首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spatial and temporal patterns in bacterial abundance, biomass, production, nanoflagellate abundance and the loss of bacterial production due to viral lysis were investigated in a temporarily open/closed estuary along the eastern seaboard of southern Africa over the period May 2006 to April 2007. Bacterial abundance, biomass and production ranged between 1.00 × 109 and 4.93 × 109 cells l−1, 32.43 and 108.59 μg C l−1 and 0.01 and 1.99 μg C l−1 h−1, respectively. With a few exceptions there were no significant spatial patterns in the values (P > 0.05). Bacterial abundance, biomass and production, however, demonstrated a distinct temporal pattern with the lowest values consistently recorded during the winter months. Bacterial dynamics showed no effect of mouth opening events. Nanoflagellate and bacterial abundances were significantly correlated to one another (P < 0.05) suggesting a strong predator-prey relationship. The frequency of visibly infected bacterial cells and the number of virus particles within each bacterial cell during the study demonstrated no significant temporal or spatial pattern (P > 0.05) and ranged from 0.5 to 6.1% and 12.0 to 37.5 virus particles per bacterium, respectively. Viral infection and lysis was thus a constant source of bacterial mortality throughout the year. The estimated percentage of bacterial production removed by viral lysis ranged between 7.8 and 88.9% (mean = 30.3%) of the total which suggests that viral lysis represents a very important source of bacterial mortality during the study.  相似文献   

2.
Using the seawater dilution technique, we measured phytoplankton growth and microzooplankton grazing rates within and outside of the 1999 Bering Sea coccolithophorid bloom. We found that reduced microzooplankton grazing mortality is a key component in the formation and temporal persistence of the Emiliania huxleyi bloom that continues to proliferate in the southeast Bering Sea. Total chlorophyll a (Chl a) at the study sites ranged from 0.40 to 4.45 μg C l−1. Highest phytoplankton biomass was found within the bloom, which was a mixed assemblage of diatoms and E. huxleyi. Here, 75% of the Chl a came from cells >10 μm and was attributed primarily to the high abundance of the diatom Nitzschia spp. Nutrient-enhanced total phytoplankton growth rates averaged 0.53 d−1 across all experimental stations. Average growth rates for >10 μm and <10 μm cells were nearly equal, while microzooplankton grazing varied among stations and size fractions. Grazing on phytoplankton cells >10 μm ranged from 0.19 to 1.14 d−1. Grazing on cells <10 μm ranged from 0.02 to 1.07 d−1, and was significantly higher at non-bloom (avg. 0.71 d−1) than at bloom (avg. 0.14 d−1) stations. Averaged across all stations, grazing by microzooplankton accounted for 110% and 81% of phytoplankton growth for >10 and <10 μm cells, respectively. These findings contradict the paradigm that microzooplankton are constrained to diets of nanophytoplankton and strongly suggests that their grazing capability extends beyond boundaries assumed by size-based models. Dinoflagellates and oligotrich ciliates dominated the microzooplankton community. Estimates of abundance and biomass for microzooplankton >10 μm were higher than previously reported for the region, ranging from 22,000 to 227,430 cells l−1 and 18 to 164 μg C l−1. Highest abundance and biomass occurred in the bloom and corresponded with increased abundance of the large ciliate Laboea, and the heterotrophic dinoflagellates Protoperidinium and Gyrodinium spp. Despite low grazing rates on phytoplankton <10 μm within the bloom, the abundance and biomass of small microzooplankton (<20 μm) capable of grazing E. huxleyi was relatively high at bloom stations. This body of evidence, coupled with observed high grazing rates on large phytoplankton cells, suggests the phytoplankton community composition was strongly regulated by herbivorous activity of microzooplankton. Because grazing behavior deviated from size-based model predictions and was not proportional to microzooplankton biomass, alternate mechanisms that dictate levels of grazing activity were in effect in the southeastern Bering Sea. We hypothesize that these mechanisms included morphological or chemical signaling between phytoplankton and micrograzers, which led to selective grazing pressure.  相似文献   

3.
The plankton community composition comprising heterotrophic bacteria, pro-/eukaryotes, heterotrophic nanoflagellates, microzooplankton and mesozooplankton was assessed during the spring bloom and at non-bloom stations in the English Channel and Celtic Sea between 6 and 12 April 2002. Non-bloom sites were characterised by a dominance of pro-/eukaryotic phytoplankton <20 μm, higher abundance of heterotrophic nanoflagellates, microzooplankton standing stocks ranging between 60 and 380 mg C m−2, lower mesozooplankton diversity and copepod abundance of between 760 and 2600 ind m−3. Within the bloom, the phytoplankton community was typically dominated by larger cells with low abundance of pro-/eukaryotes. Heterotrophic nanoflagellate cell bio-volume decreased leading to a reduction in biomass whereas microzooplankton biomass increased (360–1500 mg C m−2) due to an increase in cell bio-volume and copepod abundance ranged between 1400 and 3800 ind m−3. Mesozooplankton diversity increased with an increase in productivity. Relationships between the plankton community and environmental data were examined using multivariate statistics and these highlighted significant differences in the abiotic variables, the pro-/eukaryotic phytoplankton communities, heterotrophic nanoflagellate, microzooplankton and total zooplankton communities between the bloom and non-bloom sites. The variables which best described variation in the microzooplankton community were temperature and silicate. The spatial variation in zooplankton diversity was best explained by temperature. This study provides an insight into the changes that occur between trophic levels within the plankton in response to the spring bloom in this area.  相似文献   

4.
Seasonal and diurnal reduced sulfur gas emissions were measured along a salinity gradient in Louisiana Gulf Coast salt, brackish and freshwater marshes. Reduced sulfur gas emission was strongly associated with habitat and salinity gradient. The dominant emission component was dimethyl sulfide (average: 57·3 μg S m−2 h−1) in saltmarsh with considerable seasonal (max: 144·03 μg S m−2 h−1; min: 1·47 μg S m−2 h−1) and diurnal (max: 83·58 μg S m−2 h−1; min: 69·59 μg S m−2 h−1) changes in flux rates. Hydrogen sulfide was dominant (average: 21·2 μg S m−2 h−1, max: 79·2 μg S m−2 h−1; min: 5·29 μg S m−2 h−1) form in brackishmarsh and carbonyl sulfide (average: 1·09 μg S m−2 h−1; max: 3·42 μg S m−2 h−1; min: 0·32 μg S m−2 h−1) was dominant form in freshwater marsh. A greater amount of H2S was evolved from brackishmarsh (21·22 μg S m−2 h−1) as compared to the saltmarsh (2·46 μg S m−2 h−1) and freshwater marsh (0·30 μg S m−2 h−1). Emission of total reduced sulfur gases decreased with decrease in salinity and distance inland from the coast. Emission of total reduced sulfur gases over the study averaged 73·3 μg S m−2 h−1 for the saltmarsh, 32·1 μg S m−2 h−1 for brackishmarsh and 2·76 μg S m−2 h−1 for the freshwater marsh.  相似文献   

5.
As part of a larger project on the deep benthos of the Gulf of Mexico, an extensive data set on benthic bacterial abundance (n>750), supplemented with cell-size and rate measurements, was acquired from 51 sites across a depth range of 212–3732 m on the northern continental slope and deep basin during the years 2000, 2001, and 2002. Bacterial abundance, determined by epifluorescence microscopy, was examined region-wide as a function of spatial and temporal variables, while subsets of the data were examined for sediment-based chemical or mineralogical correlates according to the availability of collaborative data sets. In the latter case, depth of oxygen penetration helped to explain bacterial depth profiles into the sediment, but only porewater DOC correlated significantly (inversely) with bacterial abundance (p<0.05, n=24). Other (positive) correlations were detected with TOC, C/N ratios, and % sand when the analysis was restricted to data from the easternmost stations (p<0.05, n=9–12). Region-wide, neither surface bacterial abundance (3.30–16.8×108 bacteria cm−3 in 0–1 cm and 4–5 cm strata) nor depth-integrated abundance (4.84–17.5×1013 bacteria m−2, 0–15 cm) could be explained by water depth, station location, sampling year, or vertical POC flux. In contrast, depth-integrated bacterial biomass, derived from measured cell sizes of 0.027–0.072 μm3, declined significantly with station depth (p<0.001, n=56). Steeper declines in biomass were observed for the cross-slope transects (when unusual topographic sites and abyssal stations were excluded). The importance of resource changes with depth was supported by the positive relationship observed between bacterial biomass and vertical POC flux, derived from measures of overlying productivity, a relationship that remained significant when depth was held constant (partial correlation analysis, p<0.05, df=50). Whole-sediment incubation experiments under simulated in situ conditions, using 3H-thymidine or 14C-amino acids, yielded low production rates (5–75 μg C m−2 d−1) and higher respiration rates (76–242 μg C m−2 d−1), with kinetics suggestive of resource limitation at abyssal depths. Compared to similarly examined deep regions of the open ocean, the semi-enclosed Gulf of Mexico (like the Arabian Sea) harbors in its abyssal sediments a greater biomass of bacteria per unit of vertically delivered POC, likely reflecting the greater input of laterally advected, often unreactive, material from its margins.  相似文献   

6.
Significant spatial heterogeneity in the abundance and composition of meiofaunal and nematode assemblages was described inside the Genoa-Voltri harbour (Genoa, Italy) in relation to variation in the main environmental variables. In harbour sediments characterized by low Eh values and high organic matter concentrations, total meiofauna abundance was lower (948 ± 919 ind 10 cm−2), nematode individual biomass was higher (0.17 ± 0.07 μg C), kinorhynchs and tanaids were completely absent, and the nematode assemblage was dominated by the genera Terschellingia, Sabatieria (pulchra group) and Paracomesoma. In contrast, in sediment characterized by lower levels of organic pollution, meiofaunal abundance was higher (1085 ± 737 ind 10 cm−2), nematode individual biomass was lower (0.11 ± 0.04 μg C), kinorhynchs and tanaids were present and the nematodes were dominated by the genera Desmodora, Daptonema, Anticoma and Halalaimus.Environmental disturbance as assessed by the analysis of meiofaunal and nematode assemblages and sediment environmental variables changed significantly over a scale hundreds of meters, but did not follow a gradient from the inner to the outer harbour. Analysis of nematode assemblages is proposed as a useful tool for the identification of environmental risk areas which may assist in the development of good planning, monitoring programmes and better management of harbour ecosystems.  相似文献   

7.
Seasonal change in the downward carbon transport due to respiration and mortality through diel vertical migration (DVM) of the calanoid copepods Metridia pacifica and Metridia okhotensis was estimated in the Oyashio region, western subarctic Pacific during six cruises from June 2001 to June 2002. M. pacifica (C4, C5 and adult females) was an active migratory species throughout the year though its DVM amplitude varied among seasons and stages. The mean distribution depths of adult females during the daytime were positively related with the illumination level in the water column, being shallowest in April and deepest in January. M. okhotensis generally showed less-extensive migrations than M. pacifica. Therefore, together with their lower abundance, this species is considered to be a less-important mechanism of downward transport of carbon except for April when their DVM was more active and descended deeper than M. pacifica, which remained in the upper 150 m even during the daytime. The mean migrating biomass of the two Metridia species was 558 mg C m−2 d−1 and was high during summer to winter (263–1676 mg C m−2 d−1) and low during spring (59–63 mg C m−2 d−1). Total downward flux through DVM fluctuated between 1.0 and 20.0 mg C m−2 d−1 with an annual mean of 8.0 mg C m−2 d−1. Contribution of the respiratory flux was greater than the mortality flux and accounted for 64–98% of total migratory flux throughout the year except for January when contribution of both fluxes was equal. Overall the annual carbon transport by DVM of Metridia spp. was estimated as 3.0 g C m−2 year−1, corresponding to 15% of the annual total POC flux at 150 m at the study site, suggesting that DVM is a significant process for carbon export in the subarctic region as well as that in tropical and subtropical oceanic regions. Since DVM in M. pacifica is more active during the non-bloom season when the gravitational flux of particulate matter is low, this species plays an important role in driving the biological pump in the subarctic Pacific during summer to winter.  相似文献   

8.
In contrast with the marine reaches of estuaries, few studies have dealt with zooplankton grazing on phytoplankton in the upper estuarine reaches, where freshwater zooplankton species tend to dominate the zooplankton community. In spring and early summer 2003, grazing by micro- and mesozooplankton on phytoplankton was investigated at three sites in the upper Schelde estuary. Grazing by mesozooplankton was evaluated by monitoring growth of phytoplankton in 200 μm filtered water in the presence or absence of mesozooplankton. In different experiments, the grazing impact was tested of the calanoïd copepod Eurytemora affinis, the cyclopoid copepods Acanthocyclops robustus and Cyclops vicinus and the cladocera Chydorus sphaericus, Moina affinis and Daphnia magna/pulex. No significant grazing impact of mesozooplankton in any experiment was found despite the fact that mesozooplankton densities used in the experiments (20 or 40 ind. l−1) were higher than densities in the field (0.1–6.9 ind. l−1). Grazing by microzooplankton was evaluated by comparing growth of phytoplankton in 30 and 200 μm filtered water. Microzooplankton in the 30–200 μm size range included mainly rotifers of the genera Brachionus, Trichocerca and Synchaeta, which were present from 191 to 1777 ind. l−1. Microzooplankton had a significant grazing impact in five out of six experiments. They had a community grazing rate of 0.41–1.83 day−1 and grazed up to 84% of initial phytoplankton standing stock per day. Rotifer clearance rates estimated from microzooplankton community grazing rates and rotifer abundances varied from 8.3 to 41.7 μl ind.−1 h−1. CHEMTAX analysis of accessory pigment data revealed a similar phytoplankton community composition after incubation with and without microzooplankton, indicating non-selective feeding by rotifers on phytoplankton.  相似文献   

9.
Zooplankton dynamics (community composition, juvenile somatic growth rate, adult egg production, secondary production) were studied in coastal waters of the Great Barrier Reef. Two sectors were compared, one adjacent to a catchment of near-pristine land use patterns, the other to a more intensively farmed catchment. Sampling was conducted in the austral winter (August) and summer (January–March) of two succeeding years. Gradients in zooplankton community composition were weak, with only moderate effects of season and sector. Overall, 37% of zooplankton biomass was in the 73–150 μm size fraction, 26% in the 150–350 μm fraction, and 38% was >350 μm. There was no biomass difference and only small differences in community composition between samples taken during the day and at night; ostracods and large calanoid copepods were occasionally more common at night. Carbon-specific growth rates averaged 0.29 d−1 for cyclopoid copepods and 0.35 d−1 for calanoid copepods, with no difference between sectors. Calanoid copepod growth showed a significant relationship to chlorophyll concentration, but cyclopoid copepods did not. Copepod egg production was low (7.9 ± 5.9 eggs female−1 d−1) and apparently food-limited. Copepod secondary production was lower in August (mean = 2.6, range 1.4–4.0 mg C m−2 d−1) than in January–March (mean = 8.5, range 2.4–15.5 mg C m−2 d−1). Secondary production by mesozooplankton in the 73–100 μm size range averaged 0.9% of total phytoplankton production.  相似文献   

10.
Chronological variation in otolith chemistry can be used to reconstruct migration histories of fish. The use of otolith chemistry to study migration, however, requires knowledge of relationships between the chemical properties of the water and elemental incorporation into otoliths, and how water chemistry varies in space and time. We explored the potential for otolith chemistry of snapper, Pagrus auratus, to provide information on movement history between a large semi-enclosed bay, Port Phillip, and coastal waters in south-eastern Australia. Comparisons of water chemistry across two years demonstrated that ambient barium (Ba) levels in Port Phillip Bay were approximately double those in coastal waters (11 μg L−1 versus 6 μg L−1). Ba levels in otolith margins of wild juvenile snapper were highly positively correlated with ambient levels across 17 sampling locations, and levels in otolith margins of adult snapper collected from Port Phillip Bay were approximately double those of snapper collected in coastal waters. Mean partition coefficients for Ba (DBa) were similar for juvenile (0.43) and adult (0.46) otoliths, suggesting that otolith Ba incorporation relative to ambient levels was similar across life-stages. Low Ba variation across otoliths from adult snapper maintained in tanks for three years indicated that annual temperature and/or growth cycles did not strongly influence otolith Ba variation. We concluded that chronological Ba variation in snapper otoliths would be a reliable proxy for life-history exposure to variable ambient Ba. We used water chemistry data and Ba levels across otoliths of ocean resident snapper to estimate otolith Ba levels indicative of residence in Port Phillip Bay (>10 μg g−1) or coastal waters (<6 μg g−1). Peaks in Ba exceeding 10 μg g−1 were common across otoliths of snapper collected in Port Phillip Bay and a nearby coastal region. The location of strong Ba peaks within otoliths was consistent with residence in Port Phillip Bay during the spring/summer when snapper move into the Bay from coastal waters to spawn. Our results for snapper support the use of otolith Ba as a proxy for ambient levels throughout the life-history, however, confident interpretation of migration history from otolith Ba chronologies will most likely require matching time series of ambient Ba in the water bodies of interest.  相似文献   

11.
The benthic boundary layer transport (bblt) model was developed to assess potential impact zones from drilling mud discharges from offshore oil and gas drilling. The model focuses on the drift, dispersion and concentration levels of the suspended fraction of the drilling mud fines in the benthic boundary layer with the assumption of a spatially homogeneous environment. The current version of the model includes a wave boundary layer, a breakup module for drilling mud flocs, a dose–response module for scallops, and a graphical user interface (GUI). The GUI was written in Java which makes the code largely platform independent. Simulations of suspended barite concentration near Sable Island on the Scotian Shelf during drilling in the fall of 1999 reproduce the very low concentrations (generally less than 1 μg L−1) observed during the Environmental Effects Monitoring program. However, the simulations also exhibited concentrations in excess of the no-effects concentration for scallops (100 μg L−1) prior to the sampling program. The model estimates that the potential impact on scallops in the vicinity of the drilling is a few days of lost growth over scales of a few kilometers.  相似文献   

12.
Microplankton abundances and phytoplankton mortality rates were determined at six stations during four cruises spanning three seasons in the Ross Sea polynya, Antarctica (early spring, Oct.–Nov. 1996; mid-late summer, Jan.–Feb. 1997; fall, Apr. 1997; mid-late spring, Nov.–Dec. 1997). Rates of microzooplankton herbivory were measured using a modified dilution technique, as well as by examining the rate of disappearance of phytoplankton (chlorophyll) in samples incubated in the dark (i.e. grazing in the absence of phytoplankton growth). Strong seasonal cycles of phytoplankton and microzooplankton abundance were observed during the study. Microzooplankton abundance varied by more than three orders of magnitude during the four cruises, and was positively correlated with phytoplankton biomass over the entire data set. Nevertheless, microzooplankton grazing was insufficient to impact significantly phytoplankton standing stocks during most of the experiments performed in this perenially cold environment. Only thirteen out of a total of 51 experiments yielded phytoplankton mortality rates that were significantly different from zero. The highest mortality rate observed in this study (0.26 d−1) was modest compared with maximal rates that have been observed in temperate and tropical ecosystems. Results from twenty experiments examining the rate of decrease of phytoplankton biomass during incubations in the dark agreed quite well with the results of the dilution experiments performed at the same time. The range of mortality rates for the dark incubations was −0.09–0.06 d−1, and the average was essentially zero (−0.01 d−1). That is, chlorophyll concentration was virtually unchanged in samples incubated in the dark for 3 d. A number of factors appeared to contribute to the very low rates of microbial herbivory observed, including low water temperature, and the size and taxonomic composition of the phytoplankton assemblage. Based on our results we conclude that the seasonal, massive phytoplankton blooms observed in the Ross Sea are due, in part, to low rates of removal by microbial herbivores.  相似文献   

13.
Physical forcing plays a major role in determining biological processes in the ocean across the full spectrum of spatial and temporal scales. Variability of biological production in the Bay of Bengal (BoB) based on basin-scale and mesoscale physical processes is presented using hydrographic data collected during the peak summer monsoon in July–August, 2003. Three different and spatially varying physical processes were identified in the upper 300 m: (I) anticyclonic warm gyre offshore in the southern Bay; (II) a cyclonic eddy in the northern Bay; and (III) an upwelling region adjacent to the southern coast. In the warm gyre (>28.8 °C), the low salinity (33.5) surface waters contained low concentrations of nutrients. These warm surface waters extended below the euphotic zone, which resulted in an oligotrophic environment with low surface chlorophyll a (0.12 mg m−3), low surface primary production (2.55 mg C m−3 day−1) and low zooplankton biovolume (0.14 ml m−3). In the cyclonic eddy, the elevated isopycnals raised the nutricline upto the surface (NO3–N > 8.2 μM, PO4–P > 0.8 μM, SiO4–Si > 3.5 μM). Despite the system being highly eutrophic, response in the biological activity was low. In the upwelling zone, although the nutrient concentrations were lower compared to the cyclonic eddy, the surface phytoplankton biomass and production were high (Chl a – 0.25 mg m−3, PP – 9.23 mg C m−3 day−1), and mesozooplankton biovolume (1.12 ml m−3) was rich. Normally in oligotrophic, open ocean ecosystems, primary production is based on ‘regenerated’ nutrients, but during episodic events like eddies the ‘production’ switches over to ‘new production’. The switching over from ‘regenerated production’ to ‘new production’ in the open ocean (cyclonic eddy) and establishment of a new phytoplankton community will take longer than in the coastal system (upwelling). Despite the functioning of a cyclonic eddy and upwelling being divergent (transporting of nutrients from deeper waters to surface), the utilization of nutrients leading to enhanced biological production and its transfer to upper trophic levels in the upwelling region imply that the energy transfer from primary production to secondary production (mesozooplankton) is more efficient than in the cyclonic eddy of the open ocean. The results suggest that basin-scale and mesoscale processes influence the abundance and spatial heterogeneity of plankton populations across a wide spatial scale in the BoB. The multifaceted effects of these physical processes on primary productivity thus play a prominent role in structuring of zooplankton communities and could consecutively affect the recruitment of pelagic fisheries.  相似文献   

14.
As part of the US Joint Global Ocean Flux Study (US JGOFS) Southern Ocean Program, flow cytometry and epifluorescent microscopy were utilized to determine abundance, distribution and size structure of the microbial community in the Polar Front region during the summer biomass maximum. Surface samples were collected approximately every 10 km along 170°W during two N–S transects, separated in time by two weeks. Phytoplankton abundance and size structure varied with distinct latitudinal trends. Autotrophic biomass was lowest north of the Polar Front reflecting the dominance of small cells. The highest biomass (170 μg C l−1) occurred at 65°S where the composition was strongly influenced by large centric diatoms. Farther south, the diatom community shifted to the dominance of smaller pennate diatoms. Total grazer biomass and size distributions followed similar patterns, ranging from 4 μg C l−1 in the north to 52 μg C l−1 in the south where larger (>20 μm) grazers were more abundant. Heterotrophic bacteria varied over an order of magnitude in abundance across the study site, with size generally increasing from north to south. In the second transect, phytoplankton biomass at 65°S was 50% lower, and grazer biomass and bacterial populations were slightly greater, indicating the decline of the bloom. The changes in biomass and community structure along 170°W and the reduction of phytoplankton standing stock at 65°S over time suggests adjacent, yet different, microbial systems in terms of carbon flux, spanning from primarily recycling to export-dominated.  相似文献   

15.
Microzooplankton (heterotrophic microplankton and heterotrophic nanoflagellates) and their herbivorous activity were estimated from dilution experiments in August 1998 during two Lagrangian drift experiments that sampled contrasting conditions—an upwelling/relaxation event along the shelf edge and an oligotrophic offshore filament. During upwelling/relaxation, heterotrophic microplankton were present at mean surface concentrations between 15,000 and 48,000 cells l−1. Heterotrophic nanoflagellate concentrations were between 200 and 700 cells ml−1 and the most abundant component of the heterotrophic microplankton was the aloricate choreotrich ciliates which increased dramatically in concentration from 6,000 to 24,000 cells l−1 during the first 4 days of the study. Total microzooplankton biomass reached a maximum of 39mgC.m−3. In the filament, which developed from the upwelling, cell concentrations were lower and averaged 4,500 cells l−1 for heterotrophic microplankton and 250 cells ml−1 for heterotrophic nanoflagellates. Total microzooplankton biomass was about 10–12mgC.m−3. Microzooplankton turned over between 40 and 85% of the phytoplankton standing stock, thereby consuming between 5 and 78mg phytoplankton carbon.m−3.d−1. The magnitude of this activity was highest during upwelling/relaxation and was positively correlated to heterotrophic nanoflagellate biomass and chlorophyll-a concentration but not heterotrophic microplankton biomass. The proportion of primary production grazed decreased from 160 to 59% d−1 during upwelling/relaxation and ranged between 60 and 90% d−1 in the filament. Microzooplankton herbivory within the euphotic zone increased from 684 to >2000mgC.m−2.d−1 during upwelling/relaxation and was between 327 and 802mgC.m−2.d−1 in the filament. Although microzooplankton herbivory was lower and less variable during the filament study, microzooplankton consumed on average 60% of the phytoplankton standing stocks which was higher than found during upwelling/relaxation. Microzooplankton assimilation efficiency ranged between 3 and 33% during upwelling/relaxation and between 0 and 13% in the filament. Our data demonstrate a close coupling between phytoplankton growth and microzooplankton herbivory in surface waters off the Galician Coast and suggest that microzooplankton may have been a significant sink for phytogenic carbon during August 1998.  相似文献   

16.
Seasonal new production (g C m−2) estimates obtained from dissolved oxygen and nitrate concentrations in surface waters (5 m depth) along a track between the UK (Portsmouth) and northern Spain (Bilbao) are compared. An oxygen flux method, in combination with a ship of opportunity (SOO), was tested on the northwest European shelf for its value in distinguishing high production in frontal regions. Dissolved oxygen, nitrate and chlorophyll a samples were collected monthly from February to July 2004, alongside continuous autonomous measurements of salinity, temperature and chlorophyll fluorescence. Depth integrated new production estimates for all the individually analysed hydrographic regions of the route were produced.Results from three widely used gas-exchange parameterizations gave seasonal (February–July) new production estimates of 54–68 g C m−2 for the Ushant region of the western English Channel and 31–40 g C m−2 for the shelf slope, averaging 24–31 g C m−2 for the route. This is double the route average obtained using the nitrate assimilation method (17 g C m−2) and within the ranges of previous estimates in the same region. The oxygen flux method gave a fivefold enhancement compared to the nitrate method in the Ushant frontal region and a threefold enhancement in the English Channel and shelf break regions. Determining oxygen fluxes to estimate new production may be more reliable than nitrate assimilation in active tidal or frontal regions of shelves where nitrate may be added to the system post-winter through advection or entrainment.  相似文献   

17.
Primary production was estimated over the annual cycle from 14C incubations conducted in 5 m deep enclosures and modeled for 16 stations in Narragansett Bay with data from biweekly surveys in which light, chlorophyll, attenuation coefficients and other parameters were measured. Annual values ranged from 160 g C m−2 y−1 in the lower West Passage to 619 g C m−2 y−1 at the mouth of the Providence River. The annual bay-wide, area mean fell near the middle of this range at 323 g C m−2 y−1 and was not apparently different from previous surveys. In the 1998 warm, El Niño winter, no bay-wide winter–spring phytoplankton flowered. Bloom limitation was correlated with warm temperatures which may have stimulated grazing rates. The lack of a bloom did not change annual levels of primary production but this alteration in carbon flow may impact macrofauna in the benthic infauna community.  相似文献   

18.
Variations in abundance, biomass, vertical profile and cell size of heterotrophic dinoflagellates (HDFs) between summer and winter and its controlling factors were studied in the northern South China Sea (SCS). It was found that HDF abundance and carbon biomass were 4–102 × 103 cells L−1 and 0.34–12.3 mg C L−1 in winter (February 2004), respectively, while they were 2–142 × 103 cells L−1 and 0.22–31.4 μg C L−1 in summer (July, 2004), respectively, in the northern SCS. HDF abundance and carbon biomass decreased from the estuary to inshore and then offshore. Vertical profiles of HDF abundance were heterogeneous, which accorded well with that of chlorophyll a (Chl.a). Higher abundance of HDFs was often observed at a depth of 30–70 m offshore waters, matching well with the Chl.a maximum, while it showed high abundance at the surface in some coastal and estuary stations. Small HDFs (≤20 μm) dominated the assemblage in term of abundance accounting for more than 90%. However, large HDFs (>20 μm) generally contributed equally in terms of carbon biomass, accounting for 47% on average. HDFs showed different variation patterns for the different study regions; in the estuarine and continental shelf regions, abundance and biomass values were higher in summer than those in winter, while it was the reverse pattern for the slope waters. Hydrological factors (e.g. water mass, river outflow, monsoon and eddies) associated with biological factors, especially the size-fractionated Chl.a, seemed to play an important role in regulating HDF distribution and variations in the northern South China Sea.  相似文献   

19.
A sequence of nine dilution experiments was conducted according to Landry and Hassett [Landry, M.R., Hassett, R.P., 1982. Estimating the grazing impact of marine microzooplankton. Mar. Biol. 67, 283–288] in the northern Wadden Sea from March until October 2004 to investigate the seasonality of microzooplankton grazing. From March until April, no grazing was observed. Microzooplankton grazing started in May (0.66 d− 1) and increased until August (1.22 d− 1). In October microzooplankton grazing was low again (0.17 d− 1). Phytoplankton growth rates varied between 0 and 1.1 d− 1. Since the reliability of dilution experiments is still frequently discussed in literature, we tested if our data obtained by dilution experiments reflected short-term in situ phytoplankton dynamics of the study site. We scaled experimental growth rates to water column irradiance, calculated short-term chlorophyll-a dynamics and compared the results to in situ measured chlorophyll-a concentrations. Calculated chlorophyll-a concentrations correlated significantly with in situ measured chlorophyll-a concentrations but slightly overestimated the in situ measured chlorophyll-a. This overestimation was in the range of phytoplankton assimilation reported for the Wadden Sea benthos. We will show that microzooplankton grazing had a large impact during the Phaeocystis bloom and during summer suggesting that a large proportion of phytoplankton biomass remained the pelagic food web. Microzooplankton grazing did not impact the diatom spring bloom and its demise.  相似文献   

20.
The aim of this study was to investigate controls on the phytoplankton community composition and biogeochemistry of the estuarine plume zone of the River Thames, U.K. using an instrumented moored buoy for in situ measurements and preserved sample collection, and laboratory-based measurements from samples collected at the same site. Instrumentation on the moored buoy enabled high frequency measurements of a suite of environmental variables including in situ chlorophyll, water-column integrated irradiance, macronutrients throughout an annual cycle for 2001 e.g. nitrate and silicate, and phytoplankton biomass and species composition. The Thames plume region acts as a conduit for fluvial nutrients into the wider southern North Sea with typical winter concentrations of 45 μM nitrate, 17 μM silicate and 2 μM phosphate measured. The spring bloom resulted from water-column integrated irradiance increasing above 60 W h m− 2 d− 1 and was initially dominated by a diatom bloom mainly composed of Nitzschia sp. and Odontella sinesis. The spring bloom then switched after  30 days to become dominated by the flagellate Phaeocystis reaching a maximum chlorophyll concentration of 37.8 μg L− 1. During the spring bloom there were high numbers of the heterotrophic dinoflagellates Gyrodinium spirale and Katodinium glaucum that potentially grazed the phytoplankton bloom. This diatom–flagellate switch was predicted to be due to a combination of further increasing water-column integrated irradiance > 100 W h m− 2 d− 1 and/or silicate reaching potentially limiting concentrations (< 1 μM). Post spring bloom, diatom dominance of the lower continuous summer phytoplankton biomass occurred despite the low silicate concentrations (Av. 0.7 μM from June–August). Summer diatom dominance, generally due to Guinardia delicatula, was expected to be as a result of microzooplankton grazing, dominated by the heterotrophic dinoflagellate Noctiluca scintillans, controlling 0.7–5.0 μm ‘flagellate’ fraction of the phytoplankton community with grazing rates up to 178% of ‘flagellate’ growth rate. The Thames plume region was therefore shown to be an active region of nutrient and phytoplankton processing and transport to the southern North Sea. The use of a combination of moorings and ship-based sampling was essential in understanding the factors influencing nutrient transport, phytoplankton biomass and species composition in this shelf sea plume region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号