首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Although grazing is considered an essential process controlling epiphyte biomass on seagrass leaves, there is still a lack of fundamental knowledge about the species‐specific consumption rates of the most common grazers in Mediterranean meadows. This study experimentally assessed the effect of Posidonia oceanica‐associated gastropod grazing on early successional biofilm and the species‐specific relationship between biofilm consumption rates and biofilm biomass. Two biofilms on artificial substrata, both developed in situ (in a P. oceanica meadow), one under ambient conditions and the other under nutrient‐enriched conditions, were offered in aquaria assays to nine species of grazers found in P. oceanica meadows. Biofilm consumption rates and their association with biofilm biomass were assessed. It was found that: (i) there was a positive association between biofilm consumption and biofilm biomass up to 20 mg Chl a·m?2 for Bittium reticulatum, Gibbula ardens, Jujubinus exasperatus and Tricolia pullus; (ii) Alvania montagui, B. reticulatum and Jujubinus striatus showed the highest consumption rates and are thus expected to be amongst the leading consumers in early‐successional epiphytic communities; (iii) there was not an increase of consumption rate when a substratum colonized under nutrient‐enriched conditions was offered to any of the nine studied species. This study provides species‐specific consumption rates knowledge that is useful for the assessment of the strength of grazer–epiphyte interactions and trophic fluxes in P. oceanica meadows.  相似文献   

2.
Although female ornaments have been described in many taxa, the full spectrum of information conveyed by such traits together with the potential male fitness benefits are far from fully understood. Here, we used a sex‐role‐reversed species, the black‐striped pipefish, Syngnathus abaster, where females are the ornamented sex and intensively compete for mates who present an extreme form of paternal care (male pregnancy). We investigated what information is conveyed by female traits and if males are using it during mate choice. We further assessed which traits would reflect offspring quality at birth. We found that although body length generally portrays information on female reproductive potential (gonadosomatic index and oocyte diameter), it does so indirectly. Different aspects of the female traits, such as stripe width and trunk broadness, were found to be better direct indicators. When size is kept constant, males prefer females with wider stripes. Moreover, stripe coloration was found to reflect offspring quality as darker‐striped females produced larger newborns. Our observations suggest that in a species with exclusive paternal care, independently from the male's direct investment in reproduction, female contribution decisively impacts male fitness. Thus, at least in sex‐role‐reversed species such as the black striped pipefish, female ornaments can be selected in an analogous way to those of males in species with conventional sex roles (i.e. by mate choice).  相似文献   

3.
Rock pools can be found in inter‐tidal marine environments worldwide; however, there have been few studies exploring what drives their, fish species composition, especially in Australia. The rock‐pool environment is highly dynamic and offers a unique natural laboratory to study the habitat choices, physiological limitations and adaptations of inter‐tidal fish species. In this study rock pools of the Sydney region were sampled to determine how the physical (volume, depth, rock cover and vertical position) and biological (algal cover and predator presence) parameters of pools influence fish distribution and abundance. A total of 27 fish species representing 14 families was observed in tide pools at the four study locations. The five most abundant species were Bathygobius cocosensis, Centropogon australis, Enneapterygius atrogulare, Lepidoblennius haplodactylus and Microcanthus strigatus, which together represented 71% of the total number of fish recorded. Larger rock pools containing more algal and rock ledge cover hosted a larger and more diverse population of fish. Furthermore, certain species were only found in pools with specific characteristics, such as the presence of loose shells, a variety algae or rock cover, suggesting a high degree of habitat specificity. By contrast, some species were ubiquitous and thus can likely tolerate a wide variety of physical conditions.  相似文献   

4.
Studies of the trophic structure in methane‐seep habitats provide insight into the ecological function of deep‐sea ecosystems. Methane seep biota on the Chilean margin likely represent a novel biogeographic province; however, little is known about the ecology of the seep fauna and particularly their trophic support. The present study, using natural abundance stable isotopes, reveals a complex trophic structure among heterotrophic consumers, with four trophic levels supported by a diversity of food sources at a methane seep area off Concepción, Chile (~36° S). Although methanotrophy, thiotrophy and phototrophy are all identified as carbon fixation mechanisms fueling the food web within this area, most of the analysed species (87.5%) incorporate carbon derived from photosynthesis and a smaller number (12%) use carbon derived from chemosynthesis. Methane‐derived carbon (MDC) incorporation was documented in 22 taxa, including sipunculids, gastropods, polychaetes and echinoderms. In addition, wide trophic niches were detected in suspension‐feeding and deposit‐feeding taxa, possibly associated with the use of organic matter in different stages of degradation (e.g. from fresh to refractory). Estimates of Bayesian standard ellipses area (SEAB) reveal different isotopic niche breadth in the predator fishes, the Patagonian toothfish Dissostichus eleginoides and the combtooth dogfish Centroscyllium nigrum, suggesting generalist versus specialist feeding behaviors, respectively. Top predators in the ecosystem were the Patagonian toothfish D. eleginoides and the dusky cat shark, Bythaelurus canescens. The blue hake Antimora rostrata also provides a trophic link between the benthic and pelagic systems, with a diet based primarily on pelagic‐derived carrion. These findings can inform accurate ecosystem models, which are critical for effective management and conservation of methane seep and adjacent deep‐sea habitats in the Southeastern Pacific.  相似文献   

5.
The Eiffel Tower edifice is situated in the Lucky Strike hydrothermal vent field at a mean depth of 1690 m on the Mid‐Atlantic Ridge (MAR). At this 11‐m‐high hydrothermal structure, different faunal assemblages, varying in visibly dominant species (mussels and shrimp), in mussel size and in density of mussel coverage, were sampled biologically and chemically. Temperature and sulphide (∑S) were measured on the different types of mussel‐based assemblages and on a shrimp‐dominated assemblage. Temperature was used as a proxy for calculating total concentrations of CH4. Based on the physico‐chemical measurements, two microhabitats were identified, corresponding to (i) a more variable habitat featuring the greatest fluctuations in environmental variables and (ii) a second, more stable, habitat. The highest temperature variability and the highest maximum recorded temperatures were found in the assemblages visibly inhabited by alvinocaridid shrimp and dense mussel beds of large Bathymodiolus azoricus, whereas the less variable habitats were inhabited by smaller‐sized mussels with increasing bare surface in between. Larger mussels appeared to consume more ∑S compared with smaller‐sized (<1 cm) individuals and thus had a greater influence on the local chemistry. In addition, the mussel size was shown to be significantly positively correlated to temperature and negatively to the richness of the associated macrofauna. The presence of microbial mats was not linked to specific environmental conditions, but had a negative effect on the presence and abundance of macro‐fauna, notably gastropods. Whereas some taxa or species are found in only one of the two microhabitats, others, such as polychaetes and Mirocaris shrimp, cross the different microhabitats. Temperature was proposed to be a more limiting factor in species distribution than ∑S.  相似文献   

6.
Whereas diel fish migration between mangrove and seagrass habitats has been recognized for decades, quantitative studies have focused mainly on diurnal patterns of fish distribution and abundance. In general, previous studies have shown that fish abundances decline with increasing distance from mangroves; however, evidence for such a pattern at night, when many fishes are actively feeding, is scarce. The present study is the first to report nocturnal fish abundances along a continuous distance gradient from mangroves across adjacent seagrass habitat (0–120 m). Here, we used nocturnal seine sampling to test the null hypothesis (based on diurnal studies and limited nocturnal work) that fish abundance would decrease with increasing distance from shoreline. We focused on species and life‐stage‐specific abundance patterns of Lutjanus griseus, Sphyraena barracuda, Archosargus rhomboidalis, and Haemulon sciurus. Results indicated that assemblage composition and structure differed significantly by season, likely influenced by temperature. However, within each season, the fish habitat use pattern at both the assemblage and species‐specific level generally failed to support our working null hypothesis. Species‐specific analyses revealed that, for most species and life‐stages examined, nocturnal abundance either did not change with distance or increased with distance from the mangrove‐seagrass ecotone. Our results suggest that analyses where taxa are grouped to report overall patterns may have the potential to overlook significant species‐ and stage‐specific variation. For fishes known to make nocturnal migrations, we recommend nocturnal sampling to determine habitat utilization patterns, especially when inferring nursery value of multiple habitats or when estimating fish production.  相似文献   

7.
Håkon Mosby mud volcano (HMMV) is one of the most active and most studied seep sites in European waters. Many authors have described its thermal activity, dynamic of mud flows, and geochemical and microbial processes. It is characterised by a concentric zonation of successive biogenic habitats related to an activity and geochemical gradient from its centre to its periphery. Around the central area covered by mud flows, white and grey microbial mats occur among areas of bare sediment, whereas siboglinid tubeworm fields of Sclerolinum contortum and/or Oligobrachia haakonmosbiensis colonise the peripheral areas. The meiofaunal community is known to be structured among habitats, but the macrofauna has rarely been investigated and has never been sampled in situ. As part of the European project HERMES, using the ROVs Victor 6000 and Quest 4000, we sampled quantitatively the different habitats of the volcano for macrofauna sensus lato, retained on a 250‐ or 500‐μm sieve. We also sampled a newly discovered pockmark on Storegga slide (cne 5.6) and two pockmarks (G11, G12) in the Nyegga area. Macrofauna was identified and counted from phylum to family level. Our results on HMMV showed a gradient of increasing density and diversity from the volcano centre (1–3 taxa; 260 ind·m?2) to the peripheral siboglinid fields (8–14 taxa, 93,000 ind·m?2), with an intermediate situation for microbial mats. For macrofauna ≥500 μm, non‐siboglinid polychaetes dominated the communities of the central mud volcano area, white mats and S. contortum fields (83, 89 and 37% of the total, respectively), whereas gastropods dominated grey mats and O. haakonmosbiensis fields (89 and 44% of the total, respectively). Polychaete families followed the same pattern of diversity according to habitats within HMMV. Of 23 polychaete families identified, only one occurred in the centre, and three in the microbial mats. Capitellidae and Dorvilleidae (typical of organically and sulphide‐enriched areas) occurred at remarkably high densities in white microbial mats and in O. haakonmosbiensis fields. The S. contortum fields were the most diverse habitat with 12 polychaete families. The 250‐μm fraction showed similar taxa dominating the habitats, but taking meiofauna into account, nematodes became the major taxon in white mats and in S. contortum fields, where they were particularly large in size, whereas copepods dominated in other habitats. Meiofauna and macrofauna did not show the same patterns of density according to habitats. Using principal components analysis the habitats at HMMV were clearly distinct, and clustered according to dominant species of siboglinids and type of microbial mats. Pockmarks at Nyegga showed a similar concentric pattern of habitats around fluid sources as on the volcano, which seemed similarly to influence macrofauna composition, but at a much smaller scale. Total taxa and polychaete diversity are high in the S. contortum fields in these pockmarks as well. Regional‐scale comparisons including HMMV and Storegga suggested a higher influence of habitat‐type than seep‐site on the community structure.  相似文献   

8.
The blue mussels Mytilus edulis and Mytilus trossulus occur sympatrically and are able to hybridize in populations on the eastern coast of Newfoundland, Canada, presenting an opportunity to study their aggregational behavior. Aggregation behavior may therefore provide insight into post‐settlement interactions and pre‐zygotic reproductive isolation between the species. Three treatments were designed using M. edulis and M. trossulus to investigate their intraspecific and interspecific spatial distribution patterns. With Ripley’s K‐function and Monte Carlo simulation analysis, we found that in the single‐species treatment, M. edulis aggregated significantly but not M. trossulus. Based on results of two‐way ANOVAs, both the number of aggregations and the moving distance were significantly affected by the treatments (single‐species or mixed‐species treatment) and times (24, 48, 72 and 96 h). In further pairwise comparisons using Tukey’s test, M. edulis aggregated differently with or without M. trossulus occupying the same tank, suggesting that the aggregational behavior of M. edulis could be driven by species‐specific chemical cues. The result that M. edulis aggregates intraspecifically may increase the probability of intraspecific fertilization of the spawned gametes and thus function as a pre‐zygotic reproductive isolation mechanism maintaining the blue mussel hybrid zone.  相似文献   

9.
A species of Moina from sewage ponds at Glenside, Wellington, New Zealand, is identifiable with Moina tenuicornis Sars, 1896, and distinguishable from Moina australiensis Sars, 1896 sensu stricto, in having rectangular sculpturing on the ephippium, ungrouped setae on the hind margin of the carapace, and in lacking a permanent supra‐ocular depression. Because of wide variation in some diagnostic characters, possibly both taxa are conspecific.

Some physical and chemical characteristics of the habitat are tabulated, since little is known of the ecological requirements of these morphologically similar species. Using mean values as a guide, the Glenside population of Moina tenuicornis favours a temperature in the vicinity of 20°c, a very slightly alkaline pH, a dissolved oxygen content in excess of 6mg/litre, a dissolved solid content of about 270 mg/litre, of which about half is organic and exerts a BOD5 of about 60 mg/litre, and suspended organic solids of about 150 mg/litre.  相似文献   

10.
Most behavioral studies on hermaphroditic fishes have focused on small‐sized species, which are tractable for research. Although many species of large hermaphroditic fishes are important fishery resources, their proximate mechanisms (visual, chemical and/or behavioral cues) in the social regulation of sex change have not been determined. Determination of these would inform resource management and aquaculture. In order to get closer to understanding the proximate mechanisms underlying the social regulation of female‐to‐male sex change in large hermaphroditic fishes, this study reports situations that induced female‐to‐male sex change in black‐spot tuskfish, Choerodon schoenleinii, a species of large protogynous fish, in massive laboratory tanks. The situations differed in the possibility of male‐to‐female tactile contact and in the group sex ratio, enabling us to infer plausible proximate mechanisms underlying sex change induction. Tactile contact between individuals is suspected to be closely related to the incidence of female‐to‐male sex change in C. schoenleinii. Visual and chemical cues alone may be insufficient to inhibit such sex changes. Male‐to‐female tactile contact may have an important influence on female‐to‐male sex change, i.e., inhibition of this sex change, in this species. The effect of sex ratio of a social group on the incidence of sex change may be due to the relative frequency and intensity of male tactile contact with each female, which may vary with the number of females. In the absence of a dominant male, tactile contact among females may affect the incidence of sex change, as well as determine which individuals change sex.  相似文献   

11.
By the consumption of algae, parrotfishes open space for young coral settlement and growth, thus playing a central role on the maintenance of coral reefs. However, juvenile parrotfish ecology is often overlooked due to the difficulty discerning species during this phase. Herein, we present the first attempt to investigate changes in habitat use and diet that happen to juveniles of the Redeye parrotfish Sparisoma axillare, focusing on four zones within an algal‐dominated reef: the macroalgal beds, back reef, reef flat, and fore reef. Smaller S. axillare juveniles (<5 cm) preferred to inhabit the macroalgal beds and the reef flat, whereas juveniles larger than 5 cm were more abundant in the back and fore reefs due to distinct post‐settlement habitat conditions. Aggressive interactions with the territorial damselfish Stegastes fuscus were the primary driving factor of juvenile distribution and feeding rates. Attack rates increased with juvenile size and the lowest bite rates were observed in zones with higher densities of territorial damselfish. In previous studies, the persistence of parrotfish recruits in habitats dominated by damselfish was reduced, but newly settled parrotfish occurred more densely within the damselfish domain by behaving as a cryptic reef fish. As these juveniles grew, their bite rates increased, a change associated with a shift from cryptic to roving behavior. Feeding preferences were determined by substrate cover, where juveniles fed on available food sources in each habitat. Juveniles relied on jointed calcareous algae in habitats dominated by these algae, a pattern not observed for thick leathery algae. Filamentous algae were the preferred food for smaller fish; for individuals greater than 10 cm, a higher ingestion of sand was observed. Most studies evaluating the functional role of parrotfish do not consider species feeding preferences. However, the potential for a species to turn an impacted reef back to a coral‐dominated phase is influenced by their food selection, which is dependent on the algal species composition.  相似文献   

12.
The taxonomic richness and geographic distribution of sponges stranded along Sardinian shores were investigated in the long term by means of a revisited ancient sampling method in order to support a comprehensive species inventory. Almost all stranded species were Keratosa (n = 20), plus 6 species of other Demospongiae taxa. Dictyoceratida were dominant, with 6 genera and 19 species of the families Irciniidae, Spongiidae and Thorectidae: 9 Mediterranean endemics, 7 Atlanto‐Mediterranean and 3 widespread species. Regarding Dendroceratida, only the genus Spongionella was found. Some species (n = 8) were recorded for the first time in circum‐Sardinian seas. A high percentage (54.3%; 19 out of the 35 species) of the total Mediterranean Dictyoceratida fauna was recorded, including the most endangered Mediterranean species, that is of the genera Spongia and Hippospongia. Hippospongia communis, Ircinia variabilis, Spongia zimocca and Spongia officinalis were the most common species. Morphotraits of rare and/or poorly known species were investigated by scanning electron microscopy (SEM). Comparison among Sardinian sectors, and between Sardinian and adjacent seas, revealed a high similarity of stranded Dictyoceratida, despite the fact that the data from Tyrrhenian and Balearic–Catalan seas were collected mainly from SCUBA records. The cost‐effective sampling method used in the present study seems appropriate to the gross qualitative monitoring of coastal areas (e.g. large unexplored Northern African coasts), in order to assess the conservation status of Mediterranean Keratosa species. The wide distribution of all Mediterranean bath sponge species indicates their good conservation status in circum‐Sardinian seas, a datum that could usefully support the future management of this bioresource, particularly in protected areas.  相似文献   

13.
Several studies in the last 20 years have revealed that morphological asymmetry in fish can be characterized as ‘antisymmetry’. Antisymmetry is a lateral dimorphism in which each population consists of individuals with well‐developed left sides (lefties) and well‐developed right sides (righties). This dimorphism influences predator–prey interactions. In some piscivorous fishes, it has been found that predators can catch more prey of the opposite morphological type to themselves (cross‐predation) than of the same morphological type (parallel‐predation). Our previous work clarified that the predominance of cross‐predation is caused by lateralized behaviors of predators and prey that correspond to their morphological antisymmetry. Moreover, based on the results of our behavioral observations, we hypothesized that parallel‐predation can predominate when predators encounter the potential prey frontally. To test this hypothesis, in the present study we investigated the relationship between lateral morphological types of anglerfish (Lophiomus setigerus) and those of the prey fishes found in their stomachs. Anglerfish attract potential prey using their first dorsal fin (illicium) as a lure, and their frontal encounters with potential prey fishes were photographed in situ and observed in an aquarium. The results of a stomach contents analysis indicated that parallel‐predation predominated in five benthopelagic prey fish species (perches and eels). By contrast, five benthic prey fishes (gobies and weevers) exhibited the predominance of cross‐predation. These results not only demonstrate the predominance of parallel‐predation in a natural fish community, but also suggest that the relationship between morphological types of predator and prey species can be reversed depending on the lifestyle of prey.  相似文献   

14.
Management and conservation issues are addressed through the identification of areas of particular importance, which requires the acquisition of baseline information on species distribution and dynamics. These types of data are particularly difficult to obtain at high resolution for large marine vertebrates like cetaceans, given that dedicated surveys are complex and logistically expensive. This study uses daily presence–absence sighting data of cetaceans collected year‐round from whale‐watching boats to support the theory that fine‐scale data obtained from platforms of opportunity can provide valuable information on species occurrence and group dynamics. Data from 7,551 (daily) sightings comprising 22 species were collected from 3,527 surveyed days over 11 years (mean of 321 days per year, SD = 17) in the pelagic environment of Madeira Island. Cetaceans were observed on 92% of the surveyed days, and a mean of 15.4 (SD = 1.5), 8.2 (SD = 2.0) and 2.1 (SD = 1.2) species were recorded per year, month, and day, respectively. There were significant differences in the number of species per month (p < .001), with the highest diversity recorded in June. At least nine species, comprising 96% of all sightings, were found to use the Madeiran waters on a regular basis, such as the Atlantic spotted dolphin (Stenella frontalis), the short‐beaked common dolphin (Delphinus delphis), the bottlenose dolphin (Tursiops truncatus), and others featured in the Red List of the International Union for Conservation of Nature as Endangered, Vulnerable, and Data Deficient. In addition, 10 species were found to use the Madeiran waters for travelling, feeding, resting, socializing and calving, which suggests that the southern and southeastern waters of Madeira Island constitute an area of interest for cetaceans. This study characterizes the cetaceans’ community structure (occurrence, aggregation sizes, behaviours, proportion of calves, and inter‐specific relationships) of a poorly studied region, providing important information for managers. Finally, the advantages and limitations of using fine‐scale data from a type of platform of opportunity that is increasing along coastlines globally are discussed.  相似文献   

15.
Genetic diversity is the basis for adaptation and therefore of primary scientific interest, especially in species that are threatened by anthropogenic challenges, e.g. climate change and/or pollution. Coral reefs are among the most threatened but also the most diverse ecosystems and have therefore been studied quite extensively. So far, most investigations have focused on scleractinian corals while the equally important reef builders, the hydrozoans, have been less considered. Here we provide the first study of genotypic variability as well as intra‐colonial genetic variability, the co‐occurrence of more than one genotype within a single colony, in Milleporidae based on microsatellites. We analysed two geographically distinct populations from the Millepora dichotoma complex, one from the Red Sea and one from the Great Barrier Reef. Additionally, a population of Millepora platyphylla was analysed from French Polynesia. We compared microsatellite multilocus genotypes and cytochrome c oxidase subunit I haplotypes for each of the three field sites to detect levels of genotypic diversity at the intra‐ and inter‐specific levels. Furthermore, we examined all species for the occurrence of intra‐colonial genetic variability, a recently described mechanism in scleractinian corals that might enhance the adaptive potential of sessile organisms. We found both species and all field sites to be genotypically variable. Twelve mitochondrial haplotypes and 27 multilocus microsatellite genotypes were identified. In addition, intra‐colonial genetic variability was detected in the M. dichotoma complex from the Great Barrier Reef as well as in M. platyphylla from French Polynesia. All of the intra‐colonial genetically variable colonies consisted of one main genotype and a second divergent genotype caused by somatic mutations (mosaicism). Our study proves that Milleporidae are genetically variable and that the phenomenon of intra‐colonial genetic variability also occurs in this important reef‐building family.  相似文献   

16.
The size of bottom‐up subsidies, food and larvae, from the ocean has a profound impact on inter‐tidal communities and populations. Alongshore variations in subsidies are attributed to variation in coastal conditions, but also might be due to variations in surf‐zone hydrodynamics. We tested this hypothesis by comparing surf‐zone phytoplankton concentrations to surf‐zone hydrodynamics as indicated by the width of the surf zones. To minimize the potential effects of alongshore variation in phytoplankton abundance in the coastal ocean, we sampled closely spaced sites (median separation 1 km) over short periods (3 days). Surf‐zone concentrations of coastal phytoplankton taxa (e.g. Chaetoceros spp., Pseudo‐nitzschia spp. and dinoflagellates) varied with surf‐zone width; 65% to 94% of the variability in their concentration is explained by surf‐zone width. Where surf zones were narrow and more reflective, phytoplankton concentrations were one to several orders of magnitude lower than in wider, more dissipative surf zones. The most closely spaced stations were 30 m apart, but represented distinct habitats – a reflective and a more dissipative surf zone. Phytoplankton concentrations in the reflective surf zone were an order of magnitude or more lower than in the adjacent more dissipative surf zone. A reanalysis of a published study on phytoplankton subsidies found similar results. Alongshore variation in surf‐zone hydrodynamics appears to be an important driver of phytoplankton subsidies to the inter‐tidal zone.  相似文献   

17.
The precious red coral Corallium rubrum (L., 1758) lives in the Mediterranean Sea and adjacent Eastern Atlantic Ocean on subtidal hard substrates. Corallium rubrum is a long‐lived gorgonian coral that has been commercially harvested since ancient times for its red axial calcitic skeleton and which, at present, is thought to be in decline because of overexploitation. The depth distribution of C. rubrum is known to range from c. 15 to 300 m. Recently, live red coral colonies have been observed in the Strait of Sicily at depths of c. 600–800 m. This record sheds new light on the ecology, biology, biogeography and dispersal mechanism of this species and calls for an evaluation of the genetic divergence occurring among highly fragmented populations. A genetic characterization of the deep‐sea red coral colonies has been done to investigate biological processes affecting dispersal and population resilience, as well as to define the level of isolation/differentiation between shallow‐ and deep‐water populations of the Mediterranean Sea. Deep‐water C. rubrum colonies were collected at two sites (south of Malta and off Linosa Island) during the cruise MARCOS of the R/V Urania. Collected colonies were genotyped using a set of molecular markers differing in their level of polymorphism. Microsatellites have been confirmed to be useful markers for individual genotyping of C. rubrum colonies. ITS‐1 and mtMSH sequences of deep‐water red coral colonies were found to be different from those found in shallow water colonies, suggesting the possible occurrence of genetic isolation among shallow‐ and deep‐water populations. These findings suggest that genetic diversity of red coral over its actual range of depth distribution is shaped by complex interactions among geological, historical, biological and ecological processes.  相似文献   

18.
Crabs are important predators of inter‐tidal ecosystems, controlling the abundance and distribution of their prey populations. Often the same crab species occupies several habitats and, although their effects on prey have been quantified across habitats, crabs’ dietary and morphological responses to differing environmental influences have been overlooked. Here, we used the crabs Eriphia verrucosa and Pachygrapsus marmoratus as model species to examine differences in claw morphometry – size and wear – and diet between rocky shore and heterogeneous sand flat habitats. We predicted that, intra‐specifically, crabs from rocky shores would consume more hard‐shelled prey owing to their high availability and consequently, would display chelipeds with the following claw characteristics: a higher degree of claw damage, stronger musculature (higher propel height) and increased mechanical advantage (defined as the ratio of input lever length to output lever length) than crabs in the heterogeneous sand flat habitats. Sampling was performed in heterogeneous sand flat habitats and rocky shores of the Central Portuguese coast. For each crab species, carapace width, diet composition and several claw morphometric measures were recorded, revealing significant intra‐specific differences (using multivariate analysis) between shore types. We found that E. verrucosa and P. marmoratus consumed more hard prey on rocky shore than on sand flat habitats, which resulted in rocky shore crabs having more accentuated dentition wear and larger musculature than their sand flat habitat counterparts. We suggest that the strong response of crab claw morphometry to environmentally induced diet variations is an important mechanism in the successful adaptation of crab species to inhabit differing habitats. A major implication is that the impact of the same species on prey may vary largely with habitat type as a result of predation efficiency varying with claw condition.  相似文献   

19.
In Tauranga Harbour, Lyrodus medilobatus was found in greatest numbers on test‐blocks placed near the bottom, while Bankia australis, B. neztalia, and Nototeredo edax had a more uniform vertical distribution. Shipworms occurred in the intertidal zone up to about mean sea level. In Wellington Harbour, B. neztalia was found in test‐blocks up to mean sea level, but was most abundant in blocks near the bottom. In the Bay of Islands, shipworms settled in the intertidal on test‐blocks as high as 30 cm below mean sea level. B. australis was the most abundant species in mangrove wood in northern New Zealand, and L. medilobatus occurred occasionally. No evidence was found for shipworms settling on living mangrove wood, although they frequently tunnelled from dead wood into living wood.  相似文献   

20.
Bioeroding sponges belong to the most dominant bioeroders, significantly contributing to the erosion of coral reefs. Some species are tolerant or even benefit from environmental conditions such as ocean warming, acidification, and eutrophication. In consequence, increases in sponge bioerosion have been observed on some coral reefs over the last decades. The Abrolhos Bank is the largest coral reef system in the South Atlantic. It has been affected by sedimentation, eutrophication, overfishing, and climate change, mainly affecting coastal reefs, and at lesser intensity outer ones as well. This study aimed to describe spatial and temporal patterns in bioeroding sponge distribution in carbonate substrates in the Abrolhos Bank. Photo‐quadrats were used to compare bioeroding sponge abundance between two shallow reefs: a coastal, Pedra de Leste (PL), and an outer reef, Parcel dos Abrolhos (PAB). Each individual was delimitated over the substrate by determining the sponge surface through a line connecting the outermost papillae. The study was conducted over 6 years in 2008–2009 and 2013–2016. Four species of bioeroding sponges were identified: Cliona carteri Ridley, 1881, C. delitrix Pang, 1973, C. cf. schmidtii Ridley, 1881, and Siphonodictyon coralliphagum Rützler, 1971. The distribution and abundance of species varied between the inner and outer reefs and across the years, and displayed certain selectivity for the calcareous substrates recorded. Crustose coralline algae (CCA) were the main substrate excavated by the most abundant bioeroding species, C. carteri, and represented 70% of the substrate types occupied by this sponge (CCA, coral overgrown by CCA and plain coral). The highest abundance of bioeroding sponges observed in photo‐quadrats was 21.3 individuals/m2 at the outer reefs (PAB) in 2014. The abundances or areal extents of bioeroding sponges were up to 10 times greater on the outer reefs than on the coastal ones, where sedimentation is higher and more strongly influenced by siliciclastic material. Moreover, a higher herbivorous fish biomass has been reported on outer reefs which could also influence the higher abundance of bioeroding sponges in outer reefs. During the study period of 6 years, an increase in bioeroding sponge abundance was observed at the outer reefs (PAB), with the sea surface temperature increase. As CCA have an important role in reefal cementation and carbonate production in the Abrolhos reefs, a bioerosion impact might be expected, in particular, on the outer reefs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号