首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organic shales deposited in a continental environment are well developed in the Ordos Basin, NW China, which is rich in hydrocarbons. However, previous research concerning shales has predominantly focused on marine shales and barely on continental shales. In this study, geochemical and mineralogical analyses, high-pressure mercury intrusion and low-pressure adsorption were performed on 18 continental shale samples obtained from a currently active shale gas play, the Chang 7 member of Yanchang Formation in the Ordos Basin. A comparison of all these techniques is provided for characterizing the complex pore structure of continental shales.Geochemical analysis reveals total organic carbon (TOC) values ranging from 0.47% to 11.44%, indicating that there is abundant organic matter (OM) in the study area. Kerogen analysis shows vitrinite reflectance (Ro) of 0.68%–1.02%, indicating that kerogen is at a mature oil generation stage. X-ray diffraction mineralogy (XRD) analysis indicates that the dominant mineral constituents of shale samples are clay minerals (which mainly consist of illite, chlorite, kaolinite, and negligible amounts of montmorillonite), quartz and feldspar, followed by low carbonate content. All-scale pore size analysis indicates that the pore size distribution (PSD) of shale pores is mainly from 0.3 to 60 nm. Note that accuracy of all-scale PSD analysis decreases for pores less than 0.3 nm and more than 10 μm. Experimental analysis indicates that mesopores (2–50 nm) are dominant in continental shales, followed by micropores (<2 nm) and macropores (50 nm–10 μm). Mesopores have the largest contribution to pore volume (PV) and specific surface area (SSA). In addition, plate- and sheet-shaped pores are dominant with poor connectivity, followed by hybrid pores. Results of research on factors controlling pore structure development show that it is principally controlled by clay mineral contents and Ro, and this is different from marine systems. This study has important significance in gaining a comprehensive understanding of continental shale pore structure and the shale gas storage–seepage mechanism.  相似文献   

2.
The pore size classification (micropore <2 nm, mesopore 2–50 nm and macropore >50 nm) of IUPAC (1972) has been commonly used in chemical products and shale gas reservoirs; however, it may be insufficient for shale oil reservoirs. To establish a suitable pore size classification for shale oil reservoirs, the open pore systems of 142 Chinese shales (from Jianghan basin) were studied using mercury intrusion capillary pressure analyses. A quantitative evaluation method for I-micropores (0–25 nm in diameter), II-micropores (25–100 nm), mesopores (100–1000 nm) and macropores (>1000 nm) within shales was established from mercury intrusion curves. This method was verified using fractal geometry theory and argon-ion milling scanning electron microscopy images. Based on the combination of pore size distribution with permeability and average pore radius, six types (I-VI) shale open pore systems were analyzed. Moreover, six types open pore systems were graded as good, medium and poor reservoirs. The controlling factors of pore systems were also investigated according to shale compositions and scanning electron microscopy images. The results show that good reservoirs are composed of shales with type I, II and III pore systems characterized by dominant mesopores (mean 68.12 vol %), a few macropores (mean 7.20 vol %), large porosity (mean 16.83%), an average permeability of 0.823 mD and an average pore radius (ra) of 88 nm. Type IV pore system shales are medium reservoirs, which have a low oil reservoir potential due to the developed II-micropores (mean 57.67 vol %) and a few of mesopores (mean 20.19 vol %). Poor reservoirs (composed of type V and VI pore systems) are inadequate reservoirs for shale oil due to the high percentage of I-micropores (mean 69.16 vol %), which is unfavorable for the flow of oil in shale. Pore size is controlled by shale compositions (including minerals and organic matter), and arrangement and morphology of mineral particles, resulting in the developments of shale pore systems. High content of siliceous mineral and dolomite with regular morphology are advantage for the development of macro- and mesopores, while high content of clay minerals results in a high content of micropores.  相似文献   

3.
The Songliao Basin is a large-scale petroliferous basin in China. With a gradual decline in conventional oil production, the exploration and development of replacement resources in the basin is becoming increasingly important. Previous studies have shown that the Cretaceous Qingshankou Formation (K2qn) has favorable geological conditions for the formation of shale oil. Thus, shale oil in the Qingshankou Formation represents a promising and practical replacement resource for conventional oil. In this study, geological field surveys, core observation, sample tests, and the analysis of well logs were applied to study the geochemical and reservoir characteristics of shales, identify shale oil beds, build shale oil enrichment models, and classify favorable exploration areas of shale oil from the Cretaceous Qingshankou Formation. The organic matter content is high in shales from the first member of the Cretaceous Qingshankou Formation (K2qn1), with average total organic carbon (TOC) content exceeding 2%. The organic matter is mainly derived from lower aquatic organisms in a reducing brackish to fresh water environment, resulting in mostly type I kerogen. The vitrinite reflectance (Ro) and the temperature at which the maximum is release of hydrocarbons from cracking of kerogen occurred during pyrolysis (Tmax) respectively range from 0.5% to 1.1% and from 430 °C to 450 °C, indicating that the K2qn1 shales are in the low-mature to mature stage (Ro ranges from 0.5% to 1.2%) and currently generating a large amount of oil. The favorable depth for oil generation and expulsion is 1800–2200 m and 1900–2500 m, respectively as determined by basin modeling. The reserving space of the K2qn1 shale oil includes micropores and mircofractures. The micropore reservoirs are developed in shales interbedded with siltstones exhibiting high gamma ray (GR), high resistivity (Rt), low density (DEN), and slightly abnormal spontaneous potential (SP) in the well-logging curves. The microfracture reservoirs are mainly thick shales with high Rt, high AC (acoustic transit time), high GR, low DEN, and abnormal SP. Based on the shale distribution, geochemical characteristics, reservoir types, fracture development, and the process of shale oil generation and enrichment, the southern Taikang and northern Da'an are classified as two favorable shale oil exploration areas in the Songliao Basin.  相似文献   

4.
The geochemical and petrographic characteristics of saline lacustrine shales from the Qianjiang Formation, Jianghan Basin were investigated by organic geochemical analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM) and low pressure nitrogen adsorption analysis. The results indicate that: the saline lacustrine shales of Eq3 member with high oil content are characterized by type I and type II oil-prone kerogen, variable TOC contents (1.0–10.0 wt%) and an early-maturity stage (Ro ranges between 0.41 and 0.76%). The mineral compositions of Eq3 saline shale show strong heterogeneity: brittle intervals with high contents of quartz and carbonate are frequently alternated with ductile intervals with high glauberite and clay contents. This combination might be beneficial for oil accumulation, but may cause significant challenges for the hydraulic stimulation strategy and long-term production of shale oil. The interparticle pores and intraparticle pores dominate the pore system of Eq3 shale, and organic matter hosted pores are absent. Widely distributed fractures, especially tectonic fractures, might play a key role in hydrocarbon migration and accumulation. The pore network is contributed to by both large size inorganic pores and abundant micro-factures, leading to a relatively high porosity (2.8–30.6%) and permeability (0.045–6.27 md) within the saline shale reservoir, which could enhance the flow ability and storage capacity of oil. The oil content (S1 × 100/TOC, mg HC/g TOC and S1, mg HC/g rock) and brittleness data demonstrate that the Eq33x section has both great potential for being a producible oil resource and hydraulic fracturing. Considering the hydrocarbon generation efficiency and properties of oil, the mature shale of Eq3 in the subsidence center of the Qianjiang Depression would be the most favorable zone for shale oil exploitation.  相似文献   

5.
When trying to improve gas productivity from unconventional sources a first aim is to understand gas storage and gas flow potential through the rock by investigating the microstructure, mineralogy and matrix porosity of unfractured shale. The porosity and mineralogy of the Mulgrave Shale member of the Whitby Mudstone Formation (UK) were characterized using a combination of microscopy, X-ray diffraction and gas adsorption methods on samples collected from outcrops. The Whitby Mudstone is an analogue for the Dutch Posidonia Shale which is a possible unconventional source for gas. The Mulgrave shale member of the Whitby Mudstone Formation can microstructurally be subdivided into a fossil rich (>15%) upper half and a sub-mm mineralogically laminated lower half. All clasts are embedded within a fine-grained matrix (all grains < 2 μm) implying that any possible flow of gas will depend on the porosity and the pore network present within this matrix. The visible SEM porosity (pore diameter > 100 nm) is in the order of 0.5–2.5% and shows a non-connected pore network in 2D. Gas adsorption (N2, Ar, He) porosity (pore diameters down to 2 nm) has been measured to be 0.3–7%. Overall more than 40% of the visible porosity is present within the matrix. Comparing the Whitby Mudstone Formation to other (producing) gas shales shows that the rock plots in the low porosity and high clay mineral content range, which could imply that Whitby Mudstone shales could be less favourable to mechanical fracturing than other gas shales. Estimated permeability indicates values in the micro-to nano-darcy range.  相似文献   

6.
Thermal maturity has a significant impact on hydrocarbon generation and the storage capacity within shales, but explicit and quantitative characterization of that impact on continental shales is scarce. To better understand how thermal maturation affects the organic and inorganic changes of the continental shale reservoirs, hydrous pyrolysis was performed to simulate the maturation process. TOC, Rock-Eval and adsorption isotherms tests were used to obtain various geochemical parameters of the shale solid residues. The results indicate that with pyrolysis temperature increasing from ambient temperature to 550 °C, the vitrinite reflectance increases from 0.5% to 2.5% Ro and the TOC (total organic carbon) loss weight reaches 25%. Regarding porosity, the fraction of micro-to meso-pores in the shale increases with an increase in the pyrolysis temperature, whereas the macro-pores do not change significantly. The total amount of gas adsorption does not necessarily increase as the TOC is consumed, but the gas adsorption capacity per unit of TOC increases with increasing thermal maturity. Our finding provides theoretical modelling for identifying shale gas development prospective zones according to thermal maturity mapping and for predicting quantitatively the geochemical and inorganic changes that occur with thermal evolution.  相似文献   

7.
This study presents results for pyrolysis experiments conducted on immature Type II and IIs source rocks (Kimmeridge Clay, Dorset UK, and Monterey shale, California, USA respectively) to investigate the impact of high water pressure on source rock maturation and petroleum (oil and gas) generation. Using a 25 ml Hastalloy vessel, the source rocks were pyrolysed at low (180 and 245 bar) and high (500, 700 and 900 bar) water pressure hydrous conditions at 350 °C and 380 °C for between 6 and 24 h. For the Kimmeridge Clay (KCF) at 350 °C, Rock Eval HI of the pyrolysed rock residues were 30–44 mg/g higher between 6 h and 12 h at 900 bar than at 180 bar. Also at 350 °C for 24 h the gas, expelled oil, and vitrinite reflectance (VR) were all reduced by 46%, 61%, and 0.25% Ro respectively at 900 bar compared with 180 bar. At 380 °C the retardation effect of pressure on the KCF was less significant for gas generation. However, oil yield and VR were reduced by 47% and 0.3% Ro respectively, and Rock Eval HI was also higher by 28 mg/g at 900 bar compared with 245 bar at 12 h. The huge decrease in gas and oil yields and the VR observed with an increase in water pressure at 350 °C for 24 h and 380 °C for 12 h (maximum oil generation) were also observed for all other times and temperatures investigated for the KCF and the Monterey shale. This shows that high water pressure significantly retards petroleum generation and source rock maturation. The retardation of oil generation and expulsion resulted in significant amounts of bitumen and oil being retained in the rocks pyrolysed at high pressures, suggesting that pressure is a possible mechanism for retaining petroleum (bitumen and oil) in source rocks. This retention of petroleum within the rock provides a mechanism for oil-prone source rocks to become potential shale gas reservoirs. The implications from this study are that in geological basins, pressure, temperature and time will all exert significant control on the extent of petroleum generation and source rock maturation for Type II source rocks, and that the petroleum retained in the rocks at high pressures may explain in part why oil-prone source rocks contain the most prolific shale gas resources.  相似文献   

8.
This study investigates the source rock characteristics of Permian shales from the Jharia sub-basin of Damodar Valley in Eastern India. Borehole shales from the Raniganj, Barren Measure and Barakar Formations were subjected to bulk and quantitative pyrolysis, carbon isotope measurements, mineral identification and organic petrography. The results obtained were used to predict the abundance, source and maturity of kerogen, along with kinetic parameters for its thermal breakdown into simpler hydrocarbons.The shales are characterized by a high TOC (>3.4%), mature to post-mature, heterogeneous Type II–III kerogen. Raniganj and Barren Measure shales are in mature, late oil generation stage (Rr%Raniganj = 0.99–1.22; Rr%Barren Measure = 1.1–1.41). Vitrinite is the dominant maceral in these shales. Barakar shows a post-mature kerogen in gas generation stage (Rr%Barakar = 1.11–2.0) and consist mainly of inertinite and vitrinite. The δ13Corg value of kerogen concentrate from Barren Measure shale indicates a lacustrine/marine origin (−24.6–−30.84‰ vs. VPDB) and that of Raniganj and Barakar (−22.72–−25.03‰ vs. VPDB) show the organic provenance to be continental. The δ13C ratio of thermo-labile hydrocarbons (C1–C3) in Barren Measure suggests a thermogenic source.Discrete bulk kinetic parameters indicate that Raniganj has lower activation energies (ΔE = 42–62 kcal/mol) compared to Barren Measure and Barakar (ΔE = 44–68 kcal/mol). Temperature for onset (10%), middle (50%) and end (90%) of kerogen transformation is least for Raniganj, followed by Barren Measure and Barakar. Mineral content is dominated by quartz (42–63%), siderite (9–15%) and clay (14–29%). Permian shales, in particular the Barren Measure, as inferred from the results of our study, demonstrate excellent properties of a potential shale gas system.  相似文献   

9.
The paper takes the Upper Carboniferous Taiyuan shale in eastern uplift of Liaohe depression as an example to qualitatively and quantitatively characterize the transitional (coal-associated coastal swamp) shale reservoir. Focused Ion Beam Scanning Electron Microscope (FIB-SEM), nano-CT, helium pycnometry, high-pressure mercury intrusion and low-pressure gas (N2 & CO2) adsorption for eight shale samples were taken to investigate the pore structures. Four types of pores, i.e., organic matter (OM) pores, interparticle (InterP) pores, intraparticle (IntraP) pores and micro-fractures are identified in the shale reservoir. Among them, intraP pores and micro-fractures are the major pore types. Slit-shaped pores are the major shape in the pore system, and the connectivity of the pore-throat system is interpreted to be moderate, which is subordinate to marine shale. The porosity from three dimension (3D) reconstruction of SEM images is lower than the porosity of helium pycnometry, while the porosity trend of the above two methods is the same. Combination of mercury intrusion and gas absorption reveals that nanometer-scale pores provide the main storage space, accounting for 87.16% of the pore volume and 99.85% of the surface area. Micropores contribute 34.74% of the total pore volume and 74.92% of the total pore surface area; and mesopores account for 48.27% of the total pore volume and 24.93% of the total pore surface area; and macropores contribute 16.99% of the total pore volume and 0.15% of the total pore surface area. Pores with a diameter of less than 10 nm contribute the most to the pore volume and the surface area, accounting for 70.29% and 97.70%, respectively. Based on single factor analysis, clay minerals are positively related to the volume and surface area of micropores, mesopores and macropores, which finally control the free gas in pores and adsorbed gas content on surface area. Unlike marine shale, TOC contributes little to the development of micropores. Brittle minerals inhibit pore development of Taiyuan shale, which proves the influence of clay minerals in the pore system.  相似文献   

10.
This article reviews the abnormal characteristics of shale gases (natural gases produced from organic-rich shales) and discusses the cause of the anomalies and mechanisms for gas enrichment and depletion in high-maturity organic-rich shales. The reported shale gas geochemical anomalies include rollover of iso-alkane/normal alkane ratios, rollover of ethane and propane isotopic compositions, abnormally light ethane and propane δ13C values as well as isotope reversals among methane, ethane and propane. These anomalies reflect the complex histories of gas generation and associated isotopic fractionation as well as in-situ “mixing and accumulation” of gases generated from different precursors at different thermal maturities. A model was proposed to explain the observed geochemical anomalies. Gas generation from kerogen cracking at relatively low thermal maturity accounted for the increase of iso-alkane/normal alkane ratios and ethane and propane δ13C values (normal trend). Simultaneous cracking of kerogen, retained oil and wet gas and associated isotopic fractionation at higher maturity caused decreasing iso-alkane/normal alkane ratios, lighter ethane and propane δ13C and corresponding conversion of carbon isotopic distribution patterns from normal through partial reversal to complete reversal. Relatively low oil expulsion efficiency at peak oil generation, low expulsion efficiency at peak gas generation and little gas loss during post-generation evolution are necessary for organic-rich shales to display the observed geochemical anomalies. High organic matter richness, high thermal maturity (high degrees of kerogen-gas and oil-gas conversions) and late-stage (the stage of peak gas generation and post-generation evolution) closed system accounted for gas enrichment in shales. Loss of free gases during post-generation evolution may result in gas depletion or even undersaturation (total gas content lower than the gas sorption capacity) in high-maturity organic-rich shales.  相似文献   

11.
The Upper Cretaceous Mukalla coals and other organic-rich sediments which are widely exposed in the Jiza-Qamar Basin and believed to be a major source rocks, were analysed using organic geochemistry and petrology. The total organic carbon (TOC) contents of the Mukalla source rocks range from 0.72 to 79.90% with an average TOC value of 21.50%. The coals and coaly shale sediments are relatively higher in organic richness, consistent with source rocks generative potential. The samples analysed have vitrinite reflectance in the range of 0.84–1.10 %Ro and pyrolysis Tmax in the range of 432–454 °C indicate that the Mukalla source rocks contain mature to late mature organic matter. Good oil-generating potential is anticipated from the coals and coaly shale sediments with high hydrogen indices (250–449 mg HC/g TOC). This is supported by their significant amounts of oil-liptinite macerals are present in these coals and coaly shale sediments and Py-GC (S2) pyrograms with n-alkane/alkene doublets extending beyond nC30. The shales are dominated by Type III kerogen (HI < 200 mg HC/g TOC), and are thus considered to be gas-prone.One-dimensional basin modelling was performed to analysis the hydrocarbon generation and expulsion history of the Mukalla source rocks in the Jiza-Qamar Basin based on the reconstruction of the burial/thermal maturity histories in order to improve our understanding of the of hydrocarbon generation potential of the Mukalla source rocks. Calibration of the model with measured vitrinite reflectance (Ro) and borehole temperature data indicates that the present-day heat flow in the Jiza-Qamar Basin varies from 45.0 mW/m2 to 70.0 mW/m2 and the paleo-heat flow increased from 80 Ma to 25 Ma, reached a peak heat-flow values of approximately 70.0 mW/m2 at 25 Ma and then decreased exponentially from 25 Ma to present-day. The peak paleo-heat flow is explained by the Gulf of Aden and Red Sea Tertiary rifting during Oligocene-Middle Miocene, which has a considerable influence on the thermal maturity of the Mukalla source rocks. The source rocks of the Mukalla Formation are presently in a stage of oil and condensate generation with maturity from 0.50% to 1.10% Ro. Oil generation (0.5% Ro) in the Mukalla source rocks began from about 61 Ma to 54 Ma and the peak hydrocarbon generation (1.0% Ro) occurred approximately from 25 Ma to 20 Ma. The modelled hydrocarbon expulsion evolution suggested that the timing of hydrocarbon expulsion from the Mukalla source rocks began from 15 Ma to present-day.  相似文献   

12.
Source rock potential of 108 representative samples from 3 m intervals over a 324 m thick shale section of middle Eocene age from the north Cambay Basin, India have been studied. Variation in total organic carbon (TOC) and its relationship with loss on ignition (LOI) have been used for initial screening. Screened samples were subjected to Rock-Eval pyrolysis and organic petrography. A TOC log indicated wide variation with streaks of elevated TOC. A 30 m thick organic-rich interval starting at 1954 m depth, displayed properties consistent with a possible shale oil or gas reservoir. TOC (wt%) values of the selected samples were found to vary from 0.68% to 3.62%, with an average value of 2.2. The modified van Krevelen diagram as well as HI vs. Tmax plot indicate prevalence of Type II to Type III kerogen. Tmax measurements ranged from 425 °C to 439 °C, indicating immature to early mature stage, which was confirmed by the mean vitrinite reflectance values (%Ro of 0.63, 0.65 and 0.67 at 1988 m, 1954 m, and 1963 m, respectively). Quantification of hydrocarbon generation, migration and retention characteristics of the 30 m source rock interval suggests 85% expulsion of hydrocarbon. Oil in place (OIP) resource of the 30 m source rock was estimated to be 3.23 MMbbls per 640 acres. The Oil saturation index (OSI) crossover log showed, from a geochemical perspective, moderate risk for producing the estimated reserve along with well location for tapping the identified resource.  相似文献   

13.
Shale adsorption and breakthrough pressure are important indicators of shale gas development and key factors in evaluating the reservoir capacities of shales. In this study, geochemical tests, pore-structure tests, methane adsorption tests, and breakthrough-pressure tests were conducted on shales from the Carboniferous Hurleg Formation in eastern Qaidam Basin. The effects of the shale compositions and pore structures on the adsorption and breakthrough pressures were studied, and the reservoir capacities of the shales were evaluated by analyzing the shale adsorptions and sealing effects. The results indicate that the organic carbon content was only one of factors in affecting the adsorption capacity of the shale samples while the effect of the clay minerals was limited. Based on the positive correlation between the adsorption capacity and specific surface area of the shale, the specific surface area of the micropores can be used as an indicator to determine the adsorption capacity of shale. The micro-fracturing of brittle minerals, such as quartz, create a primary path for shale gas breakthrough, whereas the expansion of clay minerals with water greatly increases the breakthrough pressure in the shale samples. Methane adsorption tests showed that maximum methane adsorption for shale samples Z045 and S039 WAS 0.107 and 0.09655 mmol/g, respectively. The breakthrough pressure was 39.36 MPa for sample S039, maintained for 13 days throughout the experiment; however, no breakthrough was observed in sample Z045 when subjected to an injected pressure of 40 MPa for 26 days. This indicates that sample Z045, corresponding to a depth of 846.24 m, exhibited higher adsorption capacity and a better reservoir-sealing effect than sample S039 (498.4 m depth). This study provides useful information for future studies of Qaidam Basin shale gas exploration and development and for evaluation of shale quality.  相似文献   

14.
The nano-scale pore systems of organic-rich shale reservoirs were investigated from Upper Ordovician Wufeng and Lower Silurian Longmaxi Formations in southeast Sichuan Basin. These two formations are the most important target plays of shale gas development in China. The purpose of this article is to assess the geometry and connectivity of multi-scale pore systems, and to reveal the nature and complexity of pore structure for these over-mature gas shales. To achieve these objective, total organic carbon, mineralogy, image analyses by focused ion beam-SEM, low pressure nitrogen adsorption, mercury injection capillary pressure (MICP) and spontaneous fluid [deionized (DI) water and n-decane] imbibition were performed.Most of the visible pores from SEM work in Wufeng and Longmaxi shales are within nm- and μm-size regimes and belong to organic matter (OM) pores. The shapes of OM pore in Longmaxi samples are elliptical, bubble-like, irregular or rounded. Wufeng pores are mainly irregular, linear and faveolated, even though two shales have small depth difference, as well as similar thermal maturity, kerogen type and TOC content. Nano-scale pores in Longmaxi are mainly associated with narrow platelike or slitlike pores with pore size of 3–50 nm; while inkbottle pores are dominant in Wufeng samples and over 88% of the pore volume is contributed by pores with diameter <20 nm. Overall, porosity, pore volume and surface area values from Wufeng samples are much higher than those in Longmaxi, which is mainly correlated with the different TOC contents and mineral compositions. MICP tests show that a total of 5 inflection points (indicative of different connected pore networks) are identified in all pressure regions for Longmaxi, while only 2 for Wufeng in high pressure region with the associated permeability at nano-darcy range. Imbibition curves of n-decane are divided into three stages: the initial stage (Stage Ⅰ), linear imbibition stage (Stage Ⅱ) and late imbibition stage (Stage Ⅲ), and the slopes of linear imbibition stage are around 0.5, suggesting well-connected pore spaces for n-decane. In contrast, imbibition curves for DI water are divided in two stages with linear slopes of between 0.25 and 0.5, indicating moderately-connected pore networks for the movement of DI water. This is consistent with the mixed-wet nature of these shales, with observed weak wettability for hydrophilic, while complete wetting for hydrophobic fluids.  相似文献   

15.
The effect of shale composition and fabric upon pore structure and CH4 sorption is investigated for potential shale gas reservoirs in the Western Canadian Sedimentary Basin (WCSB). Devonian–Mississippian (D–M) and Jurassic shales have complex, heterogeneous pore volume distributions as identified by low pressure CO2 and N2 sorption, and high pressure Hg porosimetry. Thermally mature D–M shales (1.6–2.5% VRo) have Dubinin–Radushkevich (D–R) CO2 micropore volumes ranging between 0.3 and 1.2 cc/100 g and N2 BET surface areas of 5–31 m2/g. Jurassic shales, which are invariably of lower thermal maturity ranging from 0.9 to 1.3% VRo, than D–M shales have smaller D–R CO2 micropore volumes and N2 BET surface areas, typically in the range of 0.23–0.63 cc/100 g (CO2) and 1–9 m2/g (N2).  相似文献   

16.
As shale oil occurs primarily in micro–nano pores and fractures, research about the effect of pore structure on shale oil accumulation has great significance for shale oil exploration and development. The effect of pore structure on shale oil accumulation in the lower third member of the Shahejie formation (Es3l), Zhanhua Sag, eastern China was investigated using gas adsorption, soxhlet extraction, nuclear magnetic resonance (NMR) analysis, and field emission scanning electron microscope (FE-SEM) observation. The results indicated that the samples contained a larger amount of ink-bottle-shaped and slit-shaped pores after extraction than before extraction. The pore volume and specific surface area of the samples were approximately 2.5 times larger after extraction than before extraction. Residual hydrocarbon occurred primarily in the free-state form in pores with diameters of 10–1000 nm, which can provide sufficient pore volume for free hydrocarbon accumulation. Therefore, pores with diameters of 10–1000 nm were regarded as “oil-enriched pores”, which are effective pores for shale oil exploration, whereas pores with diameters smaller than 10 nm were regarded as “oil-ineffective pores”. Samples with only well-developed small pores with diameters smaller than 1000 nm showed high oil saturation, whereas samples with both small pores and also relatively large pores and micro-fractures presented low oil saturation. As the minimum pore size allowing fluid expulsion is 1000 nm, pores with diameters greater than 1000 nm were considered as “oil-percolated pores”. Large pores and micro-fractures are generally interconnected and may even form a complex fracture mesh, which greatly improves the permeability of shale reservoirs and is beneficial to fluid discharge.  相似文献   

17.
Ever since a breakthrough of marine shales in China, lacustrine shales have been attracting by the policy makers and scientists. Organic-rich shales of the Middle Jurassic strata are widely distributed in the Yuqia Coalfield of northern Qaidam Basin. In this paper, a total of 42 shale samples with a burial depth ranging from 475.5 m to 658.5 m were collected from the Shimengou Formation in the YQ-1 shale gas borehole of the study area, including 16 samples from the Lower Member and 26 samples from the Upper Member. Geochemistry, reservoir characteristics and hydrocarbon generation potential of the lacustrine shales in YQ-1 well were preliminarily investigated using the experiments of vitrinite reflectance measurement, maceral identification, mineralogical composition, carbon stable isotope, low-temperature nitrogen adsorption, methane isothermal adsorption and rock eval pyrolysis. The results show that the Shimengou shales have rich organic carbon (averaged 3.83%), which belong to a low thermal maturity stage with a mean vitrinite reflectance (Ro) of 0.49% and an average pyrolytic temperature of the generated maximum remaining hydrocarbon (Tmax) of 432.8 °C. Relative to marine shales, the lacustrine shales show low brittleness index (averaged 34.9) but high clay contents (averaged 55.1%), high total porosities (averaged 13.71%) and great Langmuir volumes (averaged 4.73 cm−3 g). Unlike the marine and marine-transitional shales, the quartz contents and brittleness index (BI) values of the lacustrine shales first decrease then increase with the rising TOC contents. The kerogens from the Upper Member shales are dominant by the oil-prone types, whereas the kerogens from the Lower Member shales by the gas-prone types. The sedimentary environment of the shales influences the TOC contents, thus has a close connection with the hydrocarbon potential, mineralogical composition, kerogen types and pore structure. Additionally, in terms of the hydrocarbon generation potential, the Upper Member shales are regarded as very good and excellent rocks whereas the Lower Member shales mainly as poor and fair rocks. In overall, the shales in the top of the Upper Member can be explored for shale oil due to the higher free hydrocarbon amount (S1), whereas the shales in the Lower Member and the Upper Member, with the depths greater than 1000 m, can be suggested to explore shale gas.  相似文献   

18.
Two sets of Lower Paleozoic organic-rich shales develop well in the Weiyuan area of the Sichuan Basin: the Lower Cambrian Jiulaodong shale and the Lower Silurian Longmaxi shale. The Weiyuan area underwent a strong subsidence during the Triassic to Early Cretaceous and followed by an extensive uplifting and erosion after the Late Cretaceous. This has brought about great changes to the temperature and pressure conditions of the shales, which is vitally important for the accumulation and preservation of shale gas. Based on the burial and thermal history, averaged TOC and porosity data, geological and geochemical models for the two sets of shales were established. Within each of the shale units, gas generation was modeled and the evolution of the free gas content was calculated using the PVTSim software. Results show that the free gas content in the Lower Cambrian and Lower Silurian shales in the studied area reached the maxima of 1.98–2.93 m3/t and 3.29–4.91 m3/t, respectively (under a pressure coefficient of 1.0–2.0) at their maximum burial. Subsequently, the free gas content continuously decreased as the shale was uplifted. At present, the free gas content in the two sets of shales is 1.52–2.43 m3/t and 1.94–3.42 m3/t, respectively (under a current pressure coefficient of 1.0–2.0). The results are roughly coincident with the gas content data obtained from in situ measurements in the Weiyuan area. We proposed that the Lower Cambrian and Lower Silurian shales have a shale gas potential, even though they have experienced a strong uplifting.  相似文献   

19.
Mineral types (detrital and authigenic) and organic-matter components of the Ordovician-Silurian Wufeng and Longmaxi Shale (siliceous, silty, argillaceous, and calcareous/dolomitic shales) in the Sichuan Basin, China are used as a case study to understand the control of grain assemblages and organic matter on pores systems, diagenetic pathway, and reservoir quality in fine-grained sedimentary rocks. This study has been achieved using a combination of petrographic, geochemical, and mercury intrusion methods. The results reveal that siliceous shale comprises an abundant amount of diagenetic quartz (40–60% by volume), and authigenic microcrystalline quartz aggregates inhibit compaction and preserve internal primary pores as rigid framework for oil filling during oil window. Although silty shale contains a large number of detrital silt-size grains (30–50% by volume), which is beneficial to preserve interparticle pores, the volumetric contribution of interparticle pores (mainly macropores) is small. Argillaceous shale with abundant extrabasinal clay minerals (>50% by volume) undergoes mechanical and chemical compactions during burial, leading to a near-absence of primary interparticle pores, while pores preserved between clay platelets are dominant with more than 10 nm in pore size. Pore-filling calcite and dolomite precipitated during early diagenesis inhibit later compaction in calcareous/dolomitic shale, but the cementation significantly reduces the primary interparticle pores. Pore-throat size distributions of dolomitic shale show a similar trend with silty shale. Besides argillaceous shale, all of the other lithofacies are dominated by OM pores, which contribute more micropores and mesopores and is positively related to TOC and quartz contents. The relationship between pore-throat size and pore volume shows that most pore volumes are provided by pore throats with diameters <50 nm, with a proportion in the order of siliceous (80.3%) > calcareous/dolomitic (78.4%) > silty (74.9%) > argillaceous (61.3%) shales. In addition, development degree and pore size of OM pores in different diagenetic pathway with the same OM type and maturity show an obvious difference. Therefore, we suggest that the development of OM pores should take OM occurrence into account, which is related to physical interaction between OM and inorganic minerals during burial diagenesis. Migrated OM in siliceous shale with its large connected networks is beneficial for forming more and larger pores during gas window. The result of the present work implies that the study of mineral types (detrital and authigenic) and organic matter-pores are better understanding the reservoir quality in fine-grained sedimentary rocks.  相似文献   

20.
Natural fractures observed within the Lower Jurassic shales of the Cleveland Basin show evidence that pore pressure must have exceeded the lithostatic pressure in order to initiate horizontal fractures observed in cliff sections. Other field localities do not show horizontal fracturing, indicating lower pore pressures there. Deriving the burial history of the basin from outcrop, VR and heat-flow data gives values of sedimentation rates and periods of depositional hiatus which can be used to assess the porosity and pore pressure evolution within the shales. This gives us our estimate of overpressure caused by disequilibrium compaction alone, of 11 MPa, not sufficient to initiate horizontal fractures. However, as the thermal information shows us that temperatures were in excess of 95 °C, secondary overpressure mechanisms such as clay diagenesis and hydrocarbon generation occurred, contributing an extra 11 MPa of overpressure. The remaining 8.5 MPa of overpressure required to initiate horizontal fractures was caused by fluid expansion due to hydrocarbon generation and tectonic compression related to Alpine orogenic and Atlantic opening events. Where horizontal fractures are not present within the Lower Jurassic shales, overpressure was unable to build up as high due to proximity to the lateral draining of pressure within the Dogger Formation. The palaeopressure reconstruction techniques used within this study give a quick assessment of the pressure history of a basin and help to identify shales which may currently have enhanced permeability due to naturally-occurring hydraulic fractures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号