蜇、海蜇、多管水母四种大型水母,其中海蜇、多管水母数量较少,各采集到一只。海月水母在渤海三湾均有分布,各海区伞径大小无显著差异且多为幼体(<10cm),密度高值区出现在渤海湾东南侧海域,可达38-221.21ind./(net·h),辽东湾海月水母出现于湾南,密度<5ind./(net·h),湾北未见;作者推测,海月水母在渤海沿岸可能存在多个源头,诸如:莱州湾与渤海湾交界近岸海域、河北近岸、辽东湾大连近岸以及北部近岸。沙海蜇在渤海分布较广,辽东湾为密度高值区,均值为(35.32±21.64)ind./(net·h),但伞径较小,均值为(12.15±6.52)cm;与此相对,渤海湾与莱州湾外侧海域沙海蜇密度虽小[<20ind./(net·h)],但伞径要显著大于辽东湾,最大伞径均值可达(33.86±7.40)cm;作者推测,沙海蜇在渤海海域发源地主要集中于辽东湾近岸,渤海湾与莱州湾,外海出现的沙海蜇可能源于辽东湾,随海流运输至此。海月水母、沙海蜇在渤海发生时间要晚于黄、东海。本研究结果可为深入分析渤海大型水母的种群动态变化、暴发机理提供基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号