首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microzooplankton (heterotrophic microplankton and heterotrophic nanoflagellates) and their herbivorous activity were estimated from dilution experiments in August 1998 during two Lagrangian drift experiments that sampled contrasting conditions—an upwelling/relaxation event along the shelf edge and an oligotrophic offshore filament. During upwelling/relaxation, heterotrophic microplankton were present at mean surface concentrations between 15,000 and 48,000 cells l−1. Heterotrophic nanoflagellate concentrations were between 200 and 700 cells ml−1 and the most abundant component of the heterotrophic microplankton was the aloricate choreotrich ciliates which increased dramatically in concentration from 6,000 to 24,000 cells l−1 during the first 4 days of the study. Total microzooplankton biomass reached a maximum of 39mgC.m−3. In the filament, which developed from the upwelling, cell concentrations were lower and averaged 4,500 cells l−1 for heterotrophic microplankton and 250 cells ml−1 for heterotrophic nanoflagellates. Total microzooplankton biomass was about 10–12mgC.m−3. Microzooplankton turned over between 40 and 85% of the phytoplankton standing stock, thereby consuming between 5 and 78mg phytoplankton carbon.m−3.d−1. The magnitude of this activity was highest during upwelling/relaxation and was positively correlated to heterotrophic nanoflagellate biomass and chlorophyll-a concentration but not heterotrophic microplankton biomass. The proportion of primary production grazed decreased from 160 to 59% d−1 during upwelling/relaxation and ranged between 60 and 90% d−1 in the filament. Microzooplankton herbivory within the euphotic zone increased from 684 to >2000mgC.m−2.d−1 during upwelling/relaxation and was between 327 and 802mgC.m−2.d−1 in the filament. Although microzooplankton herbivory was lower and less variable during the filament study, microzooplankton consumed on average 60% of the phytoplankton standing stocks which was higher than found during upwelling/relaxation. Microzooplankton assimilation efficiency ranged between 3 and 33% during upwelling/relaxation and between 0 and 13% in the filament. Our data demonstrate a close coupling between phytoplankton growth and microzooplankton herbivory in surface waters off the Galician Coast and suggest that microzooplankton may have been a significant sink for phytogenic carbon during August 1998.  相似文献   

2.
A sequence of nine dilution experiments was conducted according to Landry and Hassett [Landry, M.R., Hassett, R.P., 1982. Estimating the grazing impact of marine microzooplankton. Mar. Biol. 67, 283–288] in the northern Wadden Sea from March until October 2004 to investigate the seasonality of microzooplankton grazing. From March until April, no grazing was observed. Microzooplankton grazing started in May (0.66 d− 1) and increased until August (1.22 d− 1). In October microzooplankton grazing was low again (0.17 d− 1). Phytoplankton growth rates varied between 0 and 1.1 d− 1. Since the reliability of dilution experiments is still frequently discussed in literature, we tested if our data obtained by dilution experiments reflected short-term in situ phytoplankton dynamics of the study site. We scaled experimental growth rates to water column irradiance, calculated short-term chlorophyll-a dynamics and compared the results to in situ measured chlorophyll-a concentrations. Calculated chlorophyll-a concentrations correlated significantly with in situ measured chlorophyll-a concentrations but slightly overestimated the in situ measured chlorophyll-a. This overestimation was in the range of phytoplankton assimilation reported for the Wadden Sea benthos. We will show that microzooplankton grazing had a large impact during the Phaeocystis bloom and during summer suggesting that a large proportion of phytoplankton biomass remained the pelagic food web. Microzooplankton grazing did not impact the diatom spring bloom and its demise.  相似文献   

3.
Using the seawater dilution technique, we measured phytoplankton growth and microzooplankton grazing rates within and outside of the 1999 Bering Sea coccolithophorid bloom. We found that reduced microzooplankton grazing mortality is a key component in the formation and temporal persistence of the Emiliania huxleyi bloom that continues to proliferate in the southeast Bering Sea. Total chlorophyll a (Chl a) at the study sites ranged from 0.40 to 4.45 μg C l−1. Highest phytoplankton biomass was found within the bloom, which was a mixed assemblage of diatoms and E. huxleyi. Here, 75% of the Chl a came from cells >10 μm and was attributed primarily to the high abundance of the diatom Nitzschia spp. Nutrient-enhanced total phytoplankton growth rates averaged 0.53 d−1 across all experimental stations. Average growth rates for >10 μm and <10 μm cells were nearly equal, while microzooplankton grazing varied among stations and size fractions. Grazing on phytoplankton cells >10 μm ranged from 0.19 to 1.14 d−1. Grazing on cells <10 μm ranged from 0.02 to 1.07 d−1, and was significantly higher at non-bloom (avg. 0.71 d−1) than at bloom (avg. 0.14 d−1) stations. Averaged across all stations, grazing by microzooplankton accounted for 110% and 81% of phytoplankton growth for >10 and <10 μm cells, respectively. These findings contradict the paradigm that microzooplankton are constrained to diets of nanophytoplankton and strongly suggests that their grazing capability extends beyond boundaries assumed by size-based models. Dinoflagellates and oligotrich ciliates dominated the microzooplankton community. Estimates of abundance and biomass for microzooplankton >10 μm were higher than previously reported for the region, ranging from 22,000 to 227,430 cells l−1 and 18 to 164 μg C l−1. Highest abundance and biomass occurred in the bloom and corresponded with increased abundance of the large ciliate Laboea, and the heterotrophic dinoflagellates Protoperidinium and Gyrodinium spp. Despite low grazing rates on phytoplankton <10 μm within the bloom, the abundance and biomass of small microzooplankton (<20 μm) capable of grazing E. huxleyi was relatively high at bloom stations. This body of evidence, coupled with observed high grazing rates on large phytoplankton cells, suggests the phytoplankton community composition was strongly regulated by herbivorous activity of microzooplankton. Because grazing behavior deviated from size-based model predictions and was not proportional to microzooplankton biomass, alternate mechanisms that dictate levels of grazing activity were in effect in the southeastern Bering Sea. We hypothesize that these mechanisms included morphological or chemical signaling between phytoplankton and micrograzers, which led to selective grazing pressure.  相似文献   

4.
Phytoplankton standing stocks and carbon assimilation were measured during four cruises to the southern Ross Sea, Antarctica during 1996 and 1997 in order to assess the details of the seasonal cycle of biomass and productivity. The seasonal composite showed that phytoplankton biomass increased rapidly during the austral spring, and integrated chlorophyll reached a maximum during the summer (January 15) and decreased thereafter. Particulate matter ratios (carbon:nitrogen, carbon:chlorophyll) also showed distinct seasonal trends with summer minima. Carbon assimilation increased rapidly in the spring, and reached a maximum of 231 mmol C m−2 d−1, ca. four weeks earlier than the maximum observed biomass (during early December). It decreased rapidly thereafter, and in austral autumn when ice formed, it approached zero. The time of maximum growth rate coincided with the maximum in C-assimilation, and at 0.66 d−1 equaled predictions based on laboratory cultures. Growth rates over the entire growing season, however, were generally much less. Deck-board incubations suggested that photoinhibition occurred at the greatest photon flux densities, but in situ incubations revealed no such surface inhibition. We suggest that due to the nature of the irradiance field in the Antarctic, assemblages maintained in on-deck incubators received more light than those in situ, which resulted in photoinhibition. This in turn resulted in a 17% underestimate in on-deck productivity relative to in situ determinations. The phytoplankton bloom appeared to be initiated when vertical stability was imparted in austral spring, coincident with greater daily photon flux densities. Conversely, decreased productivity likely resulted from trace metal limitation, whereas biomass declines likely resulted from enhanced loss rates, such as aggregate formation and enhanced vertical flux of larger particles. The seasonal progression of productivity and biomass in the southern Ross Sea was similar to other areas in the ocean that experience blooms, and the cycling of carbon in this region is extensive, despite the fact that the growing season extends no more than five months.  相似文献   

5.
In contrast with the marine reaches of estuaries, few studies have dealt with zooplankton grazing on phytoplankton in the upper estuarine reaches, where freshwater zooplankton species tend to dominate the zooplankton community. In spring and early summer 2003, grazing by micro- and mesozooplankton on phytoplankton was investigated at three sites in the upper Schelde estuary. Grazing by mesozooplankton was evaluated by monitoring growth of phytoplankton in 200 μm filtered water in the presence or absence of mesozooplankton. In different experiments, the grazing impact was tested of the calanoïd copepod Eurytemora affinis, the cyclopoid copepods Acanthocyclops robustus and Cyclops vicinus and the cladocera Chydorus sphaericus, Moina affinis and Daphnia magna/pulex. No significant grazing impact of mesozooplankton in any experiment was found despite the fact that mesozooplankton densities used in the experiments (20 or 40 ind. l−1) were higher than densities in the field (0.1–6.9 ind. l−1). Grazing by microzooplankton was evaluated by comparing growth of phytoplankton in 30 and 200 μm filtered water. Microzooplankton in the 30–200 μm size range included mainly rotifers of the genera Brachionus, Trichocerca and Synchaeta, which were present from 191 to 1777 ind. l−1. Microzooplankton had a significant grazing impact in five out of six experiments. They had a community grazing rate of 0.41–1.83 day−1 and grazed up to 84% of initial phytoplankton standing stock per day. Rotifer clearance rates estimated from microzooplankton community grazing rates and rotifer abundances varied from 8.3 to 41.7 μl ind.−1 h−1. CHEMTAX analysis of accessory pigment data revealed a similar phytoplankton community composition after incubation with and without microzooplankton, indicating non-selective feeding by rotifers on phytoplankton.  相似文献   

6.
Repeated measurements of depth profiles of 234Th (dissolved, 1–70 and >70 μm particulate) at three stations (Orca, Minke, Sei) in the Ross Sea have been used to estimate the export of Th and particulate organic carbon (POC) from the euphotic zone. Sampling was carried out on three JGOFS cruises covering the period from October 1996 (austral early spring) to April 1997 (austral fall). Deficiencies of 234Th relative to its parent 238U in the upper 100 m are small during the early spring cruise, increase to maximum values during the summer, and decrease over the course of the fall. Application of a non-steady-state model to the 234Th data shows that the flux of Th from the euphotic zone occurs principally during the summer cruise and in the interval between summer and fall. Station Minke in the southwestern Ross Sea appears to sustain significant 234Th removal for a longer period than is evident at Orca or Sei. Particulate 234Th activities and POC are greater in the 1–70 μm size fraction, except late in the summer cruise, when the >70 μm POC fraction exceeds that of the 1–70 μm fraction. The POC/234Th ratio in the >70 μm fraction exceeds that in the 1–70 μm fraction, likely due in part to the greater availability of surface sites for Th adsorption in the latter. Particulate 234Th fluxes are converted to POC fluxes by multiplying by the POC/234Th ratio of the >70 μm fraction (assumed to be representative of sinking particles). POC fluxes calculated from a steady-state Th scavenging model range from 7 to 91 mmol C m−2 d−1 during late January–early February, with the greatest flux observed at station Minke late in the cruise. Fluxes estimated with a non-steady-state Th model are 85 mmol C m−2 d−1 at Minke (1/13–2/1/97) and 50 mmol C m−2 d−1 at Orca (1/19–2/1/97). The decline in POC inventories (0–100 m) is most rapid in the southern Ross Sea during the austral summer cruise (Smith et al., 2000. The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica. Deep-Sea Research II 47, 3119–3140. Gardner et al., 2000. Seasonal patterns of water column particulate organic carbon and fluxes in the Ross Sea, Antarctica. Deep-Sea Research II 47, 3423–3449), and the 234Th-derived POC fluxes indicate that the sinking flux of POC is 30–50% of the POC decrease, depending on whether steady-state or non-steady-state Th fluxes are used. Rate constants for particle POC aggregation and disaggregation rates are calculated at station Orca by coupling particulate 234Th data with 228Th data on the same samples. Late in the early spring cruise, as well as during the summer cruise, POC aggregation rates are highest in near-surface waters and decrease with depth. POC disaggregation rates during the same time generally increase to a maximum and are low at depth (>200 m). Subsurface aggregation rates increase to high values late in the summer, while disaggregation rates decrease. This trend helps explain higher values of POC in the >70 m fraction relative to the 1–70 m fraction late in the summer cruise. Increases in disaggregation rate below 100 m transfer POC from the large to small size fraction and may attenuate the flux of POC sinking out of the euphotic zone.  相似文献   

7.
Microzooplankton grazing impact on phytoplankton was assessed using the Landry–Hassett dilution technique in the Western Arctic Ocean during spring and summer 2002 and 2004. Forty experiments were completed in a region encompassing productive shelf regions of the Chukchi Sea, mesotrophic slope regions of the Beaufort Sea off the North Slope of Alaska, and oligotrophic deep-water sites in the Canada Basin. A variety of conditions were encountered, from heavy sea-ice cover during both spring cruises, moderate sea-ice cover during summer of 2002, and light to no sea ice during summer of 2004, with a concomitant range of trophic conditions, from low chlorophyll-a (Chl-a; <0.5 μg L−1) during heavy ice cover in spring and in the open basin, to late spring and summer shelf and slope open-water diatom blooms with Chl-a >5 μg L−1. The microzooplankton community was dominated by large naked ciliates and heterotrophic gymnodinoid dinoflagellates. Significant, but low, rates of microzooplankton herbivory were found in half of the experiments. The maximum grazing rate was 0.16 d−1 and average grazing rate, including experiments with no significant grazing, was 0.04±0.06 d−1. Phytoplankton intrinsic growth rates varied from the highest values of about 0.4 d−1 to the lowest values of zero to slightly negative growth, on average 0.16±0.15 d−1. Light limitation in spring and post-bloom senescence during summer were likely explanations of observed low phytoplankton growth rates. Microzooplankton grazing consumed 0–120% (average 22±26%) of phytoplankton daily growth. Grazing and growth rates found in this study were low compared to rates reported in another Arctic system, the Barents Sea, and in major geographic regions of the world ocean.  相似文献   

8.
This paper reports estimates of trophic flows of carbon off the Galician coast from a 1D ecological model, which are compared with field data from a two week Lagrangian drift experiment. The model consists of 9 biological components: nitrate, ammonium, >5μm phytoplankton, <5μm phytoplankton, heterotrophic nanoflagellates/dinoflagellates (5–20 μm), heterotrophic dinoflagellates (>20 μm), ciliates, fast sinking detritus and slow sinking detritus. Calculations were made for the fluxes of carbon between biological components within the upper 45m of the water column. The temporal development of primary production during the simulation period of two weeks was in good agreement with field estimates, which varied between 248 and 436mgC.m−2.d−1. Heterotrophic nanoflagellates had the greatest impact on carbon flux, with a grazing rate of 168mgC.m−2.d−1. Herbivorous grazing by microzooplankton amounted to 215mgC.m−2.d−1, whereas grazing by copepods on phytoplankton was 35mgC.m−2 d−1. Copepods grazing on microzooplankton was minor (0.47mgC.m−2.d−1) and the export flux from the upper 45m was 302mgC.m−2.d−1. Sensitivity analyses, in which the grazing parameters (i.e the functional relationship between ingestion and food concentration) were changed, were carried out on the heterotrophic dinoflagellate, ciliate and heterotrophic nanoflagellates/dinoflagellate components of the model. These changes did not alter the temporal development of heterotrophic nanoflagellates/dinoflagellates biomass significantly, but ciliates and heterotrophic dinoflagellates were more sensitive to variations in the grazing parameters. The overall conclusion from this modelling study is that the coupling between small phytoplankton and heterotrophic nanoflagellates was the quantitatively most important process controlling carbon flow in this region.  相似文献   

9.
Using data collected during cruises of the JGOFS equatorial Pacific Study in March/April and October of 1992 at the equator (140°W), we examine the downward transport of carbon by three size classes of die] migrant mesozooplankton (200–500 gm, 500–1000 μm and 1000–2000 gm). In addition to respiratory carbon flux, we consider the flux due to mortality of migrators below the euphotic zone. Diel migrant mesozooplankton biomass was estimated from the difference between nighttime and daytime biomass within the euphotic zone. Except for a four-day period early in the March/April cruise, mesozooplankton nighttime biomass was significantly larger than daytime biomass within the euphotic zone during both cruises. We estimate that the downward flux of carbon from the euphotic zone due to mesozooplankton die] vertical migrators was an average of 0.6 mmol Cm−2 d−1 and 1.1 mmol C m−2 d−1 during the March/April and October cruises, respectively. Addition of this flux to the gravitational particle sinking flux estimated from234Th measurements during the same period results in a 31 % increase in the carbon export flux from the euphotic zone in the equatorial Pacific during the March/April cruise and a 44% increase in the October cruise. The migratory flux is strongly dependent on whether feeding takes place below the euphoric zone, the length of time migrators spend in the deep waters, and the mortality rate of migrators.  相似文献   

10.
Dilution experiments were conducted to investigate microzooplankton grazing impact on phytoplankton of different taxonomic groups and size fractions (< 5, 5–20, 20–200 μm) during spring and summer bloom periods at two different sites (inner Tolo Harbour and Tolo Channel) in the Tolo Harbour area, the northeastern coastal area of Hong Kong. Experiments combined with HPLC pigment analysis in three phytoplankton size fractions measured pigment and size specific phytoplankton growth rates and microzooplankton grazing rates. Pigment-specific phytoplankton growth rates ranged between 0.08 and 3.53 d 1, while specific grazing rates of microzooplankton ranged between 0.07 and 2.82 d 1. Highest specific rates of phytoplankton growth and microzooplankton grazing were both measured in fucoxanthin in 5–20 μm size fraction in inner Tolo Harbour in summer, which coincided with the occurrence of diatom bloom. Results showed significant correlations between phytoplankton growth and microzooplankton grazing rates. Microzooplankton placed high grazing pressure on phytoplankton community. High microzooplankton grazing impact on alloxanthin (2.63–5.13) suggested strong selection toward cryptophytes. Our results provided no evidence for size selective grazing on phytoplankton by microzooplankton.  相似文献   

11.
The first estimates of uptake kinetic parameters for NH4+, NO3, and urea in the Ross Sea, Antarctica were measured on three cruises during austral late winter–early spring 1996 (pre-bloom), late spring 1997 (bloom development), and summer 1997 (bloom decline). Nitrogen (N) uptake experiments were conducted with water collected at the 50% light penetration depth using trace-metal clean protocols and 15N tracer techniques. At all sites, ambient NO3 concentrations ranged from 5.8 to 30.5 μg-at N l−1 and silicic acid concentrations were greater than 62.0 μg-at Si l−1. The following trends were observed. First, based on maximum uptake rates (Vmax), apparent N utilization followed the order NO3>NH4+>urea during the pre-bloom and bloom development cruises. During the summer cruise, as the bloom was declining, the apparent order of utilization was NH4+>NO3>urea. Second, evidence for possible repression of NO3 uptake by elevated NH4+ concentrations was only observed at one site. Third, the kinetic parameters of NH4+ uptake rates corrected for isotope dilution were compared with the kinetic parameters determined from uncorrected rates. In this comparison, the measure of substrate affinity, α (α=Vmax/Ks) increased by an average of 4.6-fold when rates were corrected for isotope dilution, but values of Vmax remained unchanged. Fourth, using bacterial production data, the magnitude of bacterial N uptake was estimated. Assuming that all bacterial N demands were met with NH4+, the estimated bacterial portion of NH4+ uptake ranged from <1%, when the ratio of bacteria to autotrophic biomass was low, to 35%, when bacterial abundance and biomass were highest. Finally, dramatic changes in NH4+ uptake capacity were observed at one station (Stn. O), where kinetic parameters were measured during all three cruises. We hypothesize that a mutualistic relationship exists between phytoplankton and heterotrophic bacteria, and that the creation of microzones of high NH4+ concentrations contributed to the changes seen at this station.  相似文献   

12.
The vertical flux of particulate matter at 330 m depth in San Lázaro Basin off southern Baja California ranged from 63 to 587 mg m−2 d−1 between August and November 1996. Organic carbon contents were between 5.6 and 14.8%, yielding flux rates of 9–40 mgC m−2 d−1. In December 1997 and January 1998, at the height of the strong El Niño event, the respective fluxes (47–202 mg m−2 d−1 and 3–8 mgC m−2 d−1) were comparable. The February–June 1998 records, however, revealed sharply reduced mass (1–6 mg m−2 d−1) and organic carbon (0.2–0.8 mgC m−2 d−1) fluxes. The organics collected in 1996 were predominantly autochthonous (δ13C=−22‰; C/N=8). The variations in δ15N (8.3–11.0‰) suggest an alternation of new and regenerated production, possibly associated with fluctuations in the intensity of deep mixing during that autumn. The relatively high organic matter fluxes in December 1997 appear to be associated with regenerated production. The average composition from February to June 1998 (δ13C=−23.6‰; 15N=11.7‰; C/N=10.5) indicates degraded material of marine origin. The maximum δ15N value found (14‰) suggests that deeper, denitrified waters were brought to the surface and possibly advected laterally. Regime changes in the waters of the basin occur at 6–10 week intervals, evidenced by concurrent shifts in most of the measured parameters, including fecal pellet types and metal chemistry. The marine snow-dominated detritus collected showed a shift from a mixed diatom-rich-radiolarian-coccolith assemblage in late 1996 to a coccolith-dominated assemblage, including the contents of fecal pellets, during the 1997–1998 El-Niño period. T–S profiles, plankton analysis and chlorophyll contents of the upper water column indicated that the strong phytoplankton bloom, normally associated with seasonal upwelling along the Pacific coast of Baja, did not occur during the spring of 1998. The persistence of oligotrophic conditions during the 1997–1998 El Niño event favored the dominance of nanoplankton and reduced the vertical flux of particles.  相似文献   

13.
Phytoplankton growth and microzooplankton grazing were studied during the 2007 spring bloom in Central Yellow Sea. The surveyed stations were divided to pre-bloom phase (Chl a concentration less than 2 μg L−1), and bloom phase (Chl a concentration greater than 2 μg L−1). Shipboard dilution incubation experiments were carried out at 19 stations to determine the phytoplankton specific growth rates and the specific grazing rates of microzooplankton on phytoplankton. Diatoms dominated in the phytoplankton community in surface waters at most stations. For microzooplankton, Myrionecta rubra and tintinnids were dominant, and heterotrophic dinoflagellate was also important in the community. Phytoplankton-specific growth rates, with an average of 0.60±0.19 d−1, were higher at pre-bloom stations (average 0.62±0.17 d−1), and lower at the bloom stations (average 0.59±0.21 d−1), but the difference of growth rates between bloom and pre-bloom stations was not statistically significant (t test, p=0.77). The phytoplankton mortality rate by microzooplankton grazing averaged 0.41±0.23 d−1 at pre-bloom stations, and 0.58±0.31 d−1 during the blooms. In contrast to the growth rates, the statistic difference of grazing rates between bloom and pre-bloom stations was significant (after removal of outliers, t test, p=0.04), indicating the importance of the top-down control in the phytoplankton bloom processes. Average potential grazing efficiency on primary productivity was 66% at pre-bloom stations and 98% at bloom stations, respectively. Based on our results, the biomass maximum phase (bloom phase) was not the maximum growth rate phase. Both phytoplankton specific growth rate and net growth rate were higher in the pre-bloom phase than during the bloom phase. Microzooplankton grazing mortality rate was positively correlated with phytoplankton growth rate during both phases, but growth and grazing were highly coupled during the booming phase. There was no correlation between phytoplankton growth rate and cell size during the blooms, but they were positive correlated during the pre-bloom phase. Our results indicate that microzooplankton grazing is an important process controlling the growth of phytoplankton in spring bloom period in the Central Yellow Sea, particularly in the “blooming” phase.  相似文献   

14.
An intense diatom bloom developed within a strong meridional silicic acid gradient across the Antarctic Polar Front at 61°S, 170°W following stratification of the water column in late October/early November 1997. The region of high diatom biomass and the silicic acid gradient propogated southward across the Seasonal Ice Zone through time, with the maximum diatom biomass tracking the center of the silicic acid gradient. High diatom biomass and high rates of silica production persisted within the silicic acid gradient until the end of January 1998 (ca. 70 d) driving the gradient over 500 km to the south of its original position at the Polar Front. The bloom consumed 30 to >40 μM Si(OH)4 in the euphotic zone between about 60 and 66°S leaving near surface concentrations <2.5 μM and occasionally <1.0 μM in its wake. Integrated biogenic silica concentrations within the bloom averaged 410 mmol Si m−2 (range 162–793 mmol Si m−2). Average integrated silica production on two consecutive cruises in December 1997 and January 1998 that sampled the bloom while it was well developed were 27.5±6.9 and 22.6±20 mmol Si m−2 d−1, respectively. Those levels of siliceous biomass and silica production are similar in magnitude to those reported for ice-edge diatom blooms in the Ross Sea, Antarctica, which is considered to be among the most productive regions in the Southern Ocean. Net silica production (production minus dissolution) in surface waters during the bloom was 16–21 mmol Si m−2 d−1, which is sufficient for diatom growth to be the cause of the southward displacement of the silicic acid gradient. A strong seasonal change in silica dissolution : silica production rate ratios was observed. Integrated silica dissolution rates in the upper 100–150 m during the low biomass period before stratification averaged 64% of integrated production. During the bloom integrated dissolution rates averaged only 23% of integrated silica production, making 77% of the opal produced available for export to depth. The bloom ended in late January apparently due to a mixing event. Dissolution : production rate ratios increased to an average of 0.67 during that period indicating a return to a predominantly regenerative system.Our observations indicate that high diatom biomass and high silica production rates previously observed in the marginal seas around Antarctica also occur in the deep ocean near the Polar Front. The bloom we observed propagated across the latitudinal band overlying the sedimentary opal belt which encircles most of Antarctica implying a role for such blooms in the formation of those sediments. Comparison of our surface silica production rates with new estimates of opal accumulation rates in the abyssal sediments of the Southern Ocean, which have been corrected for sediment focusing, indicate a burial efficiency of 4.6% for biogenic silica. That efficiency is considerably lower than previous estimates for the Southern Ocean.  相似文献   

15.
Upper-ocean fluxes of particulate organic carbon (POC) and biogenic silica (bSi) are calculated from four US JGOFS cruises along 170°W using a thorium-234 based approach. Both POC and bSi fluxes exhibit large variability vs. latitude during the seasonal progression of diatom dominated blooms. POC fluxes at 100 m of up to 50 mmol C m−2 d−1 are found late in the bloom, and farthest south near the Ross Sea Gyre. Biogenic Si fluxes also peak late in the bloom as high as 15 mmol Si m−2 d−1, but this flux peak occurs at a different latitude, just south of the Antarctic Polar Front (APF), which is centered around 60°S along this cruise track. The ratios of both POC and bSi export relative to their production rates are large, suggesting an efficient biological pump at these latitudes. The highest relative bSi/POC flux ratios at 100 m are found just south of the APF, coincident with a bSi/POC flux peak seen in 1000 m traps during this same program by Deep-Sea Research II (Honjo et al., Deep-Sea Research II 47, 3521–3548). These data suggest that efficient export at these latitudes can support the high accumulation rates of bSi found in the sediments under and south of the APF, despite the generally low biomass and productivity levels in this region.  相似文献   

16.
Trawl surveys were conducted in 2000 and 2001 to examine patterns of distribution and abundance of postsettlement red snapper (Lutjanus campechanus) on a shell bank, Freeport Rocks Bathymetric High (FRBH), in the northwestern Gulf of Mexico. In addition, otolith-based methods were used to determine age, hatch-date, growth and mortality of new recruits associated with FRBH. Date and region were significant factors affecting density of red snapper in 2000. Peak densities of red snapper were observed in July and August, and mean density among habitat types (shell bank, inshore mud, offshore mud) was similar (range: 50–52 ind hectare−1) in 2000. Alternatively, a habitat effect was detected during a limited survey conducted in 2001, with density higher on the shell bank than inshore or offshore mud habitat. Postsettlement red snapper were first detected at approximately 16 mm standard length, and individuals less than 20 mm were present in all habitats. Estimated ages of red snapper ranged from 26 to 121 d, with new settlers (≤20 mm) typically less than 28 d. Predicted hatch dates ranged from early April to mid August with a single peak occurring from late May to early June. Growth rate for the April–May cohort (0.817 mm d−1) was similar to the June–July cohort (0.830 mm d−1). Habitat-specific differences in growth were observed, and rates were highest for individuals from the inshore habitat (0.881 mm d−1). Mortality rates (Z) during the early post-settlement period were approximated using catch curves, and early life mortality of red snapper was 12.1% d−1 (Z=0.129). While the difference in mortality between cohorts was negligible, a habitat-specific difference in mortality was observed. Mortality rate of red snapper inhabiting the inshore mud habitat (Z=0.045, 4.4% d−1) was lower than rates observed for individuals on the shell bank (Z=0.120, 11.9% d−1) or offshore (Z=0.099, 9.3% d−1) habitat. Individuals residing in the inshore habitat had significantly higher growth rates and significantly lower mortality rates, suggesting that recruitment potential was higher for these individuals.  相似文献   

17.
Primary production was measured during two Lagrangian experiments in the Iberian upwelling. The first experiment, in a body of upwelled water, measured day-to-day changes in phytoplankton activity as the water mass moved south along the shelf break. Nutrient concentrations decreased over a five day period, with concomitant increases in phytoplankton biomass. Initially the maximum phytoplankton biomass was in the upper 10m but after four days, a sub-surface chlorophyll maximum was present at 30m. Depth-integrated primary production at the beginning of the experiment was 70mmolC.m−2.d−1 (838mgC.m−2.d−1) and reached a maximum of 88mmolC.m−2.d−1 (1053mgC.m−2.d−1) on day 3. On day 1, the picoplankton fraction (<2μm) was slightly more productive than larger (>5μm) phytoplankton, but the increase in overall production during the drift experiment was by these larger cells. Nitrate was the dominant nitrogen source. As nutrient concentrations declined, ammonium became increasingly more important as a nitrogen source and the f-ratio decreased from 0.7 to 0.5. Picoplankton cells (<2μm) were responsible for most (65–80%) of the ammonium uptake. The C:N:P uptake ratios were very close to the Redfield ratio for the first four days but as nutrients became depleted high C:N uptake ratios (11 to 43) were measured. Over the period of the experiment, nitrate concentration within the upper 40m decreased by 47.91mmolN.m−2. In vitro estimates, based on 15N nitrate uptake, accounted for 56% of the decrease in nitrate concentration observed in the drifting water mass. Ammonium uptake over the same four day period was 16.28mmolN.m−2, giving a total nitrogen uptake of 43.18mmolN.m−2.In the second experiment, an offshore filament was the focus and a water mass was sampled as it moved offshore. Nutrient concentrations were very low (nitrate was <10nmol l−1 and ammonium was 20–40nmol l−1). Primary production rate varied between 36mmolC.m−2.d−1 (436mgC.m−2.d−1) and 21mmolC.m−2.d−1 (249mgC.m−2.d−1). Picophytoplankton was the most productive fraction and was responsible for a constant proportion (ca 0.65) of the total carbon fixation. Uptake rates of both nitrate and ammonium were between 10 and 20% of those measured in the upwelling region. Urea could be a very significant nitrogen source in these waters with much higher uptake rates than nitrate or ammonium; urea turnover times were ca. one day but the source of the urea remains unknown. Urea uptake had a profound effect on calculated f ratios. If only nitrate and ammonium uptake was considered, f ratios were calculated to be 0.42–0.46 but inclusion of urea uptake reduced the f ratio to <0.1. The primary production of this oligotrophic off-shore filament was driven by regenerated nitrogen.  相似文献   

18.
During late winter and spring of 2002 and 2003, 24 two- to three-day cruises were conducted to Dabob Bay, Washington State, USA, to examine the grazing, egg production, and hatching success rates of adult female Calanus pacificus and Pseudocalanus newmani. Here, we discuss the results of our grazing experiments for P. newmani. Each week, we conducted traditional microzooplankton dilution experiments and “copepod dilution” experiments, each from two different layers. Grazing was measured by changes in chlorophyll concentration and direct cell counts. Clearance rates on individual prey species, as calculated by cell counts, showed that Pseudocalanus are highly selective in their feeding, and may have much higher grazing rates on individual taxa than calculated from bulk chlorophyll disappearance. The grazing rates of the copepods, however, are typically an order of magnitude lower than the grazing rates of the microzooplankton community, or the growth rates of the phytoplankton. P. newmani ingested diatoms, but, at certain times fed preferentially on microzooplankton, such as ciliates, tintinnids, and larger dinoflagellates. Removal of the microzooplankton may have released the other phytoplankton species from grazing pressure, allowing those species’ abundance to increase, which was measured as an apparent “negative” grazing on those phytoplankton species. The net result of grazing on some phytoplankton species, while simultaneously releasing others from grazing pressure resulted in bulk chlorophyll-derived estimates of grazing which were essentially zero or slightly negative; thus bulk chlorophyll disappearance is a poor indicator of copepod grazing. Whether copepods can significantly release phytoplankton from the grazing pressure by microzooplankton in situ, thus causing a trophic cascade, remains to be verified, but is suggested by our study.  相似文献   

19.
The seasonal dynamics of inorganic nutrients and phytoplankton biomass (chlorophyll a), and its relation with hydrological features, was studied in the NW Alboran Sea during four cruises conducted in February, April, July and October 2002. In the upper layers, the seasonal pattern of nutrient concentrations and their molar ratios (N:Si:P) was greatly influenced by hydrological conditions. The higher nutrient concentrations were observed during the spring cruise (2.54 μM NO3, 0.21 μM PO43− and 1.55 μM Si(OH)4, on average), coinciding with the increase of salinity due to upwelling induced by westerlies. The lowest nutrient concentrations were observed during summer (<0.54 μM NO3, 0.13 μM PO43− and 0.75 μM Si(OH)4, on average), when the lower salinities were detected. Nutrient molar ratios (N:Si:P) followed the same seasonal pattern as nutrient distribution. During all the cruises, the ratio N:P in the top 20 m was lower than 16:1, indicating a NO3 deficiency relative to PO43−. The N:P ratio increased with depth, reaching values higher than 16:1 in the deeper layers (200–300 m). The N:Si ratio in the top 20 m was lower than 1:1, excepting during spring when N:Si ratios higher than 1:1 were observed in some stations due to the upwelling event. The N:Si ratio increased with depth, showing a maximum at 50–100 m (>1.5:1), which indicates a shift towards Si-deficiency in these layers. The Si:P ratio was much lower than 16:1 throughout the water column during the four cruises. In general, the spatial and seasonal variation of phytoplankton biomass showed a strong coupling with hydrological and chemical fields. The higher chlorophyll a concentrations at the depth of the chlorophyll maximum were found in April (2.57 mg m−3 on average), while the lowest phytoplankton biomass corresponded to the winter cruise (0.74 mg m−3 on average). The low nitrate concentrations together with the low N:P ratios found in the upper layers (top 20 m) during the winter, summer and autumn cruises suggest that N-limitation could occur in these layers during great part of the year. However, N-limitation during the spring cruise was temporally overcome by nutrient enrichment caused by an intense wind-driven upwelling event.  相似文献   

20.
The diversity, abundance and biomass of microzooplankton in Cochin backwaters were studied for the first time during pre-summer monsoon to peak of summer monsoon (April–July 2003) to understand the impact of large freshwater influx. Microzooplankton abundance and biomass were highest during pre-summer monsoon (av. 3817 ind. L−1 and 146 μg C L−1) that declined with the onset (av. 2052 ind. L−1 and 45 μg C L−1) and peak (av. 409 ind. L−1 and 10 μg C L−1) summer monsoon. Species diversity, richness and evenness of microzooplankton also showed similar trends as that of abundance and biomass. Grazing experiment showed that microzooplankton consumes 43 ± 1% of the daily phytoplankton standing stock during the high saline condition (27.5). Low abundance of microzooplankton during summer monsoon period (1/8 of the pre-summer monsoon value) along with the concomitant occurrence of low mesozooplankton (1/8 times of pre-summer monsoon value) suggests that there could be a general lack of planktonic grazers. This would result in a weak transfer of primary and bacterial carbon to higher trophic levels, eventually leaving behind much unconsumed basic food in the estuary during summer monsoon. Thus a major portion of the primary carbon either settles down or gets transported to the coastal regions during monsoon. High flushing of Cochin backwaters also facilitates faster removal of primary producers to the coastal regions during monsoon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号